
1

Chapter 3 (and Appendix C)

Instruction-Level Parallelism and Its
Exploitation

Part 3: Advanced Scheduling

Computer Architecture
A Quantitative Approach, Sixth Edition

“Who’s first?”
“America.”
“Who’s second?”
“Sir, there is no second.”

-Dialog between two observers of the sailing race
later named “The America’s Cup” and run every few
years -- the inspiration for John Cocke’s naming of the
IBM research processor as “America.” This processor
was the precursor to the RS/6000 series and the first
superscalar microprocessor.

Acknowledgements

• Thanks to many sources for slide material
© 1990 Morgan Kaufmann Publishers, © 2001-present Elsevier

Computer Architecture: A Quantitative Approach by J. Hennessy & D. Patterson
© 1994 Morgan Kaufmann Publishers, © 2001-present Elsevier

Computer Organization and Design by D. Patterson & J. Hennessy
© 2002 K. Asinovic & Arvind, MIT

© 2002 J. Kubiatowicz, University of California at Berkeley
© 2006, © 2010 No Starch Press for Inside the Machine by J. Stokes

© 2007 W.-M. Hwu & D. Kirk, University of Illinois & NVIDIA

© 2007-2010 J. Owens, University of California at Davis
© 2010 CRC Press for Introduction to Concurrency in Programming Languages by M.

Sottile, T. Mattson, and C. Rasmussen
© 2017, IBM POWER9 Processor Architecture by Sadasivam et al., IBM

© 2016, © 2019 POWER9 Processor User’s Manual, IBM
© The OpenPOWER Foundation

© 2022, W. Feng, Virginia Tech

Instruction Issue and Completion

• Instruction issue—initiate execution
– Instruction lookahead capability—fetch, decode and issue

instructions beyond the current instruction

• Instruction completion—complete execution
– Processor lookahead capability—complete issued instructions

beyond the current instruction

• Instruction commit—write back results to the RegFile or
D$ (i.e., change the machine state)

• Scenarios
– In-order issue w/ in-order completion
– In-order issue w/ out-of-order completion
– Out-of-order issue w/ out-of-order completion & in-order commit
– Out-of-order issue w/ out-of-order completion

In-Order Issue, In-Order Completion (IOI-IOC)

• Simplest policy is to issue instructions in exact program
order and to complete them in the same order they
were fetched (i.e., in program order)

• Example
– Assume pipelined processor that can fetch & decode 2

instructions per cycle, has 3 functional units (single-cycle
adder, a single-cycle shifter, and a two-cycle multiplier), and
can complete (and write back) two results per cycle

– Instruction sequence:
I1 – needs two execute cycles (a multiply)
I2
I3
I4 – needs the same function unit as I3
I5 – needs data value produced by I4
I6 – needs the same function unit as I5

Static Scheduling

Example: IOI-IOC

EXIF
ID

WB
I
n
s
t
r.

O
r
d
e
r

I1

I2

I3

I4

I5

I6
EXIF

ID
WB

EX

EX WB

EX WB

EXIF
ID

WB

EXIF
ID

WB

IF
ID

IF
ID

I1: two execute cycles
I2
I3
I4: same function unit as I3
I5: data value produced by I4
I6: same function unit as I5

In parallel can
fetch/decode 2
and complete 2

IF
ID

IF
ID

IF
ID

Static Scheduling

In-Order Issue, Out-of-Order Completion

• With out-of-order completion, a later instruction may
complete before a previous instruction
– Out-of-order completion is used in single-issue pipelined

processors to improve the performance of program that has
long-latency operations such as divide

• When using out-of-order completion, instruction issue is
stalled when there is a resource conflict (e.g., for a
functional unit) or when the instructions ready to issue
need a result that has not yet been computed

D
ynam

ic Scheduling

Example: IOI-OOC

EXIF
ID

WB
I
n
s
t
r.

O
r
d
e
r

I1

I2

I3

I4

I5

I6

EXIF
ID

WB

EX
EXIF

ID
WB

EXIF
ID

WB

EXIF
ID

WB

EXIF
ID

WB

IF
ID

IF
ID

I1: two execute cycles
I2
I3
I4: same function unit as I3
I5: data value produced by I4
I6: same function unit as I5

D
ynam

ic Scheduling

Handling Output Dependencies
• One more situation that stalls instruction issue w/ IOI-OOC

I1 – writes to R3
I2 – writes to R3
I5 – reads R3

• If the I1 write occurs after the I2 write, then I5 reads an
incorrect value for R3

• I2 has an output dependency on I1—write after write
• The issuing of I2 would have to be stalled if its result might

later be overwritten by a previous instruction (i.e., I1) that
takes longer to complete—the stall happens before
instruction issue

• While IOI-OOC yields higher performance, it requires more
dependency checking hardware (both write-after-read and
write-after-write hazards)

D
ynam

ic Scheduling

Example: IOI-OOC

EXIF
ID

WB
I
n
s
t
r.

