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Chapter 3

Instruction-Level Parallelism and Its 
Exploitation

Part 1:  A Brief Review

Computer Architecture
A Quantitative Approach, Sixth Edition

“Who’s first?” 
“America.”
“Who’s second?”
“Sir, there is no second.”

-Dialog between two observers of the sailing race 
later named “The America’s Cup” and run every few 
years -- the inspiration for John Cocke’s naming of the 
IBM research processor as “America.” This processor 
was the precursor to the RS/6000 series and the first 
superscalar microprocessor.
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Introduction
• What is instruction-level parallelism (ILP)?

– A measure of how many of the operations in a computer 
program can be performed simultaneously.

– Pipelining à universal technique in 1985
• Overlaps execution of instructions à exploits ILP

• How do processors extract ILP to get faster?
– More parallelism (or more work per pipeline stage): 

fewer clocks/instruction [more instructions/cycle]
• Get WIDER

– Deeper pipeline stages: fewer gates/clock
• Get DEEPER

– Transistors get faster (Moore’s Law): fewer ps/gate
• Get FASTER

• What do processors do to extract ILP?  Later …

Does a faster 
processor mean a 
faster computer?



ILP



https://www.karlrupp.net/wp-content/uploads/2015/06/40-years-processor-trend.png
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Instruction-Level Parallelism (ILP)

• Goal:  Minimize CPI (or maximize IPC)
– Pipeline CPI =

Ideal pipeline CPI +
Structural-hazard stalls +
Data-hazard stalls +
Control-hazard stalls

Recall
– CPI = cycles per instruction 

= number of clock cycles required to execute the program / 
number of instructions executed in running the program

– IPC = instructions per cycle = number of instructions executed 
while running a program / number of clock cycles required to 
execute the program



Extracting Yet More Performance

• How do processors extract ILP to get faster?
– More parallelism (or more work per pipeline stage): 

fewer clocks/instruction [more instructions/cycle]
• Get WIDER à instruction width

– Deeper pipeline stages: fewer gates/clock
• Get DEEPER à instruction depth

– Transistors get faster (Moore’s Law): fewer ps/gate
• Get FASTER

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB



Extracting Yet More Performance

• Architectural Options:  GET WIDER or GET DEEPER
– Fetch (and execute) more than one instruction at one time 

(expand every pipeline stage to accommodate multiple 
instructions) — multiple-issue à superscalar or VLIW

• How does this help performance? 
• What does it impact in the performance equation?

– Increase the depth of the pipeline to increase the clock rate —
superpipelining

• How does this help performance? (What does it impact in the 
performance equation?)



Basic MIPS Pipelined Architecture
IF ID EX MEM WB



N. Jouppi, “Superscalar vs. Superpipelined Machines,” ACM SIGARCH Computer Architecture News, 16(3):71-80, June 1988.
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Superscalar Processors

• Launching multiple instructions per stage allows the 
instruction execution rate, CPI, to be less than 1.

– So, let’s use the reciprocal (IPC: instructions per clock cycle)
• Example

– CPU:  3-GHz, 4-way multiple-issue processor 
– Peak Execution Rate: 12-billion instructions per second 
– Best-Case CPI of 0.25 à Best-Case IPC of 4

– If the datapath has a five-stage pipeline, how many instructions 
are active in the pipeline at any given time?

– How might this lead to difficulties?



Superpipelined Processors

• Increase the depth of the pipeline leading to more 
instructions “in flight” at once …

– The higher the degree of superpipelining …
• the more forwarding/hazard hardware needed
• the more pipeline latch overhead (i.e., the pipeline latch accounts 

for a larger and larger percentage of the clock cycle time), 
• the bigger the clock skew issues (i.e., because of faster and faster 

clocks)

– We know there are limits to this (6–8 FO4 delays).



Superpipelined vs. Superscalar

• Superpipelined (SP) processors 
– Longer instruction latency (in terms of cycles) than superscalar 

(SS) processors which can degrade performance in the 
presence of true dependencies

– Key:  Improving throughput at the expense of latency!

• Superscalar processors 
– More susceptible to resource conflicts—but we can fix this with 

hardware (to a point).



