
1

Chapter 3

Instruction-Level Parallelism and Its
Exploitation

Part 1: A Brief Review

Computer Architecture
A Quantitative Approach, Sixth Edition

“Who’s first?”
“America.”
“Who’s second?”
“Sir, there is no second.”

-Dialog between two observers of the sailing race
later named “The America’s Cup” and run every few
years -- the inspiration for John Cocke’s naming of the
IBM research processor as “America.” This processor
was the precursor to the RS/6000 series and the first
superscalar microprocessor.

Acknowledgements

• Thanks to many sources for slide material
© 1990 Morgan Kaufmann Publishers, © 2001-present Elsevier

Computer Architecture: A Quantitative Approach by J. Hennessy & D. Patterson

© 1994 Morgan Kaufmann Publishers, © 2001-present Elsevier
Computer Organization and Design by D. Patterson & J. Hennessy

© 2002 K. Asinovic & Arvind, MIT

© 2002 J. Kubiatowicz, University of California at Berkeley

© 2006, © 2010 No Starch Press for Inside the Machine by J. Stokes

© 2007 W.-M. Hwu & D. Kirk, University of Illinois & NVIDIA

© 2007-2010 J. Owens, University of California at Davis

© 2010 CRC Press for Introduction to Concurrency in Programming Languages by M.
Sottile, T. Mattson, and C. Rasmussen

© 2017, IBM POWER9 Processor Architecture by Sadasivam et al., IBM

© 2016, © 2019 POWER9 Processor User’s Manual, IBM

© The OpenPOWER Foundation

© 2022, W. Feng, Virginia Tech

Introduction
• What is instruction-level parallelism (ILP)?

– A measure of how many of the operations in a computer
program can be performed simultaneously.

– Pipelining à universal technique in 1985
• Overlaps execution of instructions à exploits ILP

• How do processors extract ILP to get faster?
– More parallelism (or more work per pipeline stage):

fewer clocks/instruction [more instructions/cycle]
• Get WIDER

– Deeper pipeline stages: fewer gates/clock
• Get DEEPER

– Transistors get faster (Moore’s Law): fewer ps/gate
• Get FASTER

• What do processors do to extract ILP? Later …

Does a faster
processor mean a
faster computer?

ILP

https://www.karlrupp.net/wp-content/uploads/2015/06/40-years-processor-trend.png

https://www.karlrupp.net/wp-content/uploads/2015/06/40-years-processor-trend.png

Instruction-Level Parallelism (ILP)

• Goal: Minimize CPI (or maximize IPC)
– Pipeline CPI =

Ideal pipeline CPI +
Structural-hazard stalls +
Data-hazard stalls +
Control-hazard stalls

Recall
– CPI = cycles per instruction

= number of clock cycles required to execute the program /
number of instructions executed in running the program

– IPC = instructions per cycle = number of instructions executed
while running a program / number of clock cycles required to
execute the program

Extracting Yet More Performance

• How do processors extract ILP to get faster?
– More parallelism (or more work per pipeline stage):

fewer clocks/instruction [more instructions/cycle]
• Get WIDER à instruction width

– Deeper pipeline stages: fewer gates/clock
• Get DEEPER à instruction depth

– Transistors get faster (Moore’s Law): fewer ps/gate
• Get FASTER

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Extracting Yet More Performance

• Architectural Options: GET WIDER or GET DEEPER
– Fetch (and execute) more than one instruction at one time

(expand every pipeline stage to accommodate multiple
instructions) — multiple-issue à superscalar or VLIW

• How does this help performance?
• What does it impact in the performance equation?

– Increase the depth of the pipeline to increase the clock rate —
superpipelining

• How does this help performance? (What does it impact in the
performance equation?)