O
r
d
e
r

I1

I2

I3

I4

I5

I6

EXIF
ID

WB

EX
EXIF

ID
WB

EXIF
ID

WB

EXIF
ID

WB

EXIF
ID

WB

IF
ID

IF
ID

I1: two execute cycles + WB to R3
I2: WB to R3
I3
I4: same function unit as I3
I5: read R3 + data value produced by I4
I6: same function unit as I5

D
ynam

ic Scheduling

rename

Out-of-Order Issue with Out-of-Order
Completion (OOI-OOC)
• With in-order issue, CPU stops ID when decoded

instruction has resource conflict or a data dependency on
an issued but uncompleted instruction
– CPU is unable to look beyond conflicted instruction even though

more downstream instructions might have no conflicts and thus be
issuable

• Fetch & decode instructions beyond the conflicted one
(“instruction window”: Tetris), store them in an
instruction buffer (if room), and flag those instructions in
buffer that do NOT have resource conflicts or data
dependencies

• Flagged instructions are then issued from the buffer w/o
regard to their program order à re-order buffer (ROB)

D
ynam

ic Scheduling

OOI-OOC Example

EXIF
ID

WB
I
n
s
t
r.

O
r
d
e
r

I1

I2

I3

I4

I5

I6

EXIF
ID

WB

EX
EXIF

ID
WB

EXIF
ID

WB

EXIF
ID

WB

EXIF
ID

WB

I1: two execute cycles
I2
I3
I4: same function unit as I3
I5: data value produced by I4
I6: same function unit as I5

IF
ID

IF
ID

D
ynam

ic Scheduling

Overview: Dynamic Scheduling

• Definition: Rearrange order of instructions to reduce stalls
while maintaining data flow

• Implications
– Out-of-order execution
– Out-of-order completion

• Advantages
– Compiler does NOT need to have knowledge of microarchitecture
– Handles cases where dependencies are unknown at compile time

• Disadvantages
– Substantial increase in hardware complexity
– Complicates exception-handling

Creates the possibility for
WAR and WAW hazards

Tomasulo’s Algorithm

Recap: Dependencies

• Each of the three data dependencies …
– True data dependencies (read after write)
– Antidependencies (write after read)
– Output dependencies (write after write)

… manifests itself through the use of registers
(or other storage locations)

• True dependencies represent the flow of data and
information through a program

• Anti- and output dependencies arise because the limited
number of registers mean that programmers reuse
registers for different computations

storage
conflicts

Recap: Pipeline Scheduling

• Statically Scheduled Pipeline
– Fetches an instruction and issues it unless there is a data dependence

that cannot be hidden with forwarding.
– Implication: In-order issue; in-order completion

• Dynamically Scheduled Pipeline
– Rearranges the order of instructions to reduce stalls while

maintaining data flow
– Implication: In-/out-of-order issue; out-of-order completion

• Observation
– Commonality: Both must maintain data flow for correctness.
– Difference: Other than static vs. dynamic …

• Static: Minimize stalls by separating dependent instructions
• Dynamic: Minimize stalls by re-arranging instructions based on dynamic

presence of dependences

Example: IOI-OOC

EXIF
ID

WB
I
n
s
t
r.

O
r
d
e
r

I1

I2

I3

I4

I5

I6

EXIF
ID

WB

EX
EXIF

ID
WB

EXIF
ID

WB

EXIF
ID

WB

EXIF
ID

WB

IF
ID

IF
ID

I1: two execute cycles + WB to R3
I2: WB to R3
I3
I4: same function unit as I3
I5: read R3 + data value produced by I4
I6: same function unit as I5

D
ynam

ic Scheduling

rename

Dynamic Scheduling with Tomasulo’s Algorithm

• Tracks when operands are available (minimize RAW hazards)

• Introduces register renaming in hardware
– Addresses WAW & WAR

hazards

• Extends to handle
speculation

– Technique used to reduce
effect of control dependences

• IF precedes ID and fetches into an IR or equivalent (e.g., a
queue of pending instructions à re-order buffer).
ID has two sub-stages:

– Issue: Decode instruction + check for structural hazards
– Read Operands: Wait until no data hazards

I1: two execute cycles + WB to R3
I2: WB to R3
I3
I4: same function unit as I3
I5: read R3 + data value produced by I4
I6: same function unit as I5

rename

D
ynam

ic Scheduling

Delineate between
when instruction

begins exect’n
& when it

completes execut’n

Another Example:
IOI-OOC Introduces WAR & WAW

• Can dynamically schedule with IOI-OOC
– OOC introduces possibility of WAR and WAW hazards, which

are NOT issues in a statically scheduled pipeline.

