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Chapter 3 (and Appendix C)

Instruction-Level Parallelism and Its 
Exploitation

Part 3:  Advanced Scheduling

Computer Architecture
A Quantitative Approach, Sixth Edition

“Who’s first?” 
“America.”
“Who’s second?”
“Sir, there is no second.”

-Dialog between two observers of the sailing race 
later named “The America’s Cup” and run every few 
years -- the inspiration for John Cocke’s naming of the 
IBM research processor as “America.” This processor 
was the precursor to the RS/6000 series and the first 
superscalar microprocessor.
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Instruction Issue and Completion

• Instruction issue—initiate execution
– Instruction lookahead capability—fetch, decode and issue 

instructions beyond the current instruction

• Instruction completion—complete execution
– Processor lookahead capability—complete issued instructions 

beyond the current instruction

• Instruction commit—write back results to the RegFile or 
D$ (i.e., change the machine state)

• Scenarios
– In-order issue w/ in-order completion
– In-order issue w/ out-of-order completion
– Out-of-order issue w/ out-of-order completion & in-order commit
– Out-of-order issue w/ out-of-order completion



In-Order Issue, In-Order Completion (IOI-IOC)

• Simplest policy is to issue instructions in exact program 
order and to complete them in the same order they 
were fetched (i.e., in program order)

• Example
– Assume pipelined processor that can fetch & decode 2 

instructions per cycle, has 3 functional units (single-cycle 
adder, a single-cycle shifter, and a two-cycle multiplier), and 
can complete (and write back) two results per cycle

– Instruction sequence:
I1 – needs two execute cycles (a multiply)
I2
I3
I4 – needs the same function unit as I3
I5 – needs data value produced by I4
I6 – needs the same function unit as I5

Static Scheduling



Example:  IOI-IOC

EXIF
ID

WB
I
n
s
t
r.

O
r
d
e
r

I1

I2

I3

I4

I5

I6
EXIF

ID
WB

EX

EX WB

EX WB

EXIF
ID

WB

EXIF
ID

WB

IF
ID

IF
ID

I1: two execute cycles
I2
I3
I4: same function unit as I3
I5: data value produced by I4
I6: same function unit as I5

In parallel can
fetch/decode 2
and complete 2

IF
ID

IF
ID

IF
ID

Static Scheduling



In-Order Issue, Out-of-Order Completion

• With out-of-order completion, a later instruction may 
complete before a previous instruction
– Out-of-order completion is used in single-issue pipelined 

processors to improve the performance of program that has 
long-latency operations such as divide

• When using out-of-order completion, instruction issue is 
stalled when there is a resource conflict (e.g., for a 
functional unit) or when the instructions ready to issue 
need a result that has not yet been computed
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Example:  IOI-OOC
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I1: two execute cycles
I2
I3
I4: same function unit as I3
I5: data value produced by I4
I6: same function unit as I5
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Handling Output Dependencies
• One more situation that stalls instruction issue w/ IOI-OOC

I1 – writes to R3
I2 – writes to R3
I5 – reads R3

• If the I1 write occurs after the I2 write, then I5 reads an 
incorrect value for R3

• I2 has an output dependency on I1—write after write
• The issuing of I2 would have to be stalled if its result might 

later be overwritten by a previous instruction (i.e., I1) that 
takes longer to complete—the stall happens before 
instruction issue

• While IOI-OOC yields higher performance, it requires more 
dependency checking hardware (both write-after-read and 
write-after-write hazards)
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Example:  IOI-OOC
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I1: two execute cycles + WB to R3
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Out-of-Order Issue with Out-of-Order 
Completion (OOI-OOC)
• With in-order issue, CPU stops ID when decoded 

instruction has resource conflict or a data dependency on 
an issued but uncompleted instruction
– CPU is unable to look beyond conflicted instruction even though 

more downstream instructions might have no conflicts and thus be 
issuable

• Fetch & decode instructions beyond the conflicted one 
(“instruction window”: Tetris), store them in an 
instruction buffer (if room), and flag those instructions in 
buffer that do NOT have resource conflicts or data 
dependencies

