
1

Chapter 2

Memory Hierarchy Design

Part 2: Beyond the Basics

Computer Architecture
A Quantitative Approach, Sixth Edition

“Ideally one would desire an indefinitely large memory capacity
such that any particular … word would be immediately available.
… We are … forced to recognize the possibility of constructing a
hierarchy of memories, each of which has greater capacity than
the preceding but which is less quickly accessible.”

– A. W. Burks, H. H. Goldstine, and J. von Neumann,
Preliminary Discussion of the Logical Design of an
Electronic Computing Instrument (1946)

Acknowledgements

• Thanks to many sources for slide material
© 1990 Morgan Kaufmann Publishers, © 2001-present Elsevier

Computer Architecture: A Quantitative Approach by J. Hennessy & D. Patterson
© 1994 Morgan Kaufmann Publishers, © 2001-present Elsevier

Computer Organization and Design by D. Patterson & J. Hennessy
© 2002 K. Asinovic & Arvind, MIT

© 2002 J. Kubiatowicz, University of California at Berkeley
© 2006, © 2010 No Starch Press for Inside the Machine by J. Stokes

© 2007 W.-M. Hwu & D. Kirk, University of Illinois & NVIDIA

© 2007-2010 J. Owens, University of California at Davis
© 2010 CRC Press for Introduction to Concurrency in Programming Languages by M.

Sottile, T. Mattson, and C. Rasmussen
© 2017, IBM POWER9 Processor Architecture by Sadasivam et al., IBM

© 2016, © 2019 POWER9 Processor User’s Manual, IBM
© The OpenPOWER Foundation

Memory Hierarchy

CPU
Registers

L1
$

L2
$

L3
$

Memory

Disk Storage
Memory

bus
I/O
bus

CPU
Registers

L1
$

L2
$

Memory

FLASH Memory
Memory

bus
I/O
bus

Register
reference

Key: $ = cache

Level 1 $
reference

Level 2 $
reference

Level 3 $
reference

Memory
reference

Disk memory
reference

Register
reference

Level 1 $
reference

Level 2 $
reference

Memory
reference

FLASH memory
reference

Size:
Speed:

1000 bytes
0.3 ns

64 kB
1 ns

256 kB
3-10 ns

8-16 MB
20-30 ns

8-16 GB
80-100 ns

1-8 TB
5,000,000-10,000,000 ns

Size:
Speed:

500 bytes
0.3 ns

64 kB
2 ns

256 kB
10-20 ns

4-6 GB
80-100 ns

256-512 GB
25,000-50,000 ns

Basic Cache Optimizations
• Larger block size

– Reduces compulsory misses
– Increases capacity and conflict misses, increases miss penalty

• Larger total cache capacity to reduce miss rate
– Increases hit time, increases power consumption

• Higher associativity
– Reduces conflict misses
– Increases hit time, increases power consumption

• Higher number of cache levels
– Reduces overall memory access time, increases complexity

• Giving priority to read misses over writes
– Reduces miss penalty, increases complexity

• Avoiding address translation in cache indexing
– Reduces hit time

Review Appendix B,
as needed.

• How to reduce the average memory access time?
– Reduce hit time
– Reduce miss rate
– Reduce miss penalty

Recall: Avg. Memory Access Time

Advanced Optimizations for Caching
• Reduce Hit Time

(1) Small & simple first-level $ and (2) way prediction
• Side effect: Reduce power consumption

• Increase Cache Bandwidth
(3) Pipelined $, (4) non-blocking $, and (5) multi-banked $

• Side effect: Varying impacts on power consumption

• Reduce Miss Penalty
(6) Critical word first and (7) merging write buffers

• Side effect: Little impact on power

• Reduce Miss Rate
(8) Compiler optimizations. Side effect: Reduces power consumption

• Reduce Miss Penalty or Miss Rate via Parallelism
(9) Hardware pre-fetching and (10) compiler pre-fetching