Basic MIPS Pipelined Architecture
IF ID EX MEM WB

N. Jouppi, “Superscalar vs. Superpipelined Machines,” ACM SIGARCH Computer Architecture News, 16(3):71-80, June 1988.

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF1 IF2 ID1 ID2 EX1 EX2 MEM1 MEM2 WB1 WB2

IF1 IF2 ID1 ID2 EX1 EX2 MEM1 MEM2 WB1 WB2

IF1 IF2 ID1 ID2 EX1 EX2 MEM1 MEM2 WB1 WB2

IF1 IF2 ID1 ID2 EX1 EX2 MEM1 MEM2 WB1 WB2

IF1 IF2 ID1 ID2 EX1 EX2 MEM1 MEM2 WB1 WB2

IF1 IF2 ID1 ID2 EX1 EX2 MEM1 MEM2 WB1 WB2

IF1 IF2 ID1 ID2 EX1 EX2 MEM1 MEM2 WB1 WB2

IF1 IF2 ID1 ID2 EX1 EX2 MEM1 MEM2 WB1 WB2

IF1 IF2 ID1 ID2 EX1 EX2 MEM1 MEM2 WB1 WB2

IF1 IF2 ID1 ID2 EX1 EX2 MEM1 MEM2 WB1 WB2

Superscalar

Superpipelined

in
st

ru
ct

io
n

st
re

am
in

st
ru

ct
io

n
st

re
am

time in clock cycles

time in clock cycles

CPI? IPC?

CPI? IPC?

Superscalar Processors

• Launching multiple instructions per stage allows the
instruction execution rate, CPI, to be less than 1.

– So, let’s use the reciprocal (IPC: instructions per clock cycle)
• Example

– CPU: 3-GHz, 4-way multiple-issue processor
– Peak Execution Rate: 12-billion instructions per second
– Best-Case CPI of 0.25 à Best-Case IPC of 4

– If the datapath has a five-stage pipeline, how many instructions
are active in the pipeline at any given time?

– How might this lead to difficulties?

Superpipelined Processors

• Increase the depth of the pipeline leading to more
instructions “in flight” at once …

– The higher the degree of superpipelining …
• the more forwarding/hazard hardware needed
• the more pipeline latch overhead (i.e., the pipeline latch accounts

for a larger and larger percentage of the clock cycle time),
• the bigger the clock skew issues (i.e., because of faster and faster

clocks)

– We know there are limits to this (6–8 FO4 delays).

Superpipelined vs. Superscalar

• Superpipelined (SP) processors
– Longer instruction latency (in terms of cycles) than superscalar

(SS) processors which can degrade performance in the
presence of true dependencies

– Key: Improving throughput at the expense of latency!

• Superscalar processors
– More susceptible to resource conflicts—but we can fix this with

hardware (to a point).

Instruction vs Machine Parallelism

• Instruction-Level Parallelism (ILP) of a Program
– In Theory

• A measure of the average # of instructions in a program that, in
theory, a processor could execute at the same time

– In Practice
• A function of the number of true (data) dependencies and

procedural (control) dependencies in relation to the number of
other instructions

• Take Away
– ILP is traditionally “extracting parallelism from a single

instruction stream working on a single stream of data”

(Recall Flynn’s Classification …)

Instruction vs Machine Parallelism

• Machine Parallelism of a Processor
– A measure of the ability of a processor to take advantage of the

ILP of the program
– In Theory (or “In the Limit”)

• A perfect machine with infinite machine parallelism can achieve
the ILP of a program.

– In Practice
• A function of the number of instructions that can be fetched and

executed at the same time

• To achieve high performance, need both ILP and
machine parallelism.

First more on instruction parallelism, then machine parallelism.

Points of Contemplation

• Why is ILP a good idea?
• If you were designing a computer system …

– Why choose ILP instead of multiple processors/cores?

• What kind of code has lots of ILP?
• What kind of code has little ILP?
• What is the reality?

Matrix Multiplication

“Assembly Code” for y0

y0 = m00*x0 + m01*x1 + m02*x2 + m03*x3

t0 = m00 * x0
t1 = m01 * x1
t2 = m02 * x2
t3 = m03 * x3
t4 = t0 + t1
t5 = t2 + t3
y0 = t4 + t5

• What is the ILP for one product (y0)?
• What is the ILP for the entire matrix?
• What is the ILP for doing 100 matrices in parallel?