Instruction vs Machine Parallelism

• Instruction-Level Parallelism (ILP) of a Program
– In Theory

• A measure of the average # of instructions in a program that, in 
theory, a processor could execute at the same time

– In Practice
• A function of the number of true (data) dependencies and 

procedural (control) dependencies in relation to the number of 
other instructions

• Take Away
– ILP is traditionally “extracting parallelism from a single 

instruction stream working on a single stream of data”

(Recall Flynn’s Classification …)



Instruction vs Machine Parallelism

• Machine Parallelism of a Processor
– A measure of the ability of a processor to take advantage of the 

ILP of the program
– In Theory (or “In the Limit”)

• A perfect machine with infinite machine parallelism can achieve 
the ILP of a program.

– In Practice
• A function of the number of instructions that can be fetched and 

executed at the same time

• To achieve high performance, need both ILP and 
machine parallelism.

First more on instruction parallelism, then machine parallelism.



Points of Contemplation

• Why is ILP a good idea? 
• If you were designing a computer system …

– Why choose ILP instead of multiple processors/cores?

• What kind of code has lots of ILP?
• What kind of code has little ILP?
• What is the reality?



Matrix Multiplication



“Assembly Code” for y0

y0 = m00*x0 + m01*x1 + m02*x2 + m03*x3

t0 = m00 * x0
t1 = m01 * x1
t2 = m02 * x2
t3 = m03 * x3
t4 = t0 + t1
t5 = t2 + t3
y0 = t4 + t5

• What is the ILP for one product (y0)?
• What is the ILP for the entire matrix?
• What is the ILP for doing 100 matrices in parallel?

In this case …
what will the machine parallelism be 
relative to the instruction-level parallelism?



Basics of a RISC Instruction Set

• Key Properties
– All operations on data apply to REGISTERS 

(typically the entire register, i.e., 32 or 64 bits per register)
– Only operations that affect memory?

• LOAD and STORE

– Instruction formats?
• FEW (in contrast to CISC where there are many)

– ALU instructions
– LOAD and STORE instructions
– BRANCH and JUMP instructions

• FIXED-SIZE (in general)
– 32 bit or 64 bit, depending on architecture
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Overview of MIPS64 ISA 
(see Appendix) 

• Registers
– 32 64-bit general-purpose registers (GPRs) 
– 32 floating-pt registers (FPRs), holding 32 SP or 32 DP values 

• (When holding a SP number, the other half of the FPR is unused.)

• Data Types à Integer and Floating Point
– 8-bit bytes; 16-bit half words, 32-bit words, 64-bit double-words
– 32-bit single-precision (SP); 64-bit double-precision (DP)

• Addressing Modes à ONLY THREE natively supported!
– Register
– Immediate (16-bit field)
– Displacement (16-bit field)

• Register-indirect addressing:  0 in displacement field
• Absolute addressing:  R0 as the base register



Addressing Modes of Past ISAs (see Fig. A.6)



Encoding an Instruction Set

Balancing Act of Many Competing Forces
• Desire to have as many registers and addressing modes 

as possible.
• Impact of the size of the register and addressing mode 

fields (on average instruction size, and hence, on 
average program size).

• Desire to have instructions encoded into lengths that 
will be easy to handle in a pipelined implementation.

– Ideally, instructions should be in multiples of bytes (or words) 
rather than arbitrary bit length.



Instruction Layout for MIPS Pipelined Processor

This is for the MIPS32 ISA.

Resources for MIPS64 ISA
• https://www.mips.com/product

s/architectures/mips64/
• https://s3-eu-west-

1.amazonaws.com/downloads-
mips/documents/MD00083-2B-
MIPS64INT-AFP-06.01.pdf

https://www.mips.com/products/architectures/mips64/
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00083-2B-MIPS64INT-AFP-06.01.pdf


Basic Five-Stage Pipelined MIPS Architecture



Five-Stage Pipelined Processor
1. Instruction Fetch (IF)

– Send PC to memory & fetch current instruction 
from memory

– Update PC to next sequential PC (e.g., 4 for 32-
bit architecture and 8 for 64-bit architecture)

2. Instruction Decode (ID) / Register Fetch 
– Decode instruction and read source registers in 

parallel
• Why is this possible? “Fixed-field decoding”