Key
$ = cache

Advanced Optimizations for Caching
• Reduce Hit Time

(1) Small & simple first-level $ and (2) way prediction
• Side effect: Reduce power consumption

• Increase Cache Bandwidth
(3) Pipelined $, (4) non-blocking $, and (5) multi-banked $

• Side effect: Varying impacts on power consumption

• Reduce Miss Penalty
(6) Critical word first and (7) merging write buffers

• Side effect: Little impact on power

• Reduce Miss Rate
(8) Compiler optimizations. Side effect: Reduces power consumption

• Reduce Miss Penalty or Miss Rate via Parallelism
(9) Hardware pre-fetching and (10) compiler pre-fetching

Key
$ = cache

Small & Simple
First-Level Caches
• Critical timing path

– addressing tag memory, then
– comparing tags, then
– selecting correct set

• Direct-mapped caches can
overlap tag compare and
transmission of data

• Lower associativity reduces
power because fewer cache
lines are accessed

L1 Size and Associativity

Access time vs. size and associativity

L1 Size and Associativity

Energy per read vs. size and associativity

Way Prediction:
Predict the “Way” or Block within the Set

• To improve hit time, predict the
“way” to pre-set mux

– Misprediction gives longer hit time
– Prediction accuracy

• > 90% for two-way
• > 80% for four-way
• I-cache has better accuracy than D-

cache

– First used on MIPS R10000 in mid-90s
– Used on ARM Cortex-A8

• Extend to predict block as well
– “Way selection”
– Increases misprediction penalty

How to combine fast hit time of
direct-mapped $ and have the
lower conflict miss rate of of
2-way set associative $?

Advanced Optimizations for Caching
• Reduce Hit Time

(1) Small & simple first-level $ and (2) way prediction
• Side effect: Reduce power consumption

• Increase Cache Bandwidth
(3) Pipelined $, (4) non-blocking $, and (5) multi-banked $

• Side effect: Varying impacts on power consumption

• Reduce Miss Penalty
(6) Critical word first and (7) merging write buffers

• Side effect: Little impact on power

• Reduce Miss Rate
(8) Compiler optimizations. Side effect: Reduces power consumption

• Reduce Miss Penalty or Miss Rate via Parallelism
(9) Hardware pre-fetching and (10) compiler pre-fetching

Key
$ = cache

Write Performance

• Steps: (1) Index tag array. (2) Compare tags. (3) Check valid
bit. (4) If valid, enable write to memory location.

Serial set of steps that can be
done in a single (long) cycle.
Perhaps two shorter cycles?

Write Performance
• Problem: Writes take two cycles in the memory stage, one

cycle for tag check plus one cycle for data write if hit
• Solutions

– Design data RAM that can perform read and write concurrently,
restore old value after tag miss

– Hold write data for store in single buffer ahead of the cache; write
cache data during the next store’s tag check.

Pipelining Cache Writes

Pipelining Cache
• Pipeline cache access to improve bandwidth

– Examples
• Pentium: 1 cycle
• Pentium Pro – Pentium III: 2 cycles
• Pentium 4 – Core i7: 4 cycles

but the increased number of pipeline stages leads to …

• Increases in branch misprediction penalty
– Is it easier to pipeline the instruction cache or data cache?

• Makes it easier to increase associativity

In practice?
• All CPUs pipeline L1 cache access simply to separate the access

and the hit detection stages.
• When does banking work best?

Non-blocking Caches

Stall CPU on $ Miss

Hit under $ Miss

Multiple Outstanding $ Misses

Non-blocking Caches: Basic Idea

• Allow hits before previous misses complete
– “Hit under miss”
– “Hit under multiple miss”

• L2 must support this
• In general, processors can hide L1 miss penalty but not L2 miss penalty

Basic MIPS Architecture

Non-blocking Caches: Details

• Non-blocking cache or lockup-free cache
– Allows data $ to continue to supply $ hits during a miss

• “Hit under Miss”
– Reduces the effective miss penalty by working during $ miss vs.

ignoring CPU requests

• “Hit under Multiple Miss” or “Miss under Miss”
– May further lower effective miss penalty by overlapping

multiple misses
– Examples

• Pentium Pro allows 4 outstanding memory misses
• (Cray X1E vector supercomputer allows 2,048 outstanding memory

misses)

• Issues?