• Flagged instructions are then issued from the buffer w/o 
regard to their program order à re-order buffer (ROB)

D
ynam

ic Scheduling



OOI-OOC Example
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Overview:  Dynamic Scheduling

• Definition:  Rearrange order of instructions to reduce stalls 
while maintaining data flow 

• Implications 
– Out-of-order execution 
– Out-of-order completion

• Advantages
– Compiler does NOT need to have knowledge of microarchitecture
– Handles cases where dependencies are unknown at compile time

• Disadvantages
– Substantial increase in hardware complexity
– Complicates exception-handling

Creates the possibility for 
WAR and WAW hazards

Tomasulo’s Algorithm



Recap: Dependencies

• Each of the three data dependencies …
– True data dependencies (read after write)
– Antidependencies (write after read)
– Output dependencies (write after write)

… manifests itself through the use of registers 
(or other storage locations)

• True dependencies represent the flow of data and 
information through a program

• Anti- and output dependencies arise because the limited 
number of registers mean that programmers reuse 
registers for different computations

storage 
conflicts



Recap: Pipeline Scheduling

• Statically Scheduled Pipeline
– Fetches an instruction and issues it unless there is a data dependence 

that cannot be hidden with forwarding.
– Implication:  In-order issue; in-order completion

• Dynamically Scheduled Pipeline
– Rearranges the order of instructions to reduce stalls while 

maintaining data flow
– Implication:  In-/out-of-order issue; out-of-order completion

• Observation
– Commonality:  Both must maintain data flow for correctness.
– Difference:  Other than static vs. dynamic …

• Static:  Minimize stalls by separating dependent instructions
• Dynamic:  Minimize stalls by re-arranging instructions based on dynamic 

presence of dependences



Example:  IOI-OOC
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Dynamic Scheduling with Tomasulo’s Algorithm

• Tracks when operands are available (minimize RAW hazards)

• Introduces register renaming in hardware
– Addresses WAW & WAR 

hazards

• Extends to handle 
speculation

– Technique used to reduce
effect of control dependences

• IF precedes ID and fetches into an IR or equivalent (e.g., a 
queue of pending instructions à re-order buffer). 
ID has two sub-stages: 

– Issue:  Decode instruction + check for structural hazards
– Read Operands:  Wait until no data hazards 

I1: two execute cycles + WB to R3
I2: WB to R3
I3
I4: same function unit as I3
I5: read R3 + data value produced by I4
I6: same function unit as I5

rename
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& when it 

completes execut’n



Another Example:
IOI-OOC Introduces WAR & WAW

• Can dynamically schedule with IOI-OOC
– OOC introduces possibility of WAR and WAW hazards, which 

are NOT issues in a statically scheduled pipeline.

DIV.D F0, F2, F4
ADD.D F6,F0,F8
SUB.D F8,F10,F14
MUL.D F6,F10,F8

• How to avoid the above?  Register renaming
– Eliminates WAR & WAW hazards by renaming all destination 

registers, including those with a pending read or write for an 
earlier instruction, so that the out-of-order write does not affect 
any instructions that depend on an earlier value of an operand.

Antidependence between ADD.D and SUB.D
• If pipeline tries SUB.D before ADD.D, 

antidependence violated & yields WAR hazard.

Output dependence between ADD.D and MUL.D
• If pipeline tries MUL.D before ADD.D, output 

dependence violated & yields WAW hazard.
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Register Renaming

• Example

DIV.D F0,F2,F4
ADD.D F6,F0,F8
S.D F6,0(R1)
SUB.D F8,F10,F14
MUL.D F6,F10,F8

antidependence

antidependence

Note: The above code snippet uses the MIPS ISA. The textbook uses the RISC V ISA. 

