

Dr. Wu Feng, Professor of CS and ECE at Virginia Tech (VT) wfeng@vt.edu Atharva Gondhalekar, PhD Student in ECE at VT

Project Overview

- Goal
 - Deliver a curriculum on the POWER architecture for the end of each chapter of "Computer Architecture: A Quantitative Approach" by Hennessy and Patterson (a semester-long course)
- Proposed Tasks
 - Design supplemental course material about the POWER architecture for a senior-level undergrad course in computer organization (e.g., CS/ECE 4504: Computer Organization at Virginia Tech)
 - Fundamentals of Quantitative Design and Analysis (Chapter 1)
 - Memory Hierarchy (Chapter 2)
 - Instruction-Level Parallelism (Chapter 3)
 - Data-Level Parallelism (Chapter 4)
 - Thread-Level Parallelism (Chapter 5)
- Focus of this Overview? Exercises for CS/ECE 4504 (

Bonus: POWER-based projects for a graduate-level course in computer architecture (e.g., CS/ECE 5504: Computer Architecture at Virginia Tech)

Chapter 2: Memory Hierarchy

- Memory Hierarchy in POWER CPUs
 - gem5-based exercises
 - Evaluation* with and without caches
 - Characterization of the impact of varying memory-access patterns
 - Evaluation of tradeoffs with respect to cache associativity, cache size, and memory technology
 - Exercises available via github (and eventually, the OpenPOWER Foundation)

* Evaluation can be with respect to performance, power, energy efficiency, resilience, productivity, and so on..

SMP/accelerator signaling Memory signaling L3 region PCle signaling signaling Core **On-chip** accel PCle L3 region L3 region L3 region L3 region Core Core SMP/accelerator signaling Memory signaling

Image source: IBM Power9 Processor Architecture

VIRGINIA TECH.

SyNeRG ? synergy.cs.vt.edu

Example Exercise for Memory Hierarchy: Varying Cache Parameters in gem5

```
class L1Cache)Cache);
                                                                        class
                                                                             L2Cache
                                                                                     Cache):
          ple L1 Cache with default values"""
                                                                                imple L2 Cache with default values"""
    assoc = 2
                                                                            # Default parameters
                                           Vary L1 and L2
   tag latency = 2
                                                                            size = '256kB'
   data latency = 2
                                                                            assoc = 8
                                 parameters in the _____ tag_latency = 20
   response_latency = 2
   mshrs = 4
                                                                            data latency = 20
                                         script for caches
   tgts_per_mshr = 20
                                                                            response latency = 20
                                                                            mshrs = 20
   def __init__(self, options=None):
                                                                            tgts_per_mshr = 12
        super(L1Cache, self). init ()
        pass
                                                                            #SimpleOpts.add_option('--12_size', help="L2 cache size. Default: %s" % size)
   def connectBus(self, bus):
                                                                            def __init__(self, opts=None):
        """Connect this cache to a memory-side bus"""
                                                                               super(L2Cache, self).__init_()
        self.mem side = bus.cpu side ports
                                                                               if not opts or not opts.12 size:
                                                                                   return
   def connectCPU(self, cpu):
                                                                               self.size = opts.l2 size
        """Connect this cache's port to a CPU-side port
           This must be defined in a subclass"""
                                                                            def connectCPUSideBus(self, bus):
       raise NotImplementedError
                                                                               self.cpu side = bus.mem side ports
                                 Matrix Multiplication
                                                                            def connectMemSideBus(self, bus):
     LI Associativity
                                                                               self.mem side = bus.cpu side ports
                                      Runtime (ms)
```

324

311

305

2

4

8

Chapter 3: Instruction-Level Parallelism (ILP)

- ILP in POWER CPUs
 - Curriculum for POWER
 - Tomasulo's Algorithm
 - Case Study: Out-of-order execution in POWER9
 - gem5-based exercises
 - Evaluation of branch prediction policies using a matrix multiplication (integer) workload
 - Exercises available via github (and eventually, the OpenPOWER Foundation)

Example Exercise for ILP: Branch Prediction in gem5

- Evaluate the performance of branch prediction policies in gem5
 - 2-bit local branch predictor
 - Tournament predictor
 - TAGE (default in POWER9)
 - None

Branch prediction evaluation for matrix multiplication

BRANCH PREDICTOR (BP)	# BP LOOKUPS	# INCORRECT PREDICTIONS	RUNTIME (MS)
2-bit local	296421	6054	931
Tournament	296421	5864	931
TAGE	296421	1903	930
None	N/A	N/A	936

Caveat: The above evaluation uses an *in-order* execution/completion backend (SimpleCPU) instead of *out-of-order* execution/completion backend (O3CPU). Why? O3CPU is *not* implemented for POWER in gem5.

