Power ISA™
Version 2.07 B

January 30, 2018

|IBM.

© Copyright International Business Machines Corporation 1994-2018. All rights reserved.
Printed in the United States of America January 2018

By downloading the POWER® Instruction set Architecture (“ISA”) Specification, you agree to be bound by the terms and
conditions of this agreement.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other compa-
nies. A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are
NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could
result in death, bodily injury, or catastrophic property damage. The information contained in this document does not affect
or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license
or indemnity under the intellectual property rights of IBM or third parties. All information contained in this document was
obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments
may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied
upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

Note: This document contains information on products in the design, sampling and/or initial production phases of
development. This information is subject to change without notice. Verify with your IBM field applications engineer that you
have the latest version of this document before finalizing a design.

You may use this documentation solely for developing technology products compatible with Power Architecture® in support
of growing the POWER ecosystem. You may not modify this documentation. You may distribute the documentation to
suppliers and other contractors hired by you solely to produce your technology products compatible with Power
Architecture® technology and to your customers (either directly or indirectly through your resellers) in conjunction with their
use and instruction of your technology products compatible with Power Architecture® technology. This agreement does
not include rights to create a CPU design to run the POWER ISA unless such rights have been granted by IBM under a
separate agreement. The POWER ISA specification is protected by copyright and the practice or implementation of the
information herein may be protected by one or more patents or pending patent applications. No other license, express or
implied, by estoppel or otherwise to any intellectual property rights is granted by this document.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. IBM makes no
representations or warranties, either express or implied, including but not limited to, warranties of merchantability, fitness
for a particular purpose, or non-infringement, or that any practice or implementation of the IBM documentation will not
infringe any third party patents, copyrights, trade secrets, or other rights. In no event will IBM be liable for damages arising
directly or indirectly from any use of the information contained in this document.

IBM Systems and Technology Group
2070 Route 52, Bldg. 330
Hopewell Junction, NY 12533-6351

The IBM home page can be found at ibm.com®.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/

Version 2.07 B

The following paragraph does not apply to the United
Kingdom or any country or state where such provisions
are inconsistent with local law.

The specifications in this manual are subject to change
without notice. This manual is provided “AS IS”. Inter-
national Business Machines Corp. makes no warranty
of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability
and fitness for a particular purpose.

International Business Machines Corp. does not war-
rant that the contents of this publication or the accom-
panying source code examples, whether individually or
as one or more groups, will meet your requirements or
that the publication or the accompanying source code
examples are error-free.

This publication could include technical inaccuracies or
typographical errors. Changes are periodically made to
the information herein; these changes will be incorpo-
rated in new editions of the publication.

Address comments to IBM Corporation, 11400 Burnett
Road, Austin, Texas 78758-3493. IBM may use or dis-
tribute whatever information you supply in any way it
believes appropriate without incurring any obligation to
you.

The following terms are trademarks of the International
Business Machines Corporation in the United States
and/or other countries:

IBM®

Power ISA
PowerPC®

Power Architecture
PowerPC Architecture
Power Family
RISC/System 6000®
POWER®

POWER2

POWER4

POWER4+

POWERS5

POWER5+
POWER6®
POWER7®
System/370

System z

The POWER ARCHITECTURE and POWER.ORG.
word marks and the Power and Power.org logos and
related marks are trademarks and service marks
licensed by Power.org.

AltiVec is a trademark of Freescale Semiconductor, Inc.
used under license.

Notice to U.S. Government Users—Documentation
Related to Restricted Rights—Use, duplication or dis-
closure is subject to restrictions set fourth in GSA ADP
Schedule Contract with IBM Corporation.

ii Power ISA™

Version 2.07 B

Preface

The roots of the Power ISA (Instruction Set Architec-
ture) extend back over a quarter of a century, to IBM
Research. The POWER (Performance Optimization
With Enhanced RISC) Architecture was introduced with
the RISC System/6000 product family in early 1990. In
1991, Apple, IBM, and Motorola began the collabora-
tion to evolve to the PowerPC Architecture, expanding
the architecture’s applicability. In 1997, Motorola and
IBM began another collaboration, focused on optimiz-
ing PowerPC for embedded systems, which produced
Book E.

In 2006, Freescale and IBM collaborated on the cre-
ation of the Power ISA Version 2.03, which represented
the reunification of the architecture by combining
Book E content with the more general purpose Pow-
erPC Version 2.02. A significant benefit of the reunifica-
tion is the establishment of a single, compatible, 64-bit
programming model. The combining also extends
explicit architectural endorsement and control to Auxil-
iary Processing Units (APUs), units of function that
were originally developed as implementation- or prod-
uct family-specific extensions in the context of the Book
E allocated opcode space. With the resulting architec-
tural superset comes a framework that clearly estab-
lishes requirements and identifies options.

To a very large extent, application program compatibil-
ity has been maintained throughout the history of the
architecture, with the main exception being application
exploitation of APUs. The framework identifies the
base, pervasive, part of the architecture, and differenti-
ates it from “categories” of optional function (see
Section 1.3.5 of Book |). Because of the substantial dif-
ferences in the supervisor (privileged) architecture that
developed as Book E was optimized for embedded sys-
tems, the supervisor architectures for embedded and
general purpose implementations are represented as
mutually exclusive categories. Future versions of the
architecture will seek to converge on a common solu-
tion where possible.

This document defines the Power ISA Version 2.07 B. It
is comprised of five books and a set of appendices.

Book |, Power ISA User Instruction Set Architecture,
covers the base instruction set and related facilities
available to the application programmer. It includes five
chapters derived from APU function, including the vec-
tor extension also known as Altivec.

Book I, Power ISA Virtual Environment Architecture,
defines the storage model and related instructions and
facilities available to the application programmer.

Book IlI-S, Power ISA Operating Environment Architec-
ture, defines the supervisor instructions and related
facilities used for general purpose implementations.