D
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output dependence

1. Identify all the data hazards 
for an IOC pipeline.

2. Identify all the data hazards 
for an OOC pipeline.

Two antidependences (WAR) and an output dependence (WAW)



Register Renaming

Example

DIV.D F0,F2,F4
ADD.D S,F0,F8
S.D S,0(R1)
SUB.D T,F10,F14
MUL.D F6,F10,T

• Now only RAW hazards remain, which can be strictly 
ordered

• Any subsequent uses of F8 must be replaced by the 
register T

Note: The above code snippet uses the MIPS ISA. The textbook uses the RISC V ISA. 
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DIV.D F0,F2,F4
ADD.D F6,F0,F8
S.D F6,0(R1)
SUB.D F8,F10,F14
MUL.D F6,F10,F8



Register Renaming

• Tomasulo’s Approach
– Tracks when operands are available
– Introduces register renaming in hardware 

via reservation stations (RS)
• Minimizes WAW and WAR hazards (by renaming destination regs)

• Register renaming is provided by reservation stations (RS)
– Contains:

• The instruction
• Buffered operand values (when available)
• Reservation station number of instruction providing the operand 

values
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Register Renaming

• Register renaming provided by reservation stations (RS)
– RS fetches and buffers an operand as soon as it becomes available, 

eliminating the need to get the operand from a register
– Pending instructions designate the RS to which they will send their 

output
• Result values broadcast on a result bus called common data bus (CDB)

– Only the last output updates the register file

• Observations
– As instructions are issued, the register specifiers are renamed with the 

reservation station
– May be more reservation stations than registers
– Load and store buffers

• Contain data and addresses, act like 
reservation stations



High-Level Architecture for Tomasulo’s Algorithm

• Register renaming via 
reservation stations (RS)

• Load and store buffers
– Contain data & addresses, 

act like reservation stations

• Advantages
– Distribution of hazard

detection logic
– Elimination of stalls for 

WAW and WAR hazards
by renaming all destination
registers No execution tables shown.
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Tomasulo’s Algorithm at High Level
• Three steps that an instruction goes through …

– Issue (or Dispatch), where register renaming occurs
• Get next instruction from FIFO queue
• If available RS, issue instruction to RS w/ operand values, if available. If 

operand values not available, stall instruction in RS and keep track of the 
functional units that will produce operand values.

• If no available RS, structural hazard à stall until RS or buffer free …
– Execute

• When operand available (via CDB), store it in any RS waiting for it
• When all operands ready (i.e., no RAW hazard), issue instruction
• Loads & store maintained in program order via effective address calc.
• No instruction allowed to initiate execution until all branches that 

precede it in program order have completed (to preserve exception behavior)

– Write result
• Write result on CDB into registers and RS (including store buffers)

– (Stores must wait until address and value are received)
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High-Level Architecture for Tomasulo’s Algorithm

Each RS has seven fields:
• Op

– Op to do on src operands
• Qj, Qk

– RS that produce corresponding src operand
– (Zero value means src operand in Vj or Vk or not needed)

• Vj, Vk
– Value of src operands
– (Only one V field or Q field valid for each operand)

• A
– Holds info for memory addr calc

• Busy
– Indicates RS and associated functional unit are busy



Example:  Tomasulo’s in Action

Note: The above code snippet uses the MIPS ISA. The textbook uses the RISC V ISA. 

D
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Assume the 
following execute 
latencies: 
• L.D 1 cycle
• ADD.D 2 cycles
• MUL.D 6 cycles
• DIV.D 12 cycles

What do the status 
tables look like 
when MUL.D is 
ready to write its 
result?

Let’s find out!



Tomasulo’s w/ Straightline Code

Note: The above code snippet uses the MIPS ISA. The textbook uses the RISC V ISA. 
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Assume the 
following execute 
latencies: 
• L.D 1 cycle
• ADD.D 2 cycles
• MUL.D 6 cycles
• DIV.D 12 cycles

What do the status 
tables look like 
when MUL.D is 
ready to write its 
result?



Tomasulo’s with Loop-Based Code

RISC-V Loop-Based Code
Loop: fld f0,0(x1)

fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x1 != x2

Assumption
• Predict branches taken. 