In this case …
what will the machine parallelism be
relative to the instruction-level parallelism?

Basics of a RISC Instruction Set

• Key Properties
– All operations on data apply to REGISTERS

(typically the entire register, i.e., 32 or 64 bits per register)
– Only operations that affect memory?

• LOAD and STORE

– Instruction formats?
• FEW (in contrast to CISC where there are many)

– ALU instructions
– LOAD and STORE instructions
– BRANCH and JUMP instructions

• FIXED-SIZE (in general)
– 32 bit or 64 bit, depending on architecture

Pipelined Processor
In

st
ru

ct
io

n
O

rd
er

Time (Clock Cycles)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

IF ID EX WBMEM

IF ID EX WBMEM

IF ID EX WBMEM

IF ID EX WBMEM

Cycle 8

Overview of MIPS64 ISA
(see Appendix)

• Registers
– 32 64-bit general-purpose registers (GPRs)
– 32 floating-pt registers (FPRs), holding 32 SP or 32 DP values

• (When holding a SP number, the other half of the FPR is unused.)

• Data Types à Integer and Floating Point
– 8-bit bytes; 16-bit half words, 32-bit words, 64-bit double-words
– 32-bit single-precision (SP); 64-bit double-precision (DP)

• Addressing Modes à ONLY THREE natively supported!
– Register
– Immediate (16-bit field)
– Displacement (16-bit field)

• Register-indirect addressing: 0 in displacement field
• Absolute addressing: R0 as the base register

Addressing Modes of Past ISAs (see Fig. A.6)

Encoding an Instruction Set

Balancing Act of Many Competing Forces
• Desire to have as many registers and addressing modes

as possible.
• Impact of the size of the register and addressing mode

fields (on average instruction size, and hence, on
average program size).

• Desire to have instructions encoded into lengths that
will be easy to handle in a pipelined implementation.

– Ideally, instructions should be in multiples of bytes (or words)
rather than arbitrary bit length.

Instruction Layout for MIPS Pipelined Processor

This is for the MIPS32 ISA.

Resources for MIPS64 ISA
• https://www.mips.com/product

s/architectures/mips64/
• https://s3-eu-west-

1.amazonaws.com/downloads-
mips/documents/MD00083-2B-
MIPS64INT-AFP-06.01.pdf

https://www.mips.com/products/architectures/mips64/
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00083-2B-MIPS64INT-AFP-06.01.pdf

Basic Five-Stage Pipelined MIPS Architecture

Five-Stage Pipelined Processor
1. Instruction Fetch (IF)

– Send PC to memory & fetch current instruction
from memory

– Update PC to next sequential PC (e.g., 4 for 32-
bit architecture and 8 for 64-bit architecture)

2. Instruction Decode (ID) / Register Fetch
– Decode instruction and read source registers in

parallel
• Why is this possible? “Fixed-field decoding”

– Do EQUALITY test on registers during read for
possible branch

• Sign-extend the offset field of instruction, if
needed

• Compute possible branch target address (by
adding offset to PC)

Five-Stage Pipelined Processor

3. Execute (EXE) / Effective Address
– EXE on operands from previous cycle

• Memory reference calculation
• Register-Register ALU instruction
• Register-Immediate ALU instruction

4. Memory Access (MEM)
– LOAD: Memory read using effective address

calculated
– STORE: Memory write data from register

read to effective address

5. Write Back (WB)
– Register-Register ALU instruction or LOAD

instruction

Instruction-Level Parallelism

• When exploiting instruction-level parallelism, goal is to
minimize CPI (or maximize IPC)

– Pipeline CPI =
Ideal pipeline CPI +
Structural stalls +
Data hazard stalls +
Control stalls

Nomenclature
• Pipeline stalls are synonmous with “bubbles” in the pipeline.
• Pipeline stalls are caused by hazards.