DIV.D F0, F2, F4
ADD.D F6,F0,F8
SUB.D F8,F10,F14
MUL.D F6,F10,F8

• How to avoid the above? Register renaming
– Eliminates WAR & WAW hazards by renaming all destination

registers, including those with a pending read or write for an
earlier instruction, so that the out-of-order write does not affect
any instructions that depend on an earlier value of an operand.

Antidependence between ADD.D and SUB.D
• If pipeline tries SUB.D before ADD.D,

antidependence violated & yields WAR hazard.

Output dependence between ADD.D and MUL.D
• If pipeline tries MUL.D before ADD.D, output

dependence violated & yields WAW hazard.

D
ynam

ic Scheduling

Register Renaming

• Example

DIV.D F0,F2,F4
ADD.D F6,F0,F8
S.D F6,0(R1)
SUB.D F8,F10,F14
MUL.D F6,F10,F8

antidependence

antidependence

Note: The above code snippet uses the MIPS ISA. The textbook uses the RISC V ISA.

D
ynam

ic Scheduling

output dependence

1. Identify all the data hazards
for an IOC pipeline.

2. Identify all the data hazards
for an OOC pipeline.

Two antidependences (WAR) and an output dependence (WAW)

Register Renaming

Example

DIV.D F0,F2,F4
ADD.D S,F0,F8
S.D S,0(R1)
SUB.D T,F10,F14
MUL.D F6,F10,T

• Now only RAW hazards remain, which can be strictly
ordered

• Any subsequent uses of F8 must be replaced by the
register T

Note: The above code snippet uses the MIPS ISA. The textbook uses the RISC V ISA.

D
ynam

ic Scheduling

DIV.D F0,F2,F4
ADD.D F6,F0,F8
S.D F6,0(R1)
SUB.D F8,F10,F14
MUL.D F6,F10,F8

Register Renaming

• Tomasulo’s Approach
– Tracks when operands are available
– Introduces register renaming in hardware

via reservation stations (RS)
• Minimizes WAW and WAR hazards (by renaming destination regs)

• Register renaming is provided by reservation stations (RS)
– Contains:

• The instruction
• Buffered operand values (when available)
• Reservation station number of instruction providing the operand

values

D
ynam

ic Scheduling

D
ynam

ic Scheduling

Register Renaming

• Register renaming provided by reservation stations (RS)
– RS fetches and buffers an operand as soon as it becomes available,

eliminating the need to get the operand from a register
– Pending instructions designate the RS to which they will send their

output
• Result values broadcast on a result bus called common data bus (CDB)

– Only the last output updates the register file

• Observations
– As instructions are issued, the register specifiers are renamed with the

reservation station
– May be more reservation stations than registers
– Load and store buffers

• Contain data and addresses, act like
reservation stations

High-Level Architecture for Tomasulo’s Algorithm

• Register renaming via
reservation stations (RS)

• Load and store buffers
– Contain data & addresses,

act like reservation stations

• Advantages
– Distribution of hazard

detection logic
– Elimination of stalls for

WAW and WAR hazards
by renaming all destination
registers No execution tables shown.

D
ynam

ic Scheduling

Tomasulo’s Algorithm at High Level
• Three steps that an instruction goes through …

– Issue (or Dispatch), where register renaming occurs
• Get next instruction from FIFO queue
• If available RS, issue instruction to RS w/ operand values, if available. If

operand values not available, stall instruction in RS and keep track of the
functional units that will produce operand values.

• If no available RS, structural hazard à stall until RS or buffer free …
– Execute

• When operand available (via CDB), store it in any RS waiting for it
• When all operands ready (i.e., no RAW hazard), issue instruction
• Loads & store maintained in program order via effective address calc.
• No instruction allowed to initiate execution until all branches that

precede it in program order have completed (to preserve exception behavior)

– Write result
• Write result on CDB into registers and RS (including store buffers)

– (Stores must wait until address and value are received)

D
ynam

ic Scheduling

High-Level Architecture for Tomasulo’s Algorithm

Each RS has seven fields:
• Op

– Op to do on src operands
• Qj, Qk

– RS that produce corresponding src operand
– (Zero value means src operand in Vj or Vk or not needed)

• Vj, Vk
– Value of src operands
– (Only one V field or Q field valid for each operand)

• A
– Holds info for memory addr calc

• Busy
– Indicates RS and associated functional unit are busy

Example: Tomasulo’s in Action

Note: The above code snippet uses the MIPS ISA. The textbook uses the RISC V ISA.