Non-blocking Cache: Example

• Assume the following information
– Sustained transfer rate: 16 GB/s
– Memory-access time: 36 ns
– Block size: 64 bytes

What is the maximum number of outstanding
references to maintain peak bandwidth for a system?

• Answer: (16*109) / 64 * (36*10-9) = 9

Multi-banked Caches
• Organize cache as independent banks to support

simultaneous access
– ARM Cortex-A8 supports 1-4 banks for L2
– Intel Core i7 supports 4 banks for L1 and 8 banks for L2

• Interleave banks according to block address
– Simple mapping that works well? “Sequential Interleaving”

• Spread block addresses sequentially across banks
• Example: If 4 banks, Bank 0 has all blocks whose address mod 4 is 0;

bank 1 has all blocks whose address mod 4 is 1; ...

Advanced Optimizations for Caching
• Reduce Hit Time

(1) Small & simple first-level $ and (2) way prediction
• Side effect: Reduce power consumption

• Increase Cache Bandwidth
(3) Pipelined $, (4) non-blocking $, and (5) multi-banked $

• Side effect: Varying impacts on power consumption

• Reduce Miss Penalty
(6) Critical word first and (7) merging write buffers

• Side effect: Little impact on power

• Reduce Miss Rate
(8) Compiler optimizations. Side effect: Reduces power consumption

• Reduce Miss Penalty or Miss Rate via Parallelism
(9) Hardware pre-fetching and (10) compiler pre-fetching

Key
$ = cache

Critical Word First or Early Restart
Don’t wait for full block before restarting CPU

• Critical Word First
– Request missed word from memory first
– Send it to the processor as soon as it arrives
– Let processor continue execution while filling the rest of the

words in the block

• Early Restart
– Request words in normal order
– Send missed work to the processor as soon as it arrives
– Let the CPU continue execution

• Effectiveness of these strategies depends on block size
and likelihood of another access to the portion of the
block that has not yet been fetched

Which one more widely used?
Why?

Merging Write Buffer
• When storing to a block that is already pending in the

write buffer, update write buffer
• Reduces stalls due to full write buffer
• Do not apply to I/O addresses

No write
buffering

Write buffering

Advanced Optimizations for Caching
• Reduce Hit Time

(1) Small & simple first-level $ and (2) way prediction
• Side effect: Reduce power consumption

• Increase Cache Bandwidth
(3) Pipelined $, (4) non-blocking $, and (5) multi-banked $

• Side effect: Varying impacts on power consumption

• Reduce Miss Penalty
(6) Critical word first and (7) merging write buffers

• Side effect: Little impact on power

• Reduce Miss Rate
(8) Compiler optimizations. Side effect: Reduces power consumption

• Reduce Miss Penalty or Miss Rate via Parallelism
(9) Hardware pre-fetching and (10) compiler pre-fetching

Key
$ = cache

Compiler Optimizations

• Restructuring code affects the data block access sequence
– Group data accesses together to improve spatial locality
– Re-order data accesses to improve temporal locality

• Prevent data from entering the cache
– Useful for variables that will only be accessed once before being

replaced
– Needs mechanism for software to tell hardware not to cache data

(i.e., instruction hints or page table bits)

• Kill data that will never be used again
– Streaming data exploits spatial locality but not temporal locality
– Replace into dead cache locations

Compiler Optimizations

• Loop Interchange
– Swap nested loops to access memory in sequential order

/* Before */ /*After */
for (j=0; j < 100; j++) for (i=0; i< 5000; i++)

for (i=0; i< 5000; i++) for (j=0; j < 100; j++)
x[i][j] = 2 * x[i][j] x[i][j] = 2 * x[i][j];

• How does the above change the memory access
pattern?