Review: Pipeline Hazards

• Hazards
– Situations that prevent the next instruction in the instruction

stream from executing during its designated clock cycle.
– Consequence

• Insertion of “stalls” or “bubbles” into the pipeline

– Types
• Structural Hazards
• Data Hazards
• Control Hazards

Review: Pipeline Hazards

• Structural Hazards
– What are they? How do we eliminate them?

• Design pipeline to eliminate structural hazards

In
st

ru
ct

io
n

O
rd

er

Time (Clock Cycles)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

IF ID EX WBMEM

IF ID EX WBMEM

IF ID EX WBMEM

Cycle 8

Structural Hazard
• Assume a CPU with only one memory port

What does the pipeline
schedule look like?
• How does it compare

to ideal?

Review: Pipeline Hazards
• Data Hazards – Read After Write (RAW)

– What are they? How do we eliminate them?
• Use data forwarding inside the pipeline
• For those cases that forwarding won’t solve (e.g., load-use)

include hazard hardware to insert stalls in the instruction stream

In
st

ru
ct

io
n

O
rd

er

Time (Clock Cycles)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

IF ID EX WBMEM

IF ID EX WBMEM

IF ID EX WBMEM

Cycle 8

Data Hazard

What should the
schedule look like?

Unavoidable Data Hazards

Data Dependence

• Dependencies are a property of programs
• Pipeline organization determines if dependence is

detected and if it causes a stall

• Data dependence conveys:
– Possibility of a hazard
– Order in which results must be calculated
– Upper bound on exploitable instruction level parallelism

• Dependencies that flow through memory locations are
difficult to detect

Name Dependence

• Two instructions use the same name but no flow of
information

– Not a true data dependence but is a problem when reordering
instructions

– Antidependence: instruction j writes a register or memory
location that instruction i reads

• Initial ordering (i before j) must be preserved

– Output dependence: instruction i and instruction j write the
same register or memory location

• Ordering must be preserved

• To resolve, use renaming techniques

Data Hazards

• Data Hazards
– Read after write (RAW)
– Write after write (WAW)
– Write after read (WAR)

• Control Dependence
– Ordering of instruction i with respect to a branch

instruction
• Instruction control dependent on a branch cannot be

moved before the branch so that its execution is no longer
controlled by the branch

• An instruction not control dependent on a branch cannot
be moved after the branch so that its execution is
controlled by the branch

Pipelined Processor
In

st
ru

ct
io

n
O

rd
er

Time (Clock Cycles)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

IF ID EX WBMEM

IF ID EX WBMEM

IF ID EX WBMEM

IF ID EX WBMEM

Cycle 8

Review: Pipeline Hazards
• Control Hazards – beq, bne, j, jr, jal

– What are they?
• Determines the ordering of an instruction i with respect to a

“change-in-flow” instruction, i.e., branch or procedure call.

– How do we eliminate them?
• Stall, but it hurts performance
• Move decision point to as early in the pipeline as possible

– Reduces # of stalls at the cost of additional HW
• Delay decision (requires compiler support)

– Not feasible for deeper pipes requiring more than one delay slot
to be filled

• Predict (with more HW)
– Reduces the impact of control hazard stalls

» if branch prediction is correct and
» if branched-to instruction is cached

Recall:
Five-Stage Pipelined Processor
1. Instruction Fetch (IF)

– Send PC to memory & fetch current instruction from memory
– Update PC to next sequential PC (e.g., 4 for 32-bit architecture)

2. Instruction Decode (ID) / Register Fetch
– Decode instruction and read source registers in parallel

• Why is this possible? “Fixed-field decoding”

– Do EQUALITY test on registers during read for possible branch
• Sign-extend the offset field of instruction, if needed
• Compute possible branch target address (by adding offset to PC)

Constraints of Control Dependences

1. An instruction that is control-dependent on a branch
... cannot be moved BEFORE the branch so that its execution is no
longer controlled by the branch.

2. An instruction that it not control-dependent on a branch
... cannot be moved AFTER the branch so that its execution is
controlled by the branch.