D
ynam

ic Scheduling
Assume the
following execute
latencies:
• L.D 1 cycle
• ADD.D 2 cycles
• MUL.D 6 cycles
• DIV.D 12 cycles

What do the status
tables look like
when MUL.D is
ready to write its
result?

Let’s find out!

Tomasulo’s w/ Straightline Code

Note: The above code snippet uses the MIPS ISA. The textbook uses the RISC V ISA.

D
ynam

ic Scheduling

Assume the
following execute
latencies:
• L.D 1 cycle
• ADD.D 2 cycles
• MUL.D 6 cycles
• DIV.D 12 cycles

What do the status
tables look like
when MUL.D is
ready to write its
result?

Tomasulo’s with Loop-Based Code

RISC-V Loop-Based Code
Loop: fld f0,0(x1)

fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x1 != x2

Assumption
• Predict branches taken.

Implication: RS allow multiple executions of the loop to run simultaneously,
an advantage gained WITHOUT changing the code. Loop is unrolled
dynamically by hardware using the RS obtained by “register renaming.”
(Ignore integer ALU operation for now as branch is predicted as taken.)

D
ynam

ic Scheduling

Tomasulo’s with Loop-Based Code
Loop: fld f0,0(x1)

fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x1 != x2

Observations
• A load (fld) and a store (fsd) can be safely done out of order iff

they access different locations, but what if they access the same?
– Load is before store in program order & interchanging them à WAR hazard
– Store is before load in program order & interchanging them à RAW hazard
– Also, interchanging two stores à WAW hazard

How to Detect Hazards on Loads & Stores?

D
ynam

ic Scheduling

Tomasulo’s with Loop-Based Code
Loop: fld f0,0(x1)

fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x1 != x2

How to Detect Hazards on Loads & Stores?
• Loads

– Compute the data memory address associated with any earlier memory
operation à pragmatically check the “A” field of all active (store) buffers

– If load address matches address of any active entry in store buffer, load is not
sent to load buffer until conflicting store completes (i.e., respect RAW hazard)

• Stores
– Similar to loads except that CPU must check for conflicts on both the load

buffers AND store buffers (since conflicting stores cannot be reordered with
respect to either a load or a store, i.e., WAR or WAW).

D
ynam

ic Scheduling

Tomasulo’s with Loop-Based Code
VLIW
approach
later

D
ynam

ic Scheduling

Adoption of Tomasulo’s Algorithm
• Proposed in 1967! 😳
• Not widely adopted until … the 1990s!

– Intro of caches created unpredictable delays à need for
dynamic scheduling

• Out-of-order execution (and completion) allows CPU to continue
executing instructions while waiting the completion of a cache
miss, thus hiding all or part of the cache-miss penalty.

– What kind of advanced cache optimization is this?

– CPUs became more aggressive about their issue capability while
CPU designers concerned with the performance of difficult-to-
schedule code (e.g., non-numeric code à graphs) à need for
automated register renaming, dynamic scheduling, and
speculation (coming up next)

– Can achieve higher performance without the compiler needing
to target code to a specific pipeline structure (i.e., architecture)

D
ynam

ic Scheduling

Recap: Dynamic Scheduling

• Dynamic scheduling implies
– Out-of-order execution
– Out-of-order completion

• Creates the possibility for WAR and WAW hazards

• Tomasulo’s Approach
– Tracks when operands are available
– Introduces register renaming in hardware

• Minimizes WAW and WAR hazards

D
ynam

ic Scheduling

Hardware-Based Speculation

• Execute instructions along predicted execution paths
but only commit the results if prediction was correct

• Instruction commit
– Allow an instruction to update the register file when instruction

is no longer speculative

• Need an additional piece of hardware to prevent any
irrevocable action until an instruction commits

– i.e., updating state or taking an execution

D
ynam

ic Scheduling & H
ardw

are-based Speculation

Hardware-Based Speculation

• Dynamic Scheduling vs. (Hardware-Based) Speculation

• Dynamic Scheduling
– Fetch, decode, and issue instructions

• Speculation
– Fetch, decode, issue, and execute instructions

• Key Ideas Behind Hardware-Based Speculation
1. Dynamic branch prediction

• Choose which instructions to execute

2. Speculation
• Execute instructions before control dependences are resolved

3. Dynamic scheduling
• Deal with the scheduling of different combinations of basic blocks

Re-order Buffer (ROB)

• Re-order buffer
– Holds the result of instruction between completion and commit

• Four fields
– Instruction type: branch/store/register
– Destination field: register number
– Value field: output value
– Ready field: completed execution?