Book IlI-E, Power ISA Operating Environment Architec-
ture, defines the supervisor instructions and related
facilities used for embedded implementations. It was
derived from Book E and extended to include APU
function.

Book VLE, Power ISAVariable Length Encoded Instruc-
tions Architecture, defines alternative instruction
encodings and definitions intended to increase instruc-
tion density for very low end implementations. It was
derived from an APU description developed by Frees-
cale Semiconductor.

As used in this document, the term “Power ISA” refers
to the instructions and facilities described in Books |, Il,
lI-S, lll-E, and VLE.

Usage of the phrase “Book IlI” refers to both Book I1I-S
and Book IlI-E. An exception to this rule is when, at the
beginning of a Section or Book, it is specified that
usage of the phrase “Book III” implies only either “Book
I1I-S” or “Book HI-E”.

Change bars have been included to indicate changes
from the Power ISA Version 2.06B.

Preface iii

Version 2.07 B

Summary of Changes in Power ISA Version 2.07 B

This document is Revision B of Version 2.07 of the
Power ISA. It is intended to supersede and replace ver-
sion 2.07. Any product descriptions that reference a
version of the architecture are understood to reference
the latest version. This version was created by making
miscellaneous corrections and by applying the following
requests for change (RFCs) to Power ISA Version 2.07.

Split Vector.Crypto Category: Splits Category Vec-
tor.Crypto into separate Vector. AES and Vector.SHA2
categories.

Atomicity, Little Endian, and Alignment Improvements
Improves the readability of the descriptions of atomicity,
Little Endian mode, and alignment requirements.

Instruction Fusion: Specifies instruction sequences that
are likely to improve the performance of certain func-
tions.

mfocrf Restrictions: Specifies the handling of unused
fields in the destination register for the mfocrf instruc-
tion.

Specify DSISR as Undefined for Alignment Interrupt:
Removes optional specifications for setting the DSISR
for the Alignment interrupt that have never been imple-
mented.

Clarify Event-Based Branch Processing: Makes edito-
rial clarifications to the processing of event-based
branches and event-based exceptions.

Substantive Transactional Memory Changes: Makes a
change to the granularity at which conflicts between
storage accessses is detected as well as other
changes related to theTransactional Memory Facility.

This document also incorporates the following requests
for change (RFCs) to PowerlSA Version 2.06B that
were applied in Version 2.07 of the PowerlSA.

Performance Monitor Facility: Adds various perfor-
mance monitoring facilities and a branch history buffer
to Server architecture.

VSX Scalar Single-Precision: Adds support for scalar
single-precision to VSX.

Transactional Memory: Adds support for a transactional
memory storage model which allows an application to
perform a sequence of accesses that appear to occur
atomically with respect to other threads.

Processor Control Enhancements: Enables privileged
and hypervisor software to send messages to other
threads.

Instruction Cache Block Touch: The icbt instruction has
been moved from the Embedded category to the Base
category.

Extended Problem State Priority: Provides a mecha-
nism that enables application programs to temporarily
boost their priority.

Virtual Page Class Key Extensions for Instructions:
Adds a new SPR similar to the AMR that controls
whether instructions can be fetched from virtual
addresses.

Reserved Bit Behavior Restriction and Processor Com-
patibility Register: Updates the PCR to accommodate
new problem state features for PowerlSA Version 2.07
B. In addition, requirements for reserved bit behaviors
have been tightened in order to improve software com-
patibility across implementations.

Chip Information Regqister: Adds a privileged SPR
which enables software to determine information about
the chip on which the processor is implemented.

Crypto Operations: Adds instructions supporting AES,
GCM, and SHA encryption and decryption, as well as a
variety of CRCs and other finite field arithmetic opera-
tions.

VMX 64-Bit Integer Operations: Adds instructions sup-
porting 2-way SIMD 64-bit integer operations.

Vector Miscellaneous Instructions: Adds SIMD count
leading zeros instructions and a bit gather instruction.

Cache Hint Indicating Block Not Needed: Enables soft-
ware to provide a cache hint indicating that it will no
longer access a block.

Remove LPES, from the LPCR: Eliminates the capabil-
ity to request the processor to behave as previous ver-
sions of the architecture required when LPES, = 0.

Direct Move Instructions: Adds new VSX instructions
which remove the restriction of cross-register file
moves.

Move dnh from Enhanced Debug to Embedded Cate-
gory: The dnh instruction has been moved to the
Embedded category.

Real Mode Storage Control for Instruction Fetching and
Loosely-Related Caching Inhibited Load/Store
Changes: Defines an alternative to the existing instruc-
tion fetch RMSC approach whereby a first access to a
region of storage will be performed as guarded, but
subsequent accesses will be performed as
non-guarded based on the success of the first.

Elemental Memory Barriers: Extends the definition of
the existing sync instruction by adding several memory
ordering functions.

Event-Based Branch Facility: A problem state accessi-
ble event-based branch mechanism analogous to the
interrupt mechanism is defined.

iv Power ISA™

Version 2.07 B

Stream Prefetch Changes: Allows DSCR access in
problem state and adds additional stream prefetch
functionality.

Add lgarx/stgcx. Instructions: Adds support for quad-
word atomic storage operations.

Allow lg/stg in Problem State: Allows problem state
software to use the Iq and stq instructions.

Allow lg/stq in Little-Endian Mode: Removes the restric-
tion that the Iq and stq instructions can only operate in
Big-Endian mode.

Add makeitso Instruction: Adds the miso extended
mnemonic which allows producers in producer-con-
sumer applications to provide a hint to push store data
out.

Branch Conditional to Target Address Register: Defines
a new instruction which branches conditionally to an
address contained in a new SPR.

Remove DABR[X], add DAWRI[X] and IABR SPRs:
Removes and replaces existing DABR/DABRX SPRs
with enhanced watchpoint functionality. Additionally
adds instruction address breakpoint capability to the
ISA.

Facility Availability Registers and Interrupts: A privi-
leged register and a hypervisor register that enables
various facilities are defined.