Chapter 4: Data-Level Parallelism (DLP)

- DLP in POWER CPUs
 - Curriculum for POWER
 - Intro to vector built-in functions & vector-scalar extensions (VSX)
 - Exercises based on POWER9 / POWER10 Functional Simulator
 - Matrix multiplication
 - Using vector-scalar
 extensions (VSX)
 - Matrix Multiply Assist (MMA) architecture
 - Exercises available via github (and eventually, the OpenPOWER Foundation)

MMA xvf32gerpp instruction operation

Source: MMA Best Practice Guide

Example Exercise for DLP: Getting Started with VSX

Manual vectorization of matrix multiplication using vector scalar extensions (VSX)

root@ubuntu2004mambo:~# ./sgemm_vsx 4 4 4 Running: ./sgemm_vsx M=4 N=4 K=4

22,2353	
55,1765	
88,1176	
121,0588	

23,0588 57,3176 91,5765 125,8353

Tested the correctness on POWER10 functional simulator

F

Chapter 5: Thread-Level Parallelism (TLP)

W. Feng, wfeng@vt.edu

- TLP in POWER CPUs
 - Curriculum on OpenMP on POWER
 - OpenMP can be compiled and run anywhere
 - Exercises on parallelization using OpenMP
 - Parallelize matrix multiplication using OpenMP
 - Evaluate the impact of worksharing constructs
 - Combine DLP and TLP to further optimize matrix multiplication

Image source: IBM Power9 Processor Architecture

Example Exercise for TLP: Parallelization via OpenMP

- OpenMP-based exercises on parallelizing the given workloads
 - Example: Evaluate the performance of parallelized matrix multiplication of two matrices of size 512 *512 on POWER8 CPU

F

Tools and Resources

- Tools/Emulators/Simulators
 - gem5: Used to evaluate workloads when architecture is varied
 - IBM POWER10 functional simulator, Libre-SOC, and Microwatt

Existing Major Issues in gem5 for POWER ISA

- No support for out-of-order (O3) execution for POWER ISA
 - Out-of-order (O3) execution is a key feature of modern POWER CPUs
 - Lack of support for O3 prevents cycle-accurate simulation of modern POWER CPU configurations
- Incorrect byte-swap function for simulating a big-endian ISA on a little-endian ISA
 - <u>https://gem5.atlassian.net/browse/GEM5-1226</u>
 - Operands casted into uint64_t
 - Problem: Fractional parts will get ignored in such a casting
- Unimplemented vector instructions
 - Example \rightarrow xxlxor \rightarrow performs a bitwise "xor" operation on two vectors
 - Problem: Lack of support for vector instructions prevents simulation of HPC benchmarks, e.g., LINPACK

Caveats for POWER ISA in gem5 & power-gem5

- GitHub: gem5
 - Read-only mirror of the gem5 simulator
 - Upstream repository at https://gem5.googlesource.com
 - Code reviews to <u>https://gem5-review.googlesource.com/</u>
 - Mirrors synchronized every 15 minutes.
- GitHub: power-gem5 (Forked from <u>gem5/gem5</u>)
 - Repository: <u>https://github.com/power-gem5</u>
 - Out-of-date mirror of gem5 with POWER code prototypes for gem5
 - Tooling: Relies on Python 2 support
 - Any code patches (updates or additions) that work in power-gem5 must be re-based for gem5, which now uses Python 3
- Recommendation
 - Develop POWER code patches from the gem5 repository at https://gem5.googlesource.com to avoid re-basing

Tools and Resources

- Tools/Emulators/Simulators
 - gem5: Used to evaluate workloads when architecture is varied
 - IBM POWER10 functional simulator, Libre-SOC, and Microwatt
- Advanced Research Computing (ARC) Center @ VT
 - Huckleberry Cluster @ ARC: 14 IBM "Minksy" S822LC compute nodes
 - Each node with two IBM Power8 CPUs (3.26 GHz)
- Additional Resources
 - <u>OpenPOWER Foundation</u>
 - <u>POWER9 Processor Architecture</u>
 - <u>POWER9 Processor User's Manual</u>
 - POWER ISA 3.0
 - MMA Best Practices Guide
 - IBM OpenMP support

synergy.cs.vt.edu

GitHub Repository for POWER-Oriented Curriculum (Lecture Slides, Tutorials, Exercises, and Projects)