• Modify reservation stations
– Operand source is now reorder buffer instead of functional unit

D
ynam

ic Scheduling & H
ardw

are-based Speculation

Tomasulo’s with Reorder Buffer

D
ynam

ic Scheduling & H
ardw

are-based Speculation

Reorder Buffer

• Issue
– Allocate RS and ROB; read available operands

• Execute
– Begin execution when operand values are available

• Write result
– Write result and ROB tag on CDB

• Commit
– When ROB reaches head of ROB, update register
– When a mispredicted branch reaches head of ROB, discard all

entries

D
ynam

ic Scheduling & H
ardw

are-based Speculation

Re-order Buffer (ROB)

• Register values and memory values are not written until
an instruction commits

• On misprediction
– Speculated entries in reorder buffer (ROB) are cleared

• Exceptions
– Not recognized until it is ready to commit

H
ardw

are-based Speculation

Tomasulo’s with Reorder Buffer

D
ynam

ic Scheduling & H
ardw

are-based Speculation

ROB w/ Previous Straightline Code
(no loop)

L.D F6,32(R2)
L.D F2,44(R3)
MUL.D F0,F2,F4
SUB.D F8,F2,F6
DIV.D F10,F0,F6
ADD.D F6,F8,F2

R2
R3

F6
F2
F0
F8
F10*
F6

R2
R3MUL

DIV

D
ynam

ic Scheduling & H
ardw

are-based Speculation

ROB with Loop-Based Code

MIPS Loop-Based Code
Loop: L.D F0,0(R1)

MUL.D F4,F0,F2
S.D F4,0(R1)
ADDI R1,R1,#8
BNE R1,R2,Loop // branches if R1 != R2

RISC-V Loop-Based Code
Loop: fld f0,0(x1)

fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x1 != x2

D
ynam

ic Scheduling & H
ardw

are-based Speculation

ROB with Loop-Based Code

RISC-V Loop-Based Code
Loop: fld f0,0(x1)

fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x1 != x2

Assumption
• Predict branches taken.

Implication: RS allow multiple executions of the loop to run simultaneously, an
advantage gained WITHOUT changing the code. Loop is unrolled dynamically by
hardware using the RS obtained by “register renaming.” (Ignore integer ALU
operation for now as branch is predicted as taken.)

D
ynam

ic Scheduling & H
ardw

are-based Speculation

ROB with Loop-Based Code

Loop: fld f0,0(x1)
fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x1 != x2

Observations
• A load (fld) and a store (fsd) can be safely done out of order iff they

access different locations, but what if they access the same?
– Load is before store in program order & interchanging them à WAR hazard
– Store is before load in program order & interchanging them à RAW hazard
– Also, interchanging two stores à WAW hazard

How to Detect Hazards on Loads & Stores?

D
ynam

ic Scheduling & H
ardw

are-based Speculation

ROB with Loop-Based Code

Loop: fld f0,0(x1)
fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x1 != x2

How to Detect Hazards on Loads & Stores?
• Loads

– Compute the data memory address associated with any earlier memory operation à
pragmatically check the “A” field of all active (store) buffers

– If load address matches address of any active entry in store buffer, load is not sent
to load buffer until conflicting store completes (i.e., respect RAW hazard)

• Stores
– Similar to loads except that CPU must check for conflicts on both the load buffers

AND store buffers (since conflicting stores cannot be reordered with respect to
either a load or a store, i.e., WAR or WAW).

D
ynam

ic Scheduling & H
ardw

are-based Speculation

ROB with Loop-Based Code
D

ynam
ic Scheduling & H

ardw
are-based Speculation

Tomasulo’s
Algorithm

VLIW
approach
later

Adoption of Tomasulo’s

• Proposed in 1967! 😳
• Not widely adopted until … the 1990s!

– Intro of caches created unpredictable delays à need for
dynamic scheduling

• Out-of-order execution (and completion) allows CPU to continue
executing instructions while waiting the completion of a cache
miss, thus hiding all or part of the cache-miss penalty.

– What kind of advanced cache optimization is this?