Reserved SPRs: Defines a set of reserved SPRs
treated as no-ops in the current architecture so that
exploitation of new function in future designs can pro-
ceed more quickly and pervasively.

Instruction Counter and Virtual Time Base: Two regis-
ters, one that counts instructions completed by a
thread, and another that counts at the same rate as the
Time Base are added.

Architecture Changes to Support Program Portability:
Eliminates software exposure to errors caused by vari-
ations in behavior due to implementation-dependent
bits in CTRL and PPR.

Miscellaneous Changes: Various minor editorial correc-
tions are made.

Interrupts and Relocation, MMIO Emulation: NewLPCR
bits enable most interrupts to be taken with relocation
on, and virtual page class key faults to cause Hypervi-
sor Data Storage interrupts.

Guest Timer Interrupts and Facilities: Adds guest timer

facilities to enable performance measurements for
guest operating systems.

VSX Unaligned Vector Storage Accesses: Change VSX
vector storage access instructions to support to
byte-aligned addresses. Simplify Table 2, “Performance
Considerations and Instruction Restart,” on page 753 in
Book II.

VMX Miscellaneous Operations Il: Adds new instruc-
tions velzd, vpopcntb, vpopcnth, vpopcniw,
vpopcntd, veqv, vnand, and vorc..

BFP/VSX Miscellaneous Operations: Introduces new
VSX instructions to address IEEE-754-2008 compli-
ance when performing simple assignments between
single-precision scalar and vector elements.

VMX 32-bit Multiply Operations: Introduces 4-way
SIMD 32-bit integer multiply instructions.

VMX Decimal Integer Operations: Introduces new
packed decimal add and subtract instructions.

Remove Data Value Compare: Since the data value
compare function can be easily emulated within a data
address compare handler, the data value compare reg-
isters are removed from Book IlI-E.

VMX 128-bit Integer Operations: Introduces new quad-
word integer add and subtract instructions.

Cache Lock Query Instructions: Adds instructions to
determine whether a cache block has been success-
fully locked with a preceding cache locking instruction.

Embedded Guest Perforamnce Monitor Interrupt: Intro-
duces a new Performance Monitor Interrupt that
enables a Performance Monitor interrupt to be taken in
guest state.

Preface \'

Version 2.07 B

Vi Power ISA™

Version 2.07 B

Table of Contents

Preface......................... iii
Summary of Changes in Power ISA Ver-
sion2.07B L. iv
TableofContents vii
Figures................ouuns. XXV
Book I:
Power ISA User Instruction Set
Architecture.................... 1
Chapter 1. Introduction.......... 3
1.1 Overview...................... 3
1.2 Instruction Mnemonics and Operands3
1.3 Document Conventions 3
1.3.1 Definitions 3
1.3.2 Notation..................... 4
1.3.3 Reserved Fields, Reserved Values,
and Reserved SPRs 5
1.3.4 Description of Instruction Operation6
1.3.5 Categories................... 8
1.3.5.1 Phased-In/Phased-Out........ 9
1.3.5.2 Corequisite Category 10
1.3.5.3 Category Notation. 10
1.3.6 Environments................ 10
1.4 Processor Overview 11
1.5 Computationmodes 13
1.5.1 Modes [Category: Server] 13
1.5.2 Modes [Category: Embedded]. .. 13
1.6 Instruction Formats. 13
161 I-kFORM 14
162 B-FORM 14
163 SC-FORM 14
164 D-FORM 14
165 DS-FORM 14
166 DQ-FORM.................. 14
167 X-FORM 15
168 XL-FORM 15
169 XFX-FORM 15
1.6.10 XFL-FORM 16

1.6.11 XX1-FORM................. 16
1.6.12 XX2-FORM................. 16
1.6.13 XX3-FORM................. 16
1.6.14 XX4-FORM................. 16
1.6.15 XS-FORM.................. 16
1.6.16 XO-FORM 16
1.6.17 A-FORM................... 16
1.6.18 M-FORM 16
1.6.19 MD-FORM 16
1.6.20 MDS-FORM................ 16
1621 VA-FORM.................. 16
1622 VC-FORM 16
1623 VX-FORM.................. 17
1624 EVX-FORM 17
1.6.25 EVS-FORM 17
1.6.26 Z22-FORM................. 17
1.6.27 Z23-FORM................. 17
1.6.28 Instruction Fields 17
1.7 Classes of Instructions 21
1.7.1 Defined Instruction Class.. 21
1.7.2 lllegal Instruction Class 21
1.7.3 Reserved Instruction Class 21
1.8 Forms of Defined Instructions.. 22
1.8.1 Preferred Instruction Forms 22
1.8.2 Invalid Instruction Forms 22
1.8.3 Reserved-no-op Instructions [Cate-
gory: Phased-In] 22
1.9 Exceptions.................... 22
1.10 Storage Addressing. 23
1.10.1 Storage Operands 23
1.10.2 Instruction Fetches........... 25
1.10.3 Effective Address Calculation. . . 26
Chapter 2. Branch Facility 29
2.1 Branch Facility Overview. 29
2.2 Instruction Execution Order. 29
2.3 Branch Facility Registers. 30
2.3.1 Condition Register 30
232 LinkRegister 32
2.3.3 CountRegister............... 32
2.3.4 Target Address Register. 32
2.4 Branch History Rolling Buffer [Cate-
gory:Server] 32
2.4.1 Branch History Rolling Buffer Entry
Format.......................... 33
2.5 BranchlInstructions............. 34

Table of Contents Vii

Version 2.07 B

2.6 Condition Register Instructions41
2.6.1 Condition Register Logical Instruc-
tions 41

2.6.2 Condition Register Field Instruction .
42

2.7 System Call Instruction.......... 43
2.8 Branch History Rolling Buffer Instruc-
tions 44

Chapter 3. Fixed-Point Facility ... 45

3.1 Fixed-Point Facility Overview. 45
3.2 Fixed-Point Facility Registers. 45
3.2.1 General Purpose Registers. 45
3.2.2 Fixed-Point Exception