Implication: RS allow multiple executions of the loop to run simultaneously, 
an advantage gained WITHOUT changing the code. Loop is unrolled 
dynamically by hardware using the RS obtained by “register renaming.” 
(Ignore integer ALU operation for now as branch is predicted as taken.)
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Tomasulo’s with Loop-Based Code
Loop: fld f0,0(x1)

fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x1 != x2

Observations
• A load (fld) and a store (fsd) can be safely done out of order iff

they access different locations, but what if they access the same?
– Load is before store in program order & interchanging them à WAR hazard
– Store is before load in program order & interchanging them à RAW hazard
– Also, interchanging two stores à WAW hazard

How to Detect Hazards on Loads & Stores?
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Tomasulo’s with Loop-Based Code
Loop: fld f0,0(x1)

fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x1 != x2

How to Detect Hazards on Loads & Stores?
• Loads

– Compute the data memory address associated with any earlier memory 
operation à pragmatically check the “A” field of all active (store) buffers

– If load address matches address of any active entry in store buffer, load is not
sent to load buffer until conflicting store completes (i.e., respect RAW hazard)

• Stores
– Similar to loads except that CPU must check for conflicts on both the load 

buffers AND store buffers (since conflicting stores cannot be reordered with 
respect to either a load or a store, i.e., WAR or WAW).
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Tomasulo’s with Loop-Based Code
VLIW 
approach 
later
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Adoption of Tomasulo’s Algorithm
• Proposed in 1967! 😳
• Not widely adopted until … the 1990s!

– Intro of caches created unpredictable delays à need for 
dynamic scheduling

• Out-of-order execution (and completion) allows CPU to continue 
executing instructions while waiting the completion of a cache 
miss, thus hiding all or part of the cache-miss penalty.

– What kind of advanced cache optimization is this?

– CPUs became more aggressive about their issue capability while 
CPU designers concerned with the performance of difficult-to-
schedule code (e.g., non-numeric code à graphs) à need for 
automated register renaming, dynamic scheduling, and 
speculation (coming up next)

– Can achieve higher performance without the compiler needing 
to target code to a specific pipeline structure (i.e., architecture)

D
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Recap:  Dynamic Scheduling

• Dynamic scheduling implies
– Out-of-order execution
– Out-of-order completion

• Creates the possibility for WAR and WAW hazards

• Tomasulo’s Approach
– Tracks when operands are available
– Introduces register renaming in hardware

• Minimizes WAW and WAR hazards
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Hardware-Based Speculation

• Execute instructions along predicted execution paths 
but only commit the results if prediction was correct

• Instruction commit
– Allow an instruction to update the register file when instruction 

is no longer speculative

• Need an additional piece of hardware to prevent any 
irrevocable action until an instruction commits

– i.e., updating state or taking an execution

D
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Hardware-Based Speculation

• Dynamic Scheduling vs. (Hardware-Based) Speculation

• Dynamic Scheduling
– Fetch, decode, and issue instructions

• Speculation
– Fetch, decode, issue, and execute instructions

• Key Ideas Behind Hardware-Based Speculation
1. Dynamic branch prediction

• Choose which instructions to execute

2. Speculation
• Execute instructions before control dependences are resolved

3. Dynamic scheduling
• Deal with the scheduling of different combinations of basic blocks



Re-order Buffer (ROB)

• Re-order buffer
– Holds the result of instruction between completion and commit

• Four fields
– Instruction type:  branch/store/register
– Destination field:  register number
– Value field:  output value
– Ready field:  completed execution?

• Modify reservation stations
– Operand source is now reorder buffer instead of functional unit
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Tomasulo’s with Reorder Buffer
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Reorder Buffer

• Issue
– Allocate RS and ROB; read available operands

• Execute
– Begin execution when operand values are available

• Write result
– Write result and ROB tag on CDB

• Commit
– When ROB reaches head of ROB, update register
– When a mispredicted branch reaches head of ROB, discard all 

entries
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Re-order Buffer (ROB)

• Register values and memory values are not written until
an instruction commits

• On misprediction
– Speculated entries in reorder buffer (ROB) are cleared

• Exceptions
– Not recognized until it is ready to commit

H
ardw

are-based Speculation



Tomasulo’s with Reorder Buffer
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ROB w/ Previous Straightline Code
(no loop)