– Do EQUALITY test on registers during read for 
possible branch

• Sign-extend the offset field of instruction, if 
needed

• Compute possible branch target address (by 
adding offset to PC)



Five-Stage Pipelined Processor

3. Execute (EXE) / Effective Address
– EXE on operands from previous cycle

• Memory reference calculation
• Register-Register ALU instruction
• Register-Immediate ALU instruction

4. Memory Access (MEM)
– LOAD: Memory read using effective address 

calculated
– STORE: Memory write data from register 

read to effective address

5. Write Back (WB)
– Register-Register ALU instruction or LOAD 

instruction



Instruction-Level Parallelism

• When exploiting instruction-level parallelism, goal is to 
minimize CPI (or maximize IPC)

– Pipeline CPI =
Ideal pipeline CPI +
Structural stalls +
Data hazard stalls +
Control stalls

Nomenclature  
• Pipeline stalls are synonmous with “bubbles” in the pipeline.
• Pipeline stalls are caused by hazards.



Review:  Pipeline Hazards

• Hazards
– Situations that prevent the next instruction in the instruction 

stream from executing during its designated clock cycle.
– Consequence

• Insertion of “stalls” or “bubbles” into the pipeline

– Types
• Structural Hazards
• Data Hazards
• Control Hazards



Review:  Pipeline Hazards

• Structural Hazards
– What are they?  How do we eliminate them?

• Design pipeline to eliminate structural hazards
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Structural Hazard
• Assume a CPU with only one memory port 

What does the pipeline 
schedule look like?
• How does it compare 

to ideal?



Review:  Pipeline Hazards
• Data Hazards – Read After Write (RAW)

– What are they?  How do we eliminate them?
• Use data forwarding inside the pipeline
• For those cases that forwarding won’t solve (e.g., load-use) 

include hazard hardware to insert stalls in the instruction stream
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Data Hazard

What should the 
schedule look like?



Unavoidable Data Hazards



Data Dependence

• Dependencies are a property of programs
• Pipeline organization determines if dependence is 

detected and if it causes a stall

• Data dependence conveys:
– Possibility of a hazard
– Order in which results must be calculated
– Upper bound on exploitable instruction level parallelism

• Dependencies that flow through memory locations are 
difficult to detect



Name Dependence

• Two instructions use the same name but no flow of 
information

– Not a true data dependence but is a problem when reordering 
instructions

– Antidependence: instruction j writes a register or memory 
location that instruction i reads

• Initial ordering (i before j) must be preserved

– Output dependence:  instruction i and instruction j write the 
same register or memory location

• Ordering must be preserved

• To resolve, use renaming techniques



Data Hazards

• Data Hazards
– Read after write (RAW)
– Write after write (WAW)
– Write after read (WAR)

• Control Dependence
– Ordering of instruction i with respect to a branch 

instruction
• Instruction control dependent on a branch cannot be 

moved before the branch so that its execution is no longer 
controlled by the branch

• An instruction not control dependent on a branch cannot 
be moved after the branch so that its execution is 
controlled by the branch



Pipelined Processor
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Review:  Pipeline Hazards
• Control Hazards – beq, bne, j, jr, jal

– What are they? 
• Determines the ordering of an instruction i with respect to a 

“change-in-flow” instruction, i.e., branch or procedure call.

– How do we eliminate them?
• Stall, but it hurts performance
• Move decision point to as early in the pipeline as possible

– Reduces # of stalls at the cost of additional HW
• Delay decision (requires compiler support)

– Not feasible for deeper pipes requiring more than one delay slot 
to be filled

• Predict (with more HW)
– Reduces the impact of control hazard stalls 

» if branch prediction is correct and 
» if branched-to instruction is cached 



Recall:  
Five-Stage Pipelined Processor
1. Instruction Fetch (IF)

– Send PC to memory & fetch current instruction from memory
– Update PC to next sequential PC (e.g., 4 for 32-bit architecture)

2. Instruction Decode (ID) / Register Fetch 
– Decode instruction and read source registers in parallel

• Why is this possible? “Fixed-field decoding”

– Do EQUALITY test on registers during read for possible branch
• Sign-extend the offset field of instruction, if needed
• Compute possible branch target address (by adding offset to PC)



Constraints of Control Dependences

1. An instruction that is control-dependent on a branch
... cannot be moved BEFORE the branch so that its execution is no 
longer controlled by the branch.