Register 45
3.2.3 VR SaveRegister............. 46
3.2.4 Software Use SPRs [Category:

Embedded].............. 46

3.2.5 Device Control Registers
[Category: Embedded.Device Control]. .46
3.3 Fixed-Point Facility Instructions47
3.3.1 Fixed-Point Storage Access Instruc-
tions 47
3.3.1.1 Storage Access Exceptions47
3.3.2 Fixed-Point Load Instructions47
3.3.2.1 64-bit Fixed-Point Load Instruc-
tions [Category: 64-Bit]. 52
3.3.3 Fixed-Point Store Instructions.. .. .54
3.3.3.1 64-bit Fixed-Point Store Instruc-
tions [Category: 64-Bit]. 57
3.3.4 Fixed Point Load and Store Quad-
word Instructions

[Category: Load/Store Quadword] 58
3.3.5 Fixed-Point Load and Store with Byte
Reversal Instructions 60

3.3.5.1 64-Bit Load and Store with Byte
Reversal Instructions [Category: 64-bit] .61
3.3.6 Fixed-Point Load and Store Multiple
Instructions. 62
3.3.7 Fixed-Point Move Assist Instructions
[Category: Move Assist.Phased Out] . . .63
3.3.8 Other Fixed-Point Instructions. . . .66
3.3.9 Fixed-Point Arithmetic Instructions 67
3.3.9.1 64-bit Fixed-Point Arithmetic
Instructions [Category: 64-Bit] 76
3.3.10 Fixed-Point Compare Instructions. .
79
3.3.11 Fixed-Point Trap Instructions. . . .81
3.3.11.1 64-bit Fixed-Point Trap Instruc-
tions [Category: 64-Bit]. 82
3.3.12 Fixed-Point Select............ 82
3.3.13 Fixed-Point Logical Instructions .83
3.3.13.1 64-bit Fixed-Point Logical Instruc-

tions [Category: 64-Bit]. 90
3.3.14 Fixed-Point Rotate and Shift
Instructions. 92

3.3.14.1 Fixed-Point Rotate Instructions 92
3.3.14.1.1 64-bit Fixed-Point Rotate
Instructions [Category: 64-Bit]. 95
3.3.14.2 Fixed-Point Shift Instructions . 98
3.3.14.2.1 64-bit Fixed-Point Shift Instruc-
tions [Category: 64-Bit] 100
3.3.15 Binary Coded Decimal (BCD)
Assist Instructions [Category: Embed-

ded.Phased-in, Server]............ 102
3.3.16 Move To/From Vector-Scalar Regis-
ter Instructions 104
3.3.17 Move To/From System Register
Instructions 107
3.3.17.1 Move To/From System Registers
[Category: Embedded] 112

Chapter 4. Floating-Point Facility
[Category: Floating-Point] 113

4.1 Floating-Point Facility Overview .. 113
4.2 Floating-Point Facility Registers .. 114

4.2.1 Floating-Point Registers 114
4.2.2 Floating-Point Status and Control

Register. L 114
4.3 Floating-PointData............ 117
4.3.1 DataFormat................ 117
4.3.2 Value Representation 117
433 SignofResult 119
4.3.4 Normalization and

Denormalization 119

4.3.5 Data Handling and Precision. .. 119
4.3.5.1 Single-Precision Operands. .. 119
4.3.5.2 Integer-Valued Operands 120

436 Rounding.................. 121
4.4 Floating-Point Exceptions. 122
4.41 Invalid Operation Exception. ... 124
4411 Definition................. 124
4412 Action................... 124
4.4.2 Zero Divide Exception........ 124
4421 Defintion................. 124
4422 Action................... 125
4.4.3 Overflow Exception 125
4.43.1 Definition................. 125
4432 Action................... 125
4.4.4 Underflow Exception 126
4441 Definition................. 126
4442 Action................... 126
4.45 Inexact Exception 126
4451 Definition................. 126
4452 Action................... 126

4.5 Floating-Point Execution Models . 127
4.5.1 Execution Model for IEEE Opera-

tions 127
4.5.2 Execution Model for
Multiply-Add Type Instructions 129

4.6 Floating-Point Facility Instructions 130

viii

Power ISA™

Version 2.07 B

4.6.1 Floating-Point Storage Access
Instructions 131
4.6.1.1 Storage Access Exceptions .. 131
4.6.2 Floating-Point Load Instructions 131
4.6.3 Floating-Point Store Instructions 135
4.6.4 Floating-Point Load and Store Dou-
ble Pair Instructions [Category: Float-
ing-Point.Phased-Out]. 139
4.6.5 Floating-Point Move Instructions 141
4.6.6 Floating-Point Arithmetic Instructions
143
4.6.6.1 Floating-Point Elementary Arith-
metic Instructions 143
4.6.6.2 Floating-Point Multiply-Add Instruc-
tions ... 148
4.6.7 Floating-Point Rounding and Conver-
sion Instructions 150
4.6.7.1 Floating-Point Rounding Instruction
150
4.6.7.2 Floating-Point Convert To/From

Integer Instructions 150
4.6.7.3 Floating Round to Integer Instruc-
tions 156

4.6.8 Floating-Point Compare Instructions
158

4.6.9 Floating-Point Select Instruction 159

4.6.10 Floating-Point Status and Control
Register Instructions 160

Chapter 5. Decimal Floating-Point

[Category: Decimal Floating-Point]. ..