– CPUs became more aggressive about their issue capability while
CPU designers concerned with the performance of difficult-to-
schedule code (e.g., non-numeric code à graphs) à need for
automated register renaming, dynamic scheduling, and
speculation (coming up next)

– Can achieve higher performance without the compiler needing
to target code to a specific pipeline structure (i.e., architecture)

D
ynam

ic Scheduling & H
ardw

are-based Speculation

Recall:

Hardware-Based Speculation
• Execute instructions along predicted execution paths

but only commit the results if prediction was correct

• Instruction commit
– Allow an instruction to update the register file when instruction

is no longer speculative

• Need an additional piece of hardware to prevent any
irrevocable action until an instruction commits

– i.e., updating state or taking an execution

D
ynam

ic Scheduling & H
ardw

are-based Speculation

Recall:

Hardware-Based Speculation
• Dynamic Scheduling vs. (Hardware-Based) Speculation

• Dynamic Scheduling
– Fetch, decode, and issue instructions

• Speculation
– Fetch, decode, issue, and execute instructions

• Key Ideas Behind Hardware-Based Speculation
1. Dynamic branch prediction

• Choose which instructions to execute

2. Speculation
• Execute instructions before control dependences are resolved

3. Dynamic scheduling
• Deal with the scheduling of different combinations of basic blocks

Dynamic, Multiple Issue, and Speculation

• Modern Microarchitectures
– Dynamic scheduling + multiple issue + speculation

• Approaches
– Assign reservation stations and update pipeline control table in

half clock cycles
• Only supports 2 instructions/clock

– Design logic to handle any possible dependencies between the
instructions

– Hybrid approaches

• Issue logic is the bottleneck in dynamically-scheduled
superscalar processors

D
ynam

ic Scheduling & M
ultiple Issue

• Limit the number of instructions of a given class that can
be issued in a “bundle” (to simplify RS allocation)

– Example: one FP, one integer, one load, one store

• Examine all the dependencies between the instructions in
the bundle

• If dependencies exist in bundle, encode them in
reservation stations

• Need multiple completion/commit

Multiple Issue

D
ynam

ic Scheduling
D

ynam
ic Scheduling & M

ultiple Issue

Recap
• What is instruction-level parallelism (ILP)?

– A measure of how many of the operations in a computer program
can be performed simultaneously.

– Pipelining à universal technique in 1985
• Overlaps execution of instructions à exploits ILP

• How do processors extract ILP to get faster?
– More parallelism (or more work per pipeline stage): fewer

clocks/instruction [more instructions/cycle]
• Get WIDER

– Deeper pipeline stages: fewer gates/clock
• Get DEEPER

– Transistors get faster (Moore’s Law): fewer ps/gate
• Get FASTER

• What do processors do to extract ILP?

ILP

Get WIDER: Multiple Issue

• To achieve CPI < 1, need to complete multiple
instructions per clock

• Solutions
– Dynamically scheduled superscalar processors
– Statically scheduled superscalar processors
– VLIW (very long instruction word) processors

ILP

Get WIDER: Machine Parallelism

• Two approaches for machine parallelism, where the
responsibility of resolving hazards is …

– Hardware-based dynamic approaches
• Dynamic-issue superscalar
• Typically used in server and desktop processors
• Not used as extensively in PMP processors

– Software-based static approaches (i.e., compiler)
• Static “VLIW: Very Long Instruction Word”
• Not as successful outside of scientific applications

Multiple-Issue Processor Styles

• Dynamic multiple-issue processors (aka superscalar)
– Decisions on which instructions to execute simultaneously are

being made dynamically (at run time by the hardware)
• Example: IBM Power 2, Pentium Pro/2/3/4, Core, MIPS R10K, HP PA

8500

• Static multiple-issue processors (aka VLIW)
– Decisions on which instructions to execute simultaneously are

being made statically (at compile time by the compiler)
• Example: Intel Itanium and Itanium 2 for the IA-64 ISA—EPIC

(Explicit Parallel Instruction Computer)

Multiple-Issue Processor Styles

D
ynam

ic Scheduling

Multiple-Issue Processor Styles

• Dynamic multiple-issue processors (aka superscalar)
– Decisions on which instructions to execute simultaneously are

being made dynamically (at run time by the hardware)
• Example: IBM Power 2, Pentium Pro/2/3/4, Core, MIPS R10K, HP PA

8500

• Static multiple-issue processors (aka VLIW)
– Decisions on which instructions to execute simultaneously are

being made statically (at compile time by the compiler)
• Example: Intel Itanium and Itanium 2 for the IA-64 ISA—EPIC

(Explicit Parallel Instruction Computer)

VLIW Beginnings

• VLIW: Very Long Instruction Word

• Led to a startup (MultiFlow) whose computers
worked, but which went out of business ... the ideas
remain influential.