L.D F6,32(R2)
L.D F2,44(R3)
MUL.D F0,F2,F4
SUB.D F8,F2,F6
DIV.D F10,F0,F6
ADD.D F6,F8,F2

R2
R3

F6
F2
F0
F8
F10*
F6

R2
R3MUL

DIV
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ROB with Loop-Based Code

MIPS Loop-Based Code
Loop: L.D F0,0(R1)

MUL.D F4,F0,F2
S.D F4,0(R1)
ADDI R1,R1,#8
BNE R1,R2,Loop // branches if R1 != R2

RISC-V Loop-Based Code
Loop: fld f0,0(x1)

fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x1 != x2
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ROB with Loop-Based Code

RISC-V Loop-Based Code
Loop: fld f0,0(x1)

fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x1 != x2

Assumption
• Predict branches taken. 

Implication: RS allow multiple executions of the loop to run simultaneously, an 
advantage gained WITHOUT changing the code. Loop is unrolled dynamically by 
hardware using the RS obtained by “register renaming.” (Ignore integer ALU 
operation for now as branch is predicted as taken.)
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ROB with Loop-Based Code

Loop: fld f0,0(x1)
fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x1 != x2

Observations
• A load (fld) and a store (fsd) can be safely done out of order iff they 

access different locations, but what if they access the same?
– Load is before store in program order & interchanging them à WAR hazard
– Store is before load in program order & interchanging them à RAW hazard
– Also, interchanging two stores à WAW hazard

How to Detect Hazards on Loads & Stores?
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ROB with Loop-Based Code

Loop: fld f0,0(x1)
fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x1 != x2

How to Detect Hazards on Loads & Stores?
• Loads

– Compute the data memory address associated with any earlier memory operation à
pragmatically check the “A” field of all active (store) buffers

– If load address matches address of any active entry in store buffer, load is not sent 
to load buffer until conflicting store completes (i.e., respect RAW hazard)

• Stores
– Similar to loads except that CPU must check for conflicts on both the load buffers 

AND store buffers (since conflicting stores cannot be reordered with respect to 
either a load or a store, i.e., WAR or WAW).
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ROB with Loop-Based Code
D
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Adoption of Tomasulo’s

• Proposed in 1967! 😳
• Not widely adopted until … the 1990s!

– Intro of caches created unpredictable delays à need for 
dynamic scheduling

• Out-of-order execution (and completion) allows CPU to continue 
executing instructions while waiting the completion of a cache 
miss, thus hiding all or part of the cache-miss penalty.

– What kind of advanced cache optimization is this?

– CPUs became more aggressive about their issue capability while 
CPU designers concerned with the performance of difficult-to-
schedule code (e.g., non-numeric code à graphs) à need for 
automated register renaming, dynamic scheduling, and 
speculation (coming up next)

– Can achieve higher performance without the compiler needing 
to target code to a specific pipeline structure (i.e., architecture)
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Recall: 

Hardware-Based Speculation
• Execute instructions along predicted execution paths 

but only commit the results if prediction was correct

• Instruction commit
– Allow an instruction to update the register file when instruction 

is no longer speculative

• Need an additional piece of hardware to prevent any 
irrevocable action until an instruction commits

– i.e., updating state or taking an execution
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Recall: 

Hardware-Based Speculation
• Dynamic Scheduling vs. (Hardware-Based) Speculation

• Dynamic Scheduling
– Fetch, decode, and issue instructions

• Speculation
– Fetch, decode, issue, and execute instructions

• Key Ideas Behind Hardware-Based Speculation
1. Dynamic branch prediction

• Choose which instructions to execute

2. Speculation
• Execute instructions before control dependences are resolved

3. Dynamic scheduling
• Deal with the scheduling of different combinations of basic blocks



Dynamic, Multiple Issue, and Speculation

• Modern Microarchitectures
– Dynamic scheduling + multiple issue + speculation

• Approaches
– Assign reservation stations and update pipeline control table in 

half clock cycles
• Only supports 2 instructions/clock

– Design logic to handle any possible dependencies between the 
instructions

– Hybrid approaches

• Issue logic is the bottleneck in dynamically-scheduled 
superscalar processors

D
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• Limit the number of instructions of a given class that can 
be issued in a “bundle” (to simplify RS allocation)

– Example: one FP, one integer, one load, one store

• Examine all the dependencies between the instructions in 
the bundle

• If dependencies exist in bundle, encode them in 
reservation stations

• Need multiple completion/commit

Multiple Issue

D
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Recap
• What is instruction-level parallelism (ILP)?