• What locality is improved?

Compiler Optimizations
for (i=0; i< N; i++)
for (j=0; j < M; j++)

a[i][j] = b[i][j] * c[i][j];

for (i=0; i< N; i++)
for (j=0; j < M; j++)

d[i][j] = a[i][j] * c[i][j];

for (i=0; i< N; i++)
for (j=0; j < M; j++) {

a[i][j] = b[i][j] * c[i][j];
d[i][j] = a[i][j] * c[i][j];

}

• What optimization(s)
do you see?

• How does the
optimization(s)
improve locality?

• What locality is
improved?

Impact of Cache Coherence in Multicore CPUs

Compiler Optimizations

• Blocking
– Instead of accessing entire rows or columns, subdivide matrices into

blocks
– Requires more memory accesses but improves locality of accesses

/* Before */ /* After */
for (i=0; i<N; i++) for (jj=0; jj<N; jj+=B)

for (j=0; j<N; j++) for (kk=0; kk<N; kk+=B)
{ r=0; for (i=0; i<N; i++)

for (k=0; k<N; k++) for (j=jj; j<min(jj+B,N); j++)
r=r+y[i][k]*z[k][j]; { r=0;

x[i][j] += r; for (k=kk; k<min(kk+B,N); k++)
}; r=r+y[i][k]*z[k][j];

x[i][j] +=r;
}

Advanced Optimizations for Caching
• Reduce Hit Time

(1) Small & simple first-level $ and (2) way prediction
• Side effect: Reduce power consumption

• Increase Cache Bandwidth
(3) Pipelined $, (4) non-blocking $, and (5) multi-banked $

• Side effect: Varying impacts on power consumption

• Reduce Miss Penalty
(6) Critical word first and (7) merging write buffers

• Side effect: Little impact on power

• Reduce Miss Rate
(8) Compiler optimizations. Side effect: Reduces power consumption

• Reduce Miss Penalty or Miss Rate via Parallelism
(9) Hardware pre-fetching and (10) compiler pre-fetching

Key
$ = cache

Hardware Prefetching

• Fetch two blocks on miss (include next sequential block)

Pentium 4 Pre-fetching

Compiler Prefetching
• Insert prefetch instructions before data is needed
• Non-faulting: prefetch doesn’t cause exceptions

• Register prefetch
– Loads data into register

• Cache prefetch
– Loads data into cache

• Combine with loop unrolling and software
pipelining

Summary of Advanced $ Optimizations

Memory Technology
• Performance Metrics

– Latency is a concern of cache
– Bandwidth is a concern of multiprocessors and I/O
– Access time

• Time between read request and when desired word arrives

– Cycle time
• Minimum time between unrelated requests to memory

• DRAM used for main memory, SRAM used for
cache

Memory Technology

• SRAM
– Requires low power to retain bit
– Requires six transistors/bit

• DRAM
– Must be re-written after being read
– Must also be periodically refreshed

• Every ~ 8 ms
• Each row can be refreshed simultaneously

– Only one transistor/bit
– Address lines are multiplexed:

• Upper half of address: row access strobe (RAS)
• Lower half of address: column access strobe (CAS)

Memory Technology

• Amdahl
– Memory speed should grow linearly with processor speed
– Unfortunately, memory speed has not kept pace with processors

• Optimizations
– Multiple accesses to same row
– Synchronous DRAM

• Added clock to DRAM interface
• Burst mode with critical word first

– Wider interfaces
– Double data rate (DDR)
– Multiple banks on each DRAM device

Recall

Memory Technology + Optimize

Memory Optimizations

Memory Optimizations

• DDR
– DDR2

• Lower power (2.5 V à 1.8 V)
• Higher clock rates (266 MHz, 333 MHz, 400 MHz)