History of VLIW Processors

• Started with (horizontal) microprogramming
– Very-wide microinstructions used to directly generate control

signals in single-issue processors (e.g., IBM 360 series)

• VLIW for multi-issue processors first appeared in the
Multiflow and Cydrome (in the early 1980’s)

• Commercial VLIW processors from past decade
– Intel i860 RISC (dual mode: scalar and VLIW)
– Intel I-64 (EPIC: Itanium and Itanium 2)
– Transmeta Crusoe (the chip that powered Green Destiny)
– Lucent/Motorola StarCore, ADI TigerSHARC, Infineon

(Siemens) Carmel

Overview: VLIW Processors
• Package multiple operations into one instruction

• Example: VLIW processor
– One integer instruction (or branch)
– Two independent floating-point operations
– Two independent memory references

• Must be enough parallelism in code to fill the available
slots

M
ultiple Issue and Static Scheduling

VLIW Processors
(Static Multiple-Issue Machines)

• Static multiple-issue processors (aka VLIW) use the
compiler to decide which instructions to issue and
execute simultaneously

– Issue packet or “bundle”
• The set of instructions that are bundled together and issued in one

clock cycle—think of it as one large instruction with multiple
operations

• The mix of instructions in the packet (bundle) is usually
restricted—a single “instruction”with several predefined fields

– e.g., VLIW: one integer (or branch), two FP, two memory

– Performance
• Must be enough parallelism in code to fill the available slots
• The compiler does static branch prediction and code scheduling to

reduce (ctrl) or eliminate (data) hazards

VLIW Processors
• Advantages

– Simpler hardware (potentially less power hungry)
– Potentially more scalable

• Allow more instructions per bundle & add more FUs

• Disadvantages:
– Statically finding parallelism
– Code size
– No hazard detection hardware
– Binary code compatibility

M
ultiple Issue and Static Scheduling

RISC-V Code Snippet
Loop: fld f0,0(x1)

fadd.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,-8
bne x1,x2,Loop

VLIW in Illustration

Characteristics
• Hardware does not need to re-analyze code to detect

dependences
• Hardware does not perform OoO execution
• Each instruction controls multiple functional units
• Each instruction is explicitly parallel

Static Multiple-Issue Machines (VLIW)

• Profile of VLIWs
– Multiple functional units (like SS processors)
– Multi-ported register files (again like SS processors)
– Wide program bus

• Example of VLIW Processor
– One integer instruction (or branch)
– Two independent floating-point operations
– Two independent memory references

• Key
– Must be enough parallelism in code to fill the available slots

An Example: VLIW MIPS

• Consider a 2-issue MIPS with a 2-instr bundle
• Instructions are always fetched, decoded, and issued in

pairs
– What happens if one instr slot is not used?
– What does the register file have to support?
– What other hardware must we add?

ALU Op (R format)
or
Branch (I format)

Load or Store (I format)

64 bits

An Example: VLIW MIPS

• Consider a 2-issue MIPS with a 2-instr bundle
• Instructions are always fetched, decoded, and issued in

pairs
– If one instr of the pair cannot be used, it is replaced with a “no

op” (nop)
– Need 4 read ports and 2 write ports and a separate memory

address adder

ALU Op (R format)
or
Branch (I format)

Load or Store (I format)

64 bits

A MIPS VLIW (2-issue) Datapath

Instruction
Memory

Add

PC

8

Write Data

Write Addr

Register
File

ALU

Add

Data
Memory

Sign
Extend

Add

Sign
Extend

No hazard hardware (so load-use
needs explicit nop instruction(s)
inserted by compiler)

Let’s say we
wanted more
functional units.
What would need
to change?

Code Scheduling Example

• Consider the following loop code:
lp: lw $t0,0($s1) # $t0=array element

addu $t0,$t0,$s2 # add scalar in $s2
sw $t0,0($s1) # store result
addi $s1,$s1,-4 # decrement pointer
bne $s1,$0,lp # branch if $s1 != 0

• Must “schedule” the instructions to avoid pipeline stalls
– Instructions in one bundle must be independent
– Must separate load-use instructions from their loads by one cycle
– Notice that the first two instructions have a load-use dependency,

the next two and last two have data dependencies
– Assume branches are perfectly predicted by the hardware

i = n;
do {
a[i] += const;

} while (--i != 0);

Scheduled Code (Not Unrolled)

• How many clock cycles?
• How many instructions?
• CPI? Best case?
• IPC? Best case?