– A measure of how many of the operations in a computer program 
can be performed simultaneously.

– Pipelining à universal technique in 1985
• Overlaps execution of instructions à exploits ILP

• How do processors extract ILP to get faster?
– More parallelism (or more work per pipeline stage): fewer 

clocks/instruction [more instructions/cycle]
• Get WIDER

– Deeper pipeline stages: fewer gates/clock
• Get DEEPER

– Transistors get faster (Moore’s Law): fewer ps/gate
• Get FASTER

• What do processors do to extract ILP?  

ILP



Get WIDER:  Multiple Issue

• To achieve CPI < 1, need to complete multiple 
instructions per clock

• Solutions
– Dynamically scheduled superscalar processors
– Statically scheduled superscalar processors
– VLIW (very long instruction word) processors

ILP



Get WIDER: Machine Parallelism

• Two approaches for machine parallelism, where the 
responsibility of resolving hazards is … 

– Hardware-based dynamic approaches
• Dynamic-issue superscalar
• Typically used in server and desktop processors
• Not used as extensively in PMP processors

– Software-based static approaches (i.e., compiler)
• Static “VLIW: Very Long Instruction Word”
• Not as successful outside of scientific applications



Multiple-Issue Processor Styles

• Dynamic multiple-issue processors (aka superscalar)
– Decisions on which instructions to execute simultaneously are 

being made dynamically (at run time by the hardware)
• Example:  IBM Power 2, Pentium Pro/2/3/4, Core, MIPS R10K, HP PA 

8500

• Static multiple-issue processors (aka VLIW)
– Decisions on which instructions to execute simultaneously are 

being made statically (at compile time by the compiler)
• Example: Intel Itanium and Itanium 2 for the IA-64 ISA—EPIC 

(Explicit Parallel Instruction Computer)



Multiple-Issue Processor Styles

D
ynam

ic Scheduling



Multiple-Issue Processor Styles

• Dynamic multiple-issue processors (aka superscalar)
– Decisions on which instructions to execute simultaneously are 

being made dynamically (at run time by the hardware)
• Example:  IBM Power 2, Pentium Pro/2/3/4, Core, MIPS R10K, HP PA 

8500

• Static multiple-issue processors (aka VLIW)
– Decisions on which instructions to execute simultaneously are 

being made statically (at compile time by the compiler)
• Example: Intel Itanium and Itanium 2 for the IA-64 ISA—EPIC 

(Explicit Parallel Instruction Computer)



VLIW Beginnings

• VLIW: Very Long Instruction Word

• Led to a startup (MultiFlow) whose computers 
worked, but which went out of business ... the ideas 
remain influential.



History of VLIW Processors

• Started with (horizontal) microprogramming
– Very-wide microinstructions used to directly generate control 

signals in single-issue processors (e.g., IBM 360 series)

• VLIW for multi-issue processors first appeared in the 
Multiflow and Cydrome (in the early 1980’s)

• Commercial VLIW processors from past decade
– Intel i860 RISC (dual mode: scalar and VLIW)
– Intel I-64 (EPIC: Itanium and Itanium 2)
– Transmeta Crusoe (the chip that powered Green Destiny)
– Lucent/Motorola StarCore, ADI TigerSHARC, Infineon 

(Siemens) Carmel



Overview:  VLIW Processors
• Package multiple operations into one instruction

• Example: VLIW processor
– One integer instruction (or branch)
– Two independent floating-point operations
– Two independent memory references

• Must be enough parallelism in code to fill the available 
slots

M
ultiple Issue and Static Scheduling



VLIW Processors 
(Static Multiple-Issue Machines)

• Static multiple-issue processors (aka VLIW) use the 
compiler to decide which instructions to issue and 
execute simultaneously

