# -*- coding: utf-8 -*- # Copyright (c) 2015 Jason Power # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import the m5 (gem5) library created when gem5 is built import m5 # import all of the SimObjects from m5.objects import * # Add the common scripts to our path m5.util.addToPath('../../') # import the caches which we made from caches import * import argparse # import the SimpleOpts module from common import SimpleOpts # create the system we are going to simulate from common import Options from common import ObjectList system = System() # Set the clock fequency of the system (and all of its children) system.clk_domain = SrcClockDomain() system.clk_domain.clock = '1GHz' system.clk_domain.voltage_domain = VoltageDomain() # Set up the system system.mem_mode = 'timing' # Use timing accesses #system.mem_mode = 'atomic' # Use timing accesses system.mem_ranges = [AddrRange('8192MB')] # Create an address range # Create a simple CPU system.cpu = TimingSimpleCPU() # system.cpu = DerivO3CPU() #system.cpu = MinorCPU() #system.cpu = AtomicSimpleCPU() #system.cpu = O3CPU() parser = argparse.ArgumentParser(description='CPU with 2-Level cache and branch predictor') parser.add_argument("--bp-type", default=None, choices=ObjectList.bp_list.get_names(), help=""" type of branch predictor to run with (if not set, use the default branch predictor of the selected CPU)""") args = parser.parse_args() if args.bp_type: bpClass = ObjectList.bp_list.get(args.bp_type) system.cpu.branchPred = bpClass() #parser.add_argument("binary", default="", nargs="?", type=str, # help="Path to the binary to execute.") #parser.add_argument("--l1i_size", # help=f"L1 instruction cache size. Default: 16kB.") #parser.add_argument("--l1d_size", # help="L1 data cache size. Default: Default: 64kB.") #parser.add_argument("--l2_size", # help="L2 cache size. Default: 256kB.") options = parser.parse_args() # Create an L1 instruction and data cache system.cpu.icache = L1ICache() system.cpu.dcache = L1DCache() # Connect the instruction and data caches to the CPU system.cpu.icache.connectCPU(system.cpu) system.cpu.dcache.connectCPU(system.cpu) # Create a memory bus, a coherent crossbar, in this case system.l2bus = L2XBar() # Hook the CPU ports up to the l2bus system.cpu.icache.connectBus(system.l2bus) system.cpu.dcache.connectBus(system.l2bus) # Create an L2 cache and connect it to the l2bus system.l2cache = L2Cache() system.l2cache.connectCPUSideBus(system.l2bus) # Create a memory bus system.membus = SystemXBar() # Connect the L2 cache to the membus system.l2cache.connectMemSideBus(system.membus) # create the interrupt controller for the CPU system.cpu.createInterruptController() # For x86 only, make sure the interrupts are connected to the memory # Note: these are directly connected to the memory bus and are not cached if m5.defines.buildEnv['TARGET_ISA'] == "x86": system.cpu.interrupts[0].pio = system.membus.mem_side_ports system.cpu.interrupts[0].int_requestor = system.membus.cpu_side_ports system.cpu.interrupts[0].int_responder = system.membus.mem_side_ports # Connect the system up to the membus system.system_port = system.membus.cpu_side_ports # Create a DDR3 memory controller system.mem_ctrl = MemCtrl() system.mem_ctrl.dram = DDR3_1600_8x8() system.mem_ctrl.dram.range = system.mem_ranges[0] system.mem_ctrl.port = system.membus.mem_side_ports # get ISA for the binary to run. isa = str(m5.defines.buildEnv['TARGET_ISA']).lower() # Default to running 'hello', use the compiled ISA to find the binary # grab the specific path to the binary thispath = os.path.dirname(os.path.realpath(__file__)) print (thispath) binary = os.path.join(thispath, '../../tests/test-progs/matmul_ijk_128.out') print (binary) system.workload = SEWorkload.init_compatible(binary) # Create a process for a simple "Hello World" application process = Process() # Set the command # cmd is a list which begins with the executable (like argv) process.cmd = [binary] # Set the cpu to use the process as its workload and create thread contexts system.cpu.workload = process system.cpu.createThreads() # set up the root SimObject and start the simulation root = Root(full_system = False, system = system) # instantiate all of the objects we've created above m5.instantiate() print("Beginning simulation!") exit_event = m5.simulate() print('Exiting @ tick %i because %s' % (m5.curTick(), exit_event.getCause()))