........................... 163
5.1 Decimal Floating-Point (DFP) Facility
Overview....................... 163
5.2 DFP Register Handling. 164
5.2.1 DFP Usage of Floating-Point Regis-
ters ... 164
5.3 DFP Support for Non-DFP Data Types
............................... 166
5.4 DFP Number Representation. ... 167
5.41 DFP Data Format............ 167

5.4.1.1 Fields Within the Data Format 167
5.4.1.2 Summary of DFP Data Formats. .
168

5.4.1.3 Preferred DPD Encoding 169
5.4.2 Classesof DFPData......... 169
5.5 DFP Execution Model.......... 170
551 Rounding.................. 170
5.5.2 Rounding Mode Specification .. 171
5.5.3 Formation of Final Result. 172
5.5.3.1 Use of Ideal Exponent 172
5.5.4 Arithmetic Operations 172
5.5.4.1 Sign of Arithmetic Result 172
5.5.5 Compare Operations 173
5.5.6 TestOperations............. 173

5.5.7 Quantum Adjustment Operations 173

5.5.8 Conversion Operations. 173
5.5.8.1 Data-Format Conversion. 173
5.5.8.2 Data-Type Conversion. 174
5.5.9 Format Operations........... 174
5.5.10 DFP Exceptions............ 174
5.5.10.1 Invalid Operation Exception . 176
5.5.10.2 Zero Divide Exception. 177
5.5.10.83 Overflow Exception........ 177
5.5.10.4 Underflow Exception....... 178
5.5.10.5 Inexact Exception 179
5.5.11 Summary of Normal Rounding And
Range Actions. 180
5.6 DFP Instruction Descriptions. 182
5.6.1 DFP Arithmetic Instructions 183
5.6.2 DFP Compare Instructions. 187
5.6.3 DFP Test Instructions. 190
5.6.4 DFP Quantum Adjustment Instruc-
tions. 193

5.6.5 DFP Conversion Instructions . . . 202
5.6.5.1 DFP Data-Format Conversion

Instructions 202
5.6.5.2 DFP Data-Type Conversion

Instructions 205
5.6.6 DFP Format Instructions 207
5.6.7 DFP Instruction Summary 211

Chapter 6. Vector Facility [Category:

Vector].ciiiiiii i a s 213
6.1 Vector Facility Overview 213
6.2 Chapter Conventions. 213

6.2.1 Description of Instruction Operation.
213

6.3 Vector Facility Registers 220

6.3.1 VectorRegisters............. 220

6.3.2 Vector Status and Control Register .
220

6.3.3 VR Save Register. 221

6.4 Vector Storage Access Operations 221

6.4.1 Accessing Unaligned Storage Oper-

ands. 223
6.5 Vector Integer Operations.. 224
6.5.1 Integer Saturation............ 224
6.6 Vector Floating-Point Operations. . 226
6.6.1 Floating-Point Overview. 226
6.6.2 Floating-Point Exceptions. 226
6.6.2.1 NaN Operand Exception. 226
6.6.2.2 Invalid Operation Exception .. 227
6.6.2.3 Zero Divide Exception. 227
6.6.2.4 Log of Zero Exception....... 227
6.6.2.5 Overflow Exception......... 227
6.6.2.6 Underflow Exception........ 227

6.7 Vector Storage Access Instructions228
6.7.1 Storage Access Exceptions 228
6.7.2 Vector Load Instructions. 229
6.7.3 Vector Store Instructions 232

Table of Contents ix

Version 2.07 B

6.7.4 Vector Alignment Support Instruc-

tions 234
6.8 Vector Permute and Formatting
Instructions. 235

6.8.1 Vector Pack and Unpack Instructions
235

6.8.2 Vector Merge Instructions 242
6.8.3 Vector Splat Instructions 245
6.8.4 \Vector Permute Instruction 246
6.8.5 Vector Select Instruction. 247
6.8.6 Vector Shift Instructions 248
6.9 Vector Integer Instructions 250
6.9.1 Vector Integer Arithmetic Instruc-
tions. 250

6.9.1.1 Vector Integer Add Instructions 250

6.9.1.2 Vector Integer Subtract Instruc-
tions. 256

6.9.1.3 Vector Integer Multiply Instructions

6.9.1.4 Vector Integer Multiply-Add/Sum

Instructions. 266
6.9.1.5 Vector Integer Sum-Across Instruc-
tions 271

6.9.1.6 Vector Integer Average Instructions
274
6.9.1.7 Vector Integer Maximum and Mini-

mum Instructions 276
6.9.2 Vector Integer Compare Instruc-
tions. 280
6.9.3 Vector Logical Instructions 286
6.9.4 Vector Integer Rotate and Shift
Instructions. 288
6.10 Vector Floating-Point Instruction Set. .
e 292
6.10.1 Vector Floating-Point Arithmetic
Instructions. 292
6.10.2 Vector Floating-Point Maximum and
Minimum Instructions 294
6.10.3 Vector Floating-Point Rounding and
Conversion Instructions 295
6.10.4 Vector Floating-Point Compare
Instructions. 299
6.10.5 Vector Floating-Point Estimate
Instructions. 302
6.11 Vector Exclusive-OR-based Instruc-
tions 304
6.11.1 Vector AES Instructions 304
6.11.2 Vector SHA-256 and SHA-512
Sigma Instructions 306
6.11.3 Vector Binary Polynomial Multiplica-
tion Instructions 307
6.11.4 Vector Permute and Exclusive-OR
Instruction. 309
6.12 Vector Gather Instruction. 310
6.13 Vector Count Leading Zeros Instruc-
tions 311

6.14 Vector Population Count Instructions
312

6.15 Vector Bit Permute Instruction .. 313

6.16 Decimal Integer Arithmetic Instruc-

tions 314
6.17 Vector Status and Control Register
Instructions 316

Chapter 7. Vector-Scalar
Floating-Point Operations [Category:

1725 4 317
7.1 Introduction.................. 317
7.1.1 Overview of the Vector-Scalar Exten-