2. An instruction that it not control-dependent on a branch
... cannot be moved AFTER the branch so that its execution is 
controlled by the branch.

Caveat?
• May execute instructions that should not be executed, 

thus violating control dependences, but only IF we can do 
so without affecting the correctness of the program.



Examples

• OR instruction dependent on 
DADDU and DSUBU

– R1 used by OR depends on branch

Due to constraint of control dependence, 
DSUBU cannot be moved above branch.

(Caveat:  Speculation?)

• Assume R4 is not used after skip
– Possible to move DSUBU before the 

branch

Property of whether a value is used by an 
upcoming instruction:  liveness.

Example 1:
DADDU R1,R2,R3
BEQZ  R4,L
DSUBU R1,R1,R6

L:…
OR    R7,R1,R8

Example 2:
DADDU R1,R2,R3
BEQZ  R12,skip
DSUBU R4,R5,R6
DADDU R5,R4,R9

skip:
OR    R7,R8,R9



Summary:  Hazards

• Hazards are bad because they reduce the amount of 
achievable machine parallelism and keep us from 
achieving all the ILP in the instruction stream.



Recall:  Instruction vs Machine Parallelism

• Instruction-Level Parallelism (ILP) of a Program
– In Theory

• A measure of the average # of instructions in a program that, in 
theory, a processor could execute at the same time

– In Practice
• A function of the number of true (data) dependencies and 

procedural (control) dependencies in relation to the number of 
other instructions

• Take Away
– ILP is traditionally “extracting parallelism from a single 

instruction stream working on a single stream of data”

(Recall Flynn’s Classification …)



Recall:  Instruction vs Machine Parallelism

• Machine Parallelism of a Processor
– A measure of the ability of a processor to take advantage of the 

ILP of the program
– In Theory (or “In the Limit”)

• A perfect machine with infinite machine parallelism can achieve 
the ILP of a program.

– In Practice
• A function of the number of instructions that can be fetched and 

executed at the same time

• To achieve high performance, need both ILP and 
machine parallelism.

First more on instruction parallelism, then machine parallelism.



Machine Parallelism

• Two Approaches for Machine Parallelism 
Responsibility of resolving hazards is …

– Hardware-based
• Dynamic-issue superscalar

– Software-based
• Static “VLIW:  Very Long Instruction Word”



Multiple-Issue Processor Styles

• Dynamic multiple-issue processors (aka superscalar)
– Decisions on which instructions to execute simultaneously are 

being made dynamically (at run time by the hardware)
• Examples:  IBM Power 2, Pentium Pro/2/3/4, Core, MIPS R10K, HP 

PA 8500

• Static multiple-issue processors (aka VLIW)
– Decisions on which instructions to execute simultaneously are 

being made statically (at compile time by the compiler)
• Examples: Intel Itanium and Itanium 2 for the IA-64 ISA—EPIC 

(Explicit Parallel Instruction Computer)



Supporting Machine Parallelism?

• Now, how do we support multiple integer instructions?

Reg

AL
U DMemIfetch Reg



Supporting Machine Parallelism?

• First, let’s support parallel integer & FP instructions 
(MIPS)

Reg

AL
U DMemIfetch Reg



Pentium Microarchitecture



Multiple-Issue Datapath Responsibilities

• Datapath handled with a combination of HW and SW.
• Fundamental limitations of hazards

– Storage (data) dependencies—aka data hazards
• Most instruction streams do not have huge ILP so …

... this limits performance in a superscalar processor



Multiple-Issue Datapath Responsibilities

• Datapath handled with a combination of HW and SW.
• Fundamental limitations of hazards

– Procedural dependencies—aka control hazards
• Ditto, but even more severe
• Use dynamic branch prediction to help resolve the ILP issue



Multiple-Issue Datapath Responsibilities

• Datapath handled with a combination of HW and SW.
• Fundamental limitations of hazards

– Resource conflicts – aka structural hazards
• A SS/VLIW processor has a much larger number of potential resource 

conflicts
• Functional units may have to arbitrate for result buses and register-

file write ports
• Resource conflicts can be eliminated by duplicating the resource or by 

pipelining the resource