ALU or branch Data transfer CC

lp: 1

2

3

4

5

Loop Unrolling

• Loop unrolling—multiple copies of the loop body are made
and instructions from different iterations are scheduled
together as a way to increase ILP

• Apply loop unrolling (4 times for our example) and then
schedule the resulting code
– Eliminate unnecessary loop overhead instructions
– Schedule so as to avoid load-use hazards

• During unrolling, the compiler applies register renaming to
eliminate all data dependencies that are not true
dependencies

Unrolled Code Example
lp: lw $t0,0($s1) # $t0=array element

lw $t1,-4($s1) # $t1=array element
lw $t2,-8($s1) # $t2=array element
lw $t3,-12($s1) # $t3=array element
addu $t0,$t0,$s2 # add scalar in $s2
addu $t1,$t1,$s2 # add scalar in $s2
addu $t2,$t2,$s2 # add scalar in $s2
addu $t3,$t3,$s2 # add scalar in $s2
sw $t0,0($s1) # store result
sw $t1,-4($s1) # store result
sw $t2,-8($s1) # store result
sw $t3,-12($s1) # store result
addi $s1,$s1,-16 # decrement pointer
bne $s1,$0,lp # branch if $s1 != 0

Scheduled Code (Unrolled)
ALU or branch Data transfer CC

lp: 1
2
3
4
5
6
7
8

• Two instructions
from a scientific
benchmark
(Linpack) for a
MultiFlow CPU with
14 operations per
instruction.

What does N=14 assembly look like?

Defining Attributes of VLIW
• Compiler

1. MultiOp: instruction containing
multiple independent operations

2. Specified number of resources of
specified types

3. Exposed, architectural latencies

Add Add Mpy Mem Mem

Register File

add nop nop load store

VLIW instruction =
5 independent
operations

Icache

Compiler Support for VLIW Processors

1. The compiler packs groups of independent instructions
into the bundle
– Because branch prediction is not perfect, done by code re-

ordering (trace scheduling)

2. The compiler uses loop unrolling to expose more ILP
3. The compiler uses register renaming to solve name

dependencies and ensures no-load use hazards occur

Compiler Support for VLIW Processors

• While superscalars use dynamic prediction, VLIWs
primarily depend on the compiler for extracting ILP

– Loop unrolling reduces the number of conditional branches
– Predication eliminates if-the-else branch structures by replacing

them with predicated instructions
• We’ll cover this in a future lecture as well

• The compiler predicts memory bank references to help
minimize memory bank conflicts

VLIW Advantages

• Advantages
– Simpler hardware (potentially less power hungry)
– Potentially more scalable

• Allow more instructions per VLIW bundle and add more FUs

VLIW Disadvantages

• Programmer/compiler complexity and longer
compilation times
– Deep pipelines and long latencies can be confusing (making

peak performance elusive)

• Lock-step operation, i.e., on hazard all future issues
stall until hazard is resolved (hence need for
predication)

• Object (binary) code incompatibility
• Needs lots of program memory bandwidth
• Code bloat

– “No ops” are a waste of program memory space
– Loop unrolling to expose more ILP uses more program

memory space

Review:
Multiple-Issue Processor Styles

• Dynamic multiple-issue processors (aka superscalar)
– Decisions on which instructions to execute simultaneously (in

the range of 2 to 8 in 2005) are being made dynamically (at run
time by the hardware)

– E.g., IBM Power 2, Pentium 4, MIPS R10K, HP PA 8500 IBM

• Static multiple-issue processors (aka VLIW)
– Decisions on which instructions to execute simultaneously are

being made statically (at compile time by the compiler)
– E.g., Intel Itanium and Itanium 2 for the IA-64 ISA – EPIC

(Explicit Parallel Instruction Computer)
• 128-bit “bundles” containing 3 instructions each 41 bits + 5 bit

template field (specifies which FU each instr needs)
• Five functional units (IntALU, MMedia, DMem, FPALU, Branch)
• Extensive support for speculation and predication

CISC vs RISC vs SS vs VLIW
CISC RISC Superscalar VLIW

Instr size variable size fixed size fixed size fixed size
(but large)

Instr format variable
format fixed format fixed format fixed format

Registers few, some
special many GP GP and

rename
many, many

GP

Memory
reference

embedded in
many instrs load/store load/store load/store

Key Issues decode
complexity

data
forwarding,

hazards

hardware
dependency
resolution

(compiler)
code

scheduling

Instruction
flow

IF ID EX M WBIF ID EX M WB IF ID EX M WB
EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB
IF ID EX M WB
IF ID EX M WB

IF ID EX M WB
EX M WB

Multiple Issue