SION . o 317

7.1.1.1 Compatibility with Category Float-
ing-Point and Category Decimal Float-

ing-Point Operations 317
7.1.1.2 Compatibility with Category Vector
Operations. 317
7.2 VSXRegisters 318
7.2.1 \Vector-Scalar Registers. 318
7.2.1.1 Floating-Point Registers 318
7.2.1.2 Vector Registers........... 320
7.2.2 Floating-Point Status and Control
Register. L 321
7.3 VSXOperations 326
7.3.1 VSX Floating-Point Arithmetic Over-
VIEW . e 326
7.3.2 VSX Floating-Point Data 327
7321 DataFormat.............. 327
7.3.2.2 Value Representation. 328
7.32.3 SignofResult............. 329
7.3.2.4 Normalization and Denormaliza-
tion 329
7.3.2.5 Data Handling and Precision . 330
7326 Rounding 333
7.3.3 VSX Floating-Point Execution Mod-
els. ... 335
7.3.3.1 VSX Execution Model for IEEE
Operations. 335
7.3.3.2 VSX Execution Model for Multi-
ply-Add Type Instructions 336

7.4 VSX Floating-Point Exceptions. .. 338
7.4.1 Floating-Point Invalid Operation

Exception 341
7.4.1.1 Definition. 341
7.41.2 ActionforVE=1............ 341
7.4.1.3 Actionfor VE=0............ 342

7.4.2 Floating-Point Zero Divide Exception
347

7.4.21 Definition................. 347
7.422 ActionforZE=1............ 347
7.42.3 ActionforZE=0............ 348

7.4.3 Floating-Point Overflow Exception. .
349

X

Power ISA™

Version 2.07 B

7.4.3.1 Definition................. 349
7.4.3.2 ActionforOE=1 349
7.4.3.3 ActionforOE=0 350
7.4.4 Floating-Point Underflow Exception. .

............................... 351
7.4.4.1 Definition................. 351
7.4.4.2 ActionforUE=1 351
7.4.4.3 ActionforUE=0 352
7.4.5 Floating-Point Inexact Exception 354
7.45.1 Definition................. 354
7.45.2 ActionforXE=1............ 354
7.45.3 Actionfor XE=0............ 355

7.5 VSX Storage Access Operations . 356
7.5.1 Accessing Aligned Storage Oper-

ands 356
7.5.2 Accessing Unaligned Storage Oper-

ands 357
7.5.3 Storage Access Exceptions. ... 358
7.6 VSXlnstructionSet 359

7.6.1 VSX Instruction Set Summary. . 359
7.6.1.1 VSX Storage Access Instructions.
359

7.6.1.2 VSX Move Instructions 360
7.6.1.3 VSX Floating-Point Arithmetic
Instructions 360
7.6.1.4 VSX Floating-Point Compare
Instructions, 363
7.6.1.5 VSX DP-SP Conversion Instruc-
tions 364
7.6.1.6 VSX Integer Conversion Instruc-
tions 364
7.6.1.7 VSX Round to Floating-Point Inte-
gerinstructions 366
7.6.1.8 VSX Logical Instructions. 366

7.6.1.9 VSX Permute Instructions. ... 367
7.6.2 VSX Instruction Description Conven-
tions 368
7.6.2.1 VSX Instruction RTL Operators 368
7.6.2.2 VSX Instruction RTL Function
Calls ... 369
7.6.3 VSX Instruction Descriptions. . . 392

Chapter 8. Signal Processing Engine

(SPE)
[Category: Signal Processing Engine
............................ 587
8.1 Overview.................... 587
8.2 Nomenclature and Conventions . . 587
8.3 Programming Model 587
8.3.1 General Operation........... 587
8.3.2 GPRRegisters.............. 588
8.3.3 Accumulator Register 588

8.3.4 Signal Processing Embedded Float-
ing-Point Status and Control Register
(SPEFSCR). ... 588

835 DataFormats............... 591
8.3.5.1 Integer Format............. 591
8.3.5.2 Fractional Format 591
8.3.6 Computational Operations 591
8.3.7 SPE Instructions. 593
8.3.8 Saturation, Shift, and Bit Reverse
Models. 593
8.3.8.1 Saturation 593
8.3.8.2 ShiftLeft 593
8.3.8.3 BitReverse 593
8.3.9 SPE InstructionSet 594

Chapter 9. Embedded Floating-Point
[Category: SPE.Embedded Float Scal
ar Double]

[Category: SPE.Embedded Float Scal
ar Single]
[Category: SPE.Embedded Float Vect

Lo ol 641
9.1 Overview.................... 641
9.2 Programming Model 642

9.2.1 Signal Processing Embedded Float-
ing-Point Status and Control Register

(SPEFSCR) 642
9.2.2 Floating-Point Data Formats ... 642
9.2.3 Exception Conditions......... 643

9.2.3.1 Denormalized Values on Input 643
9.2.3.2 Embedded Floating-Point Over-

flow and Underflow 643
9.2.3.3 Embedded Floating-Point Invalid
Operation/Input Errors. 643
9.2.3.4 Embedded Floating-Point Round
(Inexact). 643
9.2.3.5 Embedded Floating-Point Divide by
ZErO. . it 643
9.2.3.6 DefaultResults 644
9.2.4 IEEE 754 Compliance 644
9.2.4.1 Sticky Bit Handling For Exception
Conditions 644
9.3 Embedded Floating-Point Instructions.
............................... 645
9.3.1 Load/Store Instructions 645

9.3.2 SPE.Embedded Float Vector Instruc-
tions [Category: SPE.Embedded Float

Vector] 645
9.3.3 SPE.Embedded Float Scalar Single

Instructions

[Category: SPE.Embedded Float Scalar

Single] 653
9.3.4 SPE.Embedded Float Scalar Double

Instructions

[Category: SPE.Embedded Float Scalar

Double] 660

Table of Contents Xi

Version 2.07 B

9.4 Embedded Floating-Point Results
Summary 668

Chapter 10. Legacy Move Assist
Instruction [Category: Legacy Move
Assist] ...l 673

Chapter 11. Legacy Integer
Multiply-Accumulate Instructions
[Category: Legacy Integer
Multiply-Accumulate] 675

Appendix A. Suggested
Floating-Point Models [Category:

Floating-Point]................ 685

A.1 Floating-Point Round to Single-Preci-
sionModel 685

A.2 Floating-Point Convert to Integer
Model 689

A.3 Floating-Point Convert from Integer
Model 692

A.4 Floating-Point Round to Integer Model
694

Appendix B. Densely Packed

Decimal...................... 697
B.1 BCD-to-DPD Translation 697
B.2 DPD-to-BCD Translation 697
B.3 Preferred DPD encoding 698

Appendix C. Vector RTL Functions
[Category: Vector]............. 701

Appendix D. Embedded
Floating-Point RTL Functions

[Category: SPE.Embedded Float
Scalar Double]
[Category: SPE.Embedded Float
Scalar Single]
[Category: SPE.Embedded Float
Vector]cvvivnnnnnn. 703
D.1 Common Functions 703
D.2 Convert from Single-Precision Embed-
ded Floating-Point to Integer Word with
Saturation. 704
D.3 Convert from Double-Precision

Embedded Floating-Point to Integer Word
with Saturation 705

D.4 Convert from Double-Precision
Embedded Floating-Point to Integer Dou-
bleword with Saturation............ 706

D.5 Convert to Single-Precision Embed-
ded Floating-Point from Integer Word . 707

D.6 Convert to Double-Precision Embed-
ded Floating-Point from Integer Word . 707

D.7 Convert to Double-Precision Embed-
ded Floating-Point from Integer Double-
word 708

Appendix E. Assembler Extended

Mnemonics 709
E1 Symbols.................... 709
E.2 Branch Mnemonics............ 710
E.21 BOandBlFields............ 710

E.2.2 Simple Branch Mnemonics 710
E.2.3 Branch Mnemonics Incorporating

Conditions. 711
E.2.4 Branch Prediction 712
E.3 Condition Register Logical Mnemonics

713
E.4 Subtract Mnemonics. 713
E.4.1 Subtract Immediate.......... 713
E.42 Subtract................ ... 713
E.5 Compare Mnemonics.......... 714
E.5.1 Doubleword Comparisons. 714
E.5.2 Word Comparisons 714
E.6 Trap Mnemonics.............. 715
E.7 Integer Select Mnemonics 716
E.8 Rotate and Shift Mnemonics 717
E.8.1 Operations on Doublewords . .. 717
E.8.2 OperationsonWords 718
E.9 Move To/From Special Purpose Regis-

terMnemonics 719
E.10 Miscellaneous Mnemonics. 720

AppendixF. Programming Examples.

e esasaaaaaaaa s 723
F.1 Multiple-Precision Shifts 723

F.2 Floating-Point Conversions [Category:
Floating-Point]. 726

F.2.1 Conversion from

Floating-Point Number to

Floating-Point Integer 726
F.2.2 Conversion from

Floating-Point Number to Signed

Fixed-Point Integer Doubleword 726
F.2.3 Conversion from

Floating-Point Number to Unsigned

Fixed-Point Integer Doubleword 726
F.2.4 Conversion from

Floating-Point Number to Signed

Fixed-Point Integer Word 726

Xii Power ISA™

Version 2.07 B

F.2.5 Conversion from
Floating-Point Number to Unsigned
Fixed-Point Integer Word 727
F.2.6 Conversion from Signed Fixed-Point
Integer Doubleword to Floating-Point Num-
ber...... 727

1.6.7 Strong Access Order [Category:

SAO] ..o 741
1.7 Shared Storage 742
1.7.1 Storage Access Ordering742

1.7.2 Storage Ordering of I/0O Accesses . .
744

F.2.7 Conversion from Unsigned 1.7.3 AtomicUpdate 744
Fixed-Point Integer Doubleword to Float- 1.7.3.1 Reservations 745
ing-Point Number 727 1.7.3.2 Forward Progress. 747

F.2.8 Conversion from Signed Fixed-Point 1.8 Transactions [Category: Transactional
Integer Word to Floating-Point Number 727 Memoryl. 748

F.2.9 Conversion from Unsigned 1.8.1 Rollback-Only Transactions 750
Fixed-Point Integer Word to Floating-Point 1.9 Instruction Storage 750
Number........................ 727 1.9.1 Concurrent Modification and Execu-

F.2.10 Unsigned Single-Precision BCD tion of Instructions 752
Arithmetic 728

F.2.11 Signed Single-Precision BCD Arith- Chapter 2. Performance
metic............, 728 i i P

F.2.12 Unsigned Extended-Precision BCD Considerations and Instruction
ARAMEHC . .. o\ sooeeeeeeen 708 Restart....................... 753

F.3 Floating-Point Selection [Category: 2.1 Performance-Optimized Instruction
Floating-Point]. 730 Sequences. 753

F3.1 Comparison toZero.......... 730 2.2 Instruction Restart 756

F.3.2 Minimum and Maximum. 730

F.3.3 Simple if-then-else Chapter 3. Management of Shared
Constructions 730 Resources. 757

F3.4 Notes.................... - 730 3.1 Program Priority Registers 757

F.4 Vector Unaligned Storage Operations 3.2 “or’lInstruction................ 757
[Category: Vector]. 731

F.4.1 Loading a Unaligned Quadword

Using Permute from Big-Endian Storage . Chapter 4. Storage Control

731 Instructions 759
4.1 Parameters Useful to Application Pro-
Book llI: grams ... 759
4.2 Data Stream Control Register (DSCR)
. . [Category: Stream] 759
Power ISA Virtual Environment 4.3 Cache Management Instructions . 761
Architecture. 733 4.3.1 Instruction Cache Instructions . . 762
4.3.2 Data Cache Instructions 763
Chapter 1. Storage Model 735 4.3.2.1 Obsolete Data Cache Instructions
1.1 Definitions. 735 [Category: Vector] 774
1.2 Introduction 736 4.3.3 “or’Instruction 774
1'3 Virtual Storaéé """""""" 736 4.4 Synchronization Instructions. 776
1.4 Single-Copy Ato.rr-1i-c-it.y 737 4.4.1 Instruction Synchronize Instruction .
.4 Single-Copy Atomicity 276
12 g;igg eMggr?tlréll Attnbutes """" ;gg 4.4.2 Load and Reserve and Store Condi-
1.6.1 Write Through Required 738 tional Instruc_’uons 776
162 Caching Inhibited 738 4.4.2.1 _64-Bit Load and Reserve and
1.6.3 Memory Coherence Required [Cate- Store Conditional Instructions [Category:
o B4-Bit] ... 782
1%0‘?/' I\éﬁ;nrzlgdCoherence] """"" ;gg 4.4.2.2 128-bit Load and Reserve Store
1.6.5 Endianne§§ [CategoryEmbed Conditional Instructions [Category: Load/
ded.Little-Endian] 740 Store Quadword]...... R 784
1.6.6 Variable Length Encoded (VLE) 443 Memory Bar_rler Instructions. . .. 786
Instructions . . . - . . 740 4.4.4 Wait Instruction. 791