📮 w-feng / Co i	mpArch-MIPS-POWER (Public)			🛇 Pin	ⓒ Unwatch 3 ▾ 😵 Fork 0 ▾ 🏠 Star 0 ▾	
<> Code 💿 Iss	sues 🖏 Pull requests 🕑 Actions	🗄 Projects 🕮 Wiki 😲 Security 🗠	🛆 Insights 🛛 鈴 Settings			
	਼ਿੰ main 🗸 ਾ 1 branch 🛇 0 tags		Go to file Add file -	Code -	About 稔	
	🕒 w-feng Add files via upload		bd02b86 yesterday 🕚 77 commits		Curriculum material for teaching computer architecture with MIPS and POWER	
	Exercises	Update the problem number	yes	esterday	cou memory gou architecture	
	Lectures	Add files via upload	yes	esterday	pedagogy computer-architecture	
	Projects	Add files via upload	yes	esterday	computer-organization	
	🖿 Tutorials	Tutorial-GEM5	2 mont	ths ago	instruction-level-parallelism	
	BEADME.md	Updated formatting for README.md	last	t month	thread-level-parallelism	
	README.md		Ø	 □ Readme ☆ 0 stars ⊙ 3 watching ♀ 0 forks 		
	This repository contains curriculum materials for a computer architecture class based on the Hennessy & Patterson textbook entitled "Computer Architecture: A Quantitative Approach" and extended to the POWER instruction set architecture (ISA). POWER is an acronym for Performance Optimization With Enhanced RISC.				Releases	

Bonus: POWER Projects from CS/ECE 5504: Computer Architecture (Graduate-Level Course)

- Projects directory on GitHub
 - A list of prospective projects, oriented towards POWER
- Tutorials directory on GitHub
 - gem5 simulator (cycle accurate)
 - POWER10 functional simulator
 - Microwatt

A atharva@LAPTOP-T6675GDK: /opt/ibm/systemsim-p10-1.2-3/run/p10/linux	-		×
A atharva@LAPIOP-166/5GDK:/opt/ibm/systemsim-pi0-1.2-3/run/pi0/inux INFO: 4704033733: (426587 4704033733: ** finished r 4704024533: (4265862640): ubuntu2004mambo login: root INFO: 4758895446: (427583 Password: 4758895446: (4275834401): * Documentation: https://help.ubuntu.com 4995079560: (4460629239): * Management: https://landscape.canonical.com 499507429: (4460647108): * Support: https://landscape.canonical.com 4995105501: (4460655180): Failed to connect to https://changelogs.ubuntu.com/meta-release-lts. Internet connection or proxy settings 49951123339: (4460673018): Last login: Wed Sep 114:23:27 CDT 2021 on hvc0 4995163805: (4460713484): root@ubuntu2004mambo:"# cat /proc/cpuinfo -lts. Check your Internet processor : 0 40051046840: (4067104): cpu	Check	your	ease
-lts. Check your Internet processor :0 4995194680: (4460744359); cpu :POWER10, altivec supported 4996085500: (4461635179); clock :512.000000Hz revision :2.0 (pvr 0080 0200) INFO: 5339454229: (480498 5339454229: ** finished rtimebase :512000000 5339454229: ** finished rtimebase :51200000 535914681: (4806758074); platform :PowerNV 5365014681: (4806758074); model :Mambo,Simulated-System 5365021273: (4806764666); firmware :OPAL 536582423 : #08726561.MMU :PowerNV			
<pre>S365043600: (4806786993): root@ubuntu2004mambo;"# S36504375: (4806797768): S365056374: (4806799767): timebase^I: 512000000 S365063752: (4806807145): platform^I: PowerNV S365070826: (4806814219): model^I^I: Mambo,Simulated-System S365083696: (4806827089): machine^I^I: PowerNV Mambo,Simulated-System S365097096: (4806840489): firmware^I: OPAL S365103869: (4806847262): MMU/I^I: Radix</pre>			

Summary

- POWER-Oriented Curriculum
 - Content
 - Lecture slides, tutorials, exercises, and projects
 - Target Audience
 (e.g., CS/ECE 4504: Computer Organization at VT)
 - A senior-level undergraduate course to beginning graduate-level course
 - "Standing on the Shoulders of Giants"
 - Based on the Hennessy & Patterson textbook, which uses the MIPS ISA.

Acknowledgements

- This work was supported in part by the following:
 - Department of Computer Science at Virginia Tech (CS@VT)
 - IBM Global University Programs
 - Textbook: Hennessy & Patterson, "Computer Architecture: A Quantitative Approach," 6th edition, Elsevier, 2017.