Caveat?
• May execute instructions that should not be executed,

thus violating control dependences, but only IF we can do
so without affecting the correctness of the program.

Examples

• OR instruction dependent on
DADDU and DSUBU

– R1 used by OR depends on branch

Due to constraint of control dependence,
DSUBU cannot be moved above branch.

(Caveat: Speculation?)

• Assume R4 is not used after skip
– Possible to move DSUBU before the

branch

Property of whether a value is used by an
upcoming instruction: liveness.

Example 1:
DADDU R1,R2,R3
BEQZ R4,L
DSUBU R1,R1,R6

L:…
OR R7,R1,R8

Example 2:
DADDU R1,R2,R3
BEQZ R12,skip
DSUBU R4,R5,R6
DADDU R5,R4,R9

skip:
OR R7,R8,R9

Summary: Hazards

• Hazards are bad because they reduce the amount of
achievable machine parallelism and keep us from
achieving all the ILP in the instruction stream.

Recall: Instruction vs Machine Parallelism

• Instruction-Level Parallelism (ILP) of a Program
– In Theory

• A measure of the average # of instructions in a program that, in
theory, a processor could execute at the same time

– In Practice
• A function of the number of true (data) dependencies and

procedural (control) dependencies in relation to the number of
other instructions

• Take Away
– ILP is traditionally “extracting parallelism from a single

instruction stream working on a single stream of data”

(Recall Flynn’s Classification …)

Recall: Instruction vs Machine Parallelism

• Machine Parallelism of a Processor
– A measure of the ability of a processor to take advantage of the

ILP of the program
– In Theory (or “In the Limit”)

• A perfect machine with infinite machine parallelism can achieve
the ILP of a program.

– In Practice
• A function of the number of instructions that can be fetched and

executed at the same time

• To achieve high performance, need both ILP and
machine parallelism.

First more on instruction parallelism, then machine parallelism.

Machine Parallelism

• Two Approaches for Machine Parallelism
Responsibility of resolving hazards is …

– Hardware-based
• Dynamic-issue superscalar

– Software-based
• Static “VLIW: Very Long Instruction Word”

Multiple-Issue Processor Styles

• Dynamic multiple-issue processors (aka superscalar)
– Decisions on which instructions to execute simultaneously are

being made dynamically (at run time by the hardware)
• Examples: IBM Power 2, Pentium Pro/2/3/4, Core, MIPS R10K, HP

PA 8500

• Static multiple-issue processors (aka VLIW)
– Decisions on which instructions to execute simultaneously are

being made statically (at compile time by the compiler)
• Examples: Intel Itanium and Itanium 2 for the IA-64 ISA—EPIC

(Explicit Parallel Instruction Computer)

Supporting Machine Parallelism?

• Now, how do we support multiple integer instructions?

Reg

AL
U DMemIfetch Reg

Supporting Machine Parallelism?

• First, let’s support parallel integer & FP instructions
(MIPS)

Reg

AL
U DMemIfetch Reg

Pentium Microarchitecture

Multiple-Issue Datapath Responsibilities

• Datapath handled with a combination of HW and SW.
• Fundamental limitations of hazards

– Storage (data) dependencies—aka data hazards
• Most instruction streams do not have huge ILP so …

... this limits performance in a superscalar processor

Multiple-Issue Datapath Responsibilities

• Datapath handled with a combination of HW and SW.
• Fundamental limitations of hazards

– Procedural dependencies—aka control hazards
• Ditto, but even more severe
• Use dynamic branch prediction to help resolve the ILP issue

Multiple-Issue Datapath Responsibilities

• Datapath handled with a combination of HW and SW.
• Fundamental limitations of hazards

– Resource conflicts – aka structural hazards
• A SS/VLIW processor has a much larger number of potential resource

conflicts
• Functional units may have to arbitrate for result buses and register-

file write ports
• Resource conflicts can be eliminated by duplicating the resource or by

pipelining the resource