– Issue packet or “bundle”
• The set of instructions that are bundled together and issued in one 

clock cycle—think of it as one large instruction with multiple 
operations

• The mix of instructions in the packet (bundle) is usually 
restricted—a single “instruction”with several predefined fields

– e.g., VLIW: one integer (or branch), two FP, two memory

– Performance
• Must be enough parallelism in code to fill the available slots
• The compiler does static branch prediction and code scheduling to 

reduce (ctrl) or eliminate (data) hazards



VLIW Processors
• Advantages

– Simpler hardware (potentially less power hungry)
– Potentially more scalable

• Allow more instructions per bundle & add more FUs

• Disadvantages:
– Statically finding parallelism
– Code size
– No hazard detection hardware
– Binary code compatibility

M
ultiple Issue and Static Scheduling

RISC-V Code Snippet
Loop: fld f0,0(x1)

fadd.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,-8
bne x1,x2,Loop



VLIW in Illustration 

Characteristics
• Hardware does not need to re-analyze code to detect 

dependences 
• Hardware does not perform OoO execution 
• Each instruction controls multiple functional units 
• Each instruction is explicitly parallel 



Static Multiple-Issue Machines (VLIW)

• Profile of VLIWs
– Multiple functional units (like SS processors)
– Multi-ported register files (again like SS processors)
– Wide program bus

• Example of VLIW Processor
– One integer instruction (or branch)
– Two independent floating-point operations
– Two independent memory references

• Key 
– Must be enough parallelism in code to fill the available slots



An Example: VLIW MIPS

• Consider a 2-issue MIPS with a 2-instr bundle
• Instructions are always fetched, decoded, and issued in 

pairs
– What happens if one instr slot is not used?
– What does the register file have to support?
– What other hardware must we add?

ALU Op (R format)
or
Branch (I format)

Load or Store (I format)

64 bits



An Example: VLIW MIPS

• Consider a 2-issue MIPS with a 2-instr bundle
• Instructions are always fetched, decoded, and issued in 

pairs
– If one instr of the pair cannot be used, it is replaced with a “no 

op” (nop)
– Need 4 read ports and 2 write ports and a separate memory 

address adder

ALU Op (R format)
or
Branch (I format)

Load or Store (I format)

64 bits



A MIPS VLIW (2-issue) Datapath

Instruction
Memory

Add

PC

8

Write Data

Write Addr

Register
File

ALU

Add

Data
Memory

Sign
Extend

Add

Sign
Extend

No hazard hardware (so load-use 
needs explicit nop instruction(s) 
inserted by compiler)

Let’s say we 
wanted more 
functional units. 
What would need 
to change?



Code Scheduling Example

• Consider the following loop code:
lp: lw $t0,0($s1) # $t0=array element

addu $t0,$t0,$s2 # add scalar in $s2
sw $t0,0($s1) # store result
addi $s1,$s1,-4 # decrement pointer
bne $s1,$0,lp # branch if $s1 != 0

• Must “schedule” the instructions to avoid pipeline stalls
– Instructions in one bundle must be independent
– Must separate load-use instructions from their loads by one cycle
– Notice that the first two instructions have a load-use dependency, 

the next two and last two have data dependencies 
– Assume branches are perfectly predicted by the hardware

i = n;
do {
a[i] += const;

} while (--i != 0);



Scheduled Code (Not Unrolled)

• How many clock cycles?
• How many instructions?
• CPI? Best case?
• IPC? Best case?

ALU or branch Data transfer CC

lp: 1

2

3

4

5



Loop Unrolling

• Loop unrolling—multiple copies of the loop body are made 
and instructions from different iterations are scheduled 
together as a way to increase ILP

• Apply loop unrolling (4 times for our example) and then 
schedule the resulting code
– Eliminate unnecessary loop overhead instructions
– Schedule so as to avoid load-use hazards

• During unrolling, the compiler applies register renaming to 
eliminate all data dependencies that are not true 
dependencies