– DDR3
• 1.5 V
• 800 MHz

– DDR4
• 1-1.2 V
• 1600 MHz

• GDDR5 is graphics memory, based on DDR3
• GDDR6 successor offers increased per-pin bandwidth (up

to 16 Gbit/s[3]) and lower operating voltages (1.35 V[4]).

https://en.wikipedia.org/wiki/Gbit/s
https://en.wikipedia.org/wiki/GDDR6_SDRAM
https://en.wikipedia.org/wiki/GDDR6_SDRAM

Memory Optimizations

• Graphics Memory
– Achieve 2x-5x bandwidth per DRAM vs. DDR3

• Wider interfaces (32 vs. 16 bit)
• Higher clock rate

– Possible because they are attached via soldering
instead of socketed DIMM modules

• Reducing Power in SDRAMs
– Lower voltage
– Low power mode (ignores clock, continues to refresh)

Memory Power Consumption

Stacked/Embedded DRAMs

• Stacked DRAMs in same package as processor
– High Bandwidth Memory (HBM)

Flash Memory
• Type of EEPROM
• Types: NAND (denser) and NOR (faster)
• NAND Flash:

– Reads are sequential, reads entire page (0.5 to 4 KiB)
– 25 µs for first byte, 40 MiB/s for subsequent bytes
– SDRAM

• 40 ns for first byte, 4.8 GB/s for subsequent bytes
– 2 KiB transfer

• 75 µs vs. 500 ns for SDRAM, 150x slower
– 300 to 500x faster than magnetic disk

NAND Flash Memory
• Must be erased (in blocks) before being

overwritten
• Nonvolatile, can use as little as zero power
• Limited number of write cycles (~100,000)
• $2/GiB, compared to $20-40/GiB for SDRAM and

$0.09 GiB for magnetic disk

• Phase-Change/Memrister Memory
– Possibly 10X improvement in write performance and

2X improvement in read performance

Memory Dependability

• Memory is susceptible to cosmic rays
• Soft errors: dynamic errors

– Detected and fixed by error correcting codes (ECC)

• Hard errors: permanent errors
– Use sparse rows to replace defective rows

• Chipkill: A RAID-like error-recovery technique

Virtual Memory
• Protection via virtual memory

– Keeps processes in their own memory space

• Role of architecture
– Provide user mode and supervisor mode
– Protect certain aspects of CPU state
– Provide mechanisms for switching between user

mode and supervisor mode
– Provide mechanisms to limit memory accesses
– Provide TLB to translate addresses

Virtual Machines
• Supports isolation and security
• Sharing a computer among many unrelated users
• Enabled by raw speed of processors, making the

overhead more acceptable

• Allows different ISAs and operating systems to be
presented to user programs

– “System Virtual Machines”
– SVM software is called “virtual machine monitor” (VMM) or
“hypervisor”

– Individual virtual machines run under the monitor are called
“guest VMs”

Requirements of VMM
• Guest software should:

– Behave on as if running on native hardware
– Not be able to change allocation of real system

resources
• VMM should be able to “context switch” guests
• Hardware must allow:

– System and use processor modes
– Privileged subset of instructions for allocating

system resources

Impact of VMs on Virtual Memory

• Each guest OS maintains its own set of page tables
– VMM adds a level of memory between physical and virtual

memory called “real memory”
– VMM maintains shadow page table that maps guest virtual

addresses to physical addresses
• Requires VMM to detect guest’s changes to its own page table
• Occurs naturally if accessing the page table pointer is a privileged

operation

Cache Coherence & Performance

Summary

– Unlike details with pipelining (e.g., ILP) that only
concern compiler writers, you the programmer need
to acknowledge that cache coherence is going on
“under the covers.” Why?

The coherence protocol can DRAMATICALLY impact your
performance!

Impact of Cache Coherence in Multicore CPUs