Unrolled Code Example
lp: lw $t0,0($s1) # $t0=array element

lw $t1,-4($s1)  # $t1=array element
lw $t2,-8($s1)  # $t2=array element
lw $t3,-12($s1) # $t3=array element
addu $t0,$t0,$s2  # add scalar in $s2
addu $t1,$t1,$s2  # add scalar in $s2
addu $t2,$t2,$s2  # add scalar in $s2
addu $t3,$t3,$s2  # add scalar in $s2
sw $t0,0($s1)   # store result
sw $t1,-4($s1)  # store result
sw $t2,-8($s1)  # store result
sw $t3,-12($s1) # store result
addi $s1,$s1,-16  # decrement pointer
bne $s1,$0,lp    # branch if $s1 != 0



Scheduled Code (Unrolled)
ALU or branch Data transfer CC

lp: 1
2
3
4
5
6
7
8



• Two instructions 
from a scientific 
benchmark 
(Linpack) for a 
MultiFlow CPU with 
14 operations per 
instruction.

What does N=14 assembly look like?



Defining Attributes of VLIW
• Compiler

1. MultiOp: instruction containing 
multiple independent operations

2. Specified number of resources of 
specified types

3. Exposed, architectural latencies

Add Add Mpy Mem Mem

Register File

add nop nop load store

VLIW instruction =
5 independent 
operations

Icache



Compiler Support for VLIW Processors

1. The compiler packs groups of independent instructions 
into the bundle
– Because branch prediction is not perfect, done by code re-

ordering (trace scheduling)

2. The compiler uses loop unrolling to expose more ILP 
3. The compiler uses register renaming to solve name 

dependencies and ensures no-load use hazards occur



Compiler Support for VLIW Processors

• While superscalars use dynamic prediction, VLIWs 
primarily depend on the compiler for extracting ILP

– Loop unrolling reduces the number of conditional branches
– Predication eliminates if-the-else branch structures by replacing 

them with predicated instructions
• We’ll cover this in a future lecture as well

• The compiler predicts memory bank references to help 
minimize memory bank conflicts



VLIW Advantages

• Advantages
– Simpler hardware (potentially less power hungry)
– Potentially more scalable

• Allow more instructions per VLIW bundle and add more FUs



VLIW Disadvantages

• Programmer/compiler complexity and longer 
compilation times
– Deep pipelines and long latencies can be confusing (making 

peak performance elusive)

• Lock-step operation, i.e., on hazard all future issues 
stall until hazard is resolved (hence need for 
predication)

• Object (binary) code incompatibility
• Needs lots of program memory bandwidth
• Code bloat

– “No ops” are a waste of program memory space 
– Loop unrolling to expose more ILP uses more program 

memory space



Review:  
Multiple-Issue Processor Styles

• Dynamic multiple-issue processors (aka superscalar)
– Decisions on which instructions to execute simultaneously (in 

the range of 2 to 8 in 2005) are being made dynamically (at run 
time by the hardware)

– E.g., IBM Power 2, Pentium 4, MIPS R10K, HP PA 8500 IBM

• Static multiple-issue processors (aka VLIW)
– Decisions on which instructions to execute simultaneously are 

being made statically (at compile time by the compiler)
– E.g., Intel Itanium and Itanium 2 for the IA-64 ISA – EPIC 

(Explicit Parallel Instruction Computer)
• 128-bit “bundles” containing 3 instructions each 41 bits + 5 bit

template field (specifies which FU each instr needs)
• Five functional units (IntALU, MMedia, DMem, FPALU, Branch)
• Extensive support for speculation and predication



CISC vs RISC vs SS vs VLIW
CISC RISC Superscalar VLIW

Instr size variable size fixed size fixed size fixed size 
(but large)

Instr format variable 
format fixed format fixed format fixed format

Registers few, some 
special many GP GP and 

rename
many, many 

GP

Memory 
reference

embedded in 
many instrs load/store load/store load/store

Key Issues decode 
complexity

data 
forwarding, 

hazards

hardware 
dependency 
resolution

(compiler) 
code 

scheduling

Instruction 
flow

IF ID EX M WBIF ID EX M WB IF ID EX M WB
EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB
IF ID EX M WB
IF ID EX M WB

IF ID EX M WB
EX M WB



Multiple Issue