Table of Contents Xiii

Version 2.07 B

Chapter 5. Transactional Memory
Facility [Category: Transactional

Memory]............cviinn... 795
5.1 Transactional Memory Facility Over-

VIEW o 795

5.1.1 Definitions 796

5.2 Transactional Memory Facility States. .
797

5.2.1 The TDOOMEDBIit........... 799
5.3 Transaction Failure............. 799
5.3.1 Causes of Transaction Failure. . .799
5.3.2 Recording of Transaction Failure.801
5.3.3 Handling of Transaction Failure. .802
5.4 Transactional Memory Facility Regis-

ters . .. 803
5.4.1 Transaction Failure Handler Address
Register (TFHAR). 803
5.4.2 Transaction EXception And Status
Register (TEXASR) 803
5.4.3 Transaction Failure Instruction
Address Register (TFIAR) 805
5.5 Transactional Facility Instructions. .806
Chapter 6. TimeBase 813
6.1 Time Base Overview 813
6.2 TimeBase 813
6.2.1 Time Base Instructions 814
6.3 Alternate Time Base [Category: Alter-
nate TimeBase].................. 816

Chapter 7. Event-Based Branch
Facility [Category: Server] 817

7.1 Event-Based Branch Overview ...817
7.2 Event-Based Branch Registers . ..818
7.2.1 Branch Event Status and Control

Register 818
7.2.2 Event-Based Branch Handler Regis-
ter. 819

7.2.3 Event-Based Branch Return Register
819
7.3 Event-Based Branch Instructions. .820

Chapter 8. Decorated Storage
Facility [Category: Decorated

Storage]ciiiinnnnnn 821
8.1 Decorated Load Instructions 822
8.2 Decorated Store Instructions 823
8.3 Decorated Notify Instructions. 824

Chapter 9. External Control
[Category: External Control] 825

9.1 External Access Instructions 826

Appendix A. Assembler Extended

Mnemonics 827

A.1 Data Cache Block Touch [for Store]
Mnemonics 827

A.2 Data Cache Block Flush Mnemonics .
827

A3 OrMnemonics 827

A.4 Load and Reserve
Mnemonics 828

A.5 Synchronize Mnemonics 828

A.6 Wait Mnemonics. 828

A.7 Transactional Memory Instruction
Mnemics 828

A.8 Move To/From Time Base Mnemonics
828

A.9 Return From Event-Based Branch
Mnemonic...................... 828

AppendixB. Programming Examples

for Sharing Storage 831
B.1 Atomic Update Primitives....... 831

B.2 Lock Acquisition and Release, and
Related Techniques. 833

B.2.1 Lock Acquisition and Import Barriers
833

B.2.1.1 Acquire Lock and Import Shared
Storagel 833

B.2.1.2 Obtain Pointer and Import Shared
Storage i 833

B.2.2 Lock Release and Export Barriers .
834

B.2.2.1 Export Shared Storage and

ReleaselLock 834
B.2.2.2 Export Shared Storage and

Release Lock using lwsync. 834
B23 SafeFetch................. 834
B.3 ListInsertion................. 835
B4 Notes 835
B.5 Transactional Lock Elision [Category:

Transactional Memory] 835
B.5.1 Enter Critical Section. 836
B.5.2 Handling Busy Lock. 836
B.5.3 Handling TLE Abort.......... 836

B.5.4 TLE Exit Section Critical Path . . 836
B.5.5 Acquisition and Release of TLE

Book llI-S:

Power ISA Operating Environment

Xiv

Power ISA™

Version 2.07 B

Architecture - Server Environment

[Category: Server] 839
Chapter 1. Introduction........ 841
1.1 Overview.................... 841

1.2 Document Conventions 841
1.2.1 Definitions and Notation 841
1.2.2 Reserved Fields. 842

1.3 General Systems Overview 842

1.4 Exceptions 843

1.5 Synchronization 843
1.5.1 Context Synchronization 843
1.5.2 Execution Synchronization 844

Chapter 2. Logical Partitioning

(LPAR) and Thread Control 845
21 Overview.................... 845
2.2 Logical Partitioning Control Register

(LPCR) ..t 845

2.3 Real Mode Offset Register (RMOR). .
848
2.4 Hypervisor Real Mode Offset Register

(HRMOR) o 848
2.5 Logical Partition
Identification Register (LPIDR) 849

2.6 Processor Compatibility Register
(PCR) [Category: Processor Compatibility]
849

2.7 Other Hypervisor Resources 855
2.8 Sharing Hypervisor Resources. .. 855
2.9 Sub-Processors 856

2.10 Thread Identification Register (TIR) .
856
2.11 Hypervisor Interrupt Little-Endian

(HILE)Bit i, 856
Chapter 3. Branch Facility. 857
3.1 Branch Facility Overview 857

3.2 Branch Facility Registers 857
3.2.1 Machine State Register. 857

3.2.2 State Transitions Associated with the
Transactional Memory Facility [Category:
Transactional Memory] 860

3.3 Branch Facility Instructions. 863

3.3.1 System Linkage Instructions . .. 863

3.3.2 Power-Saving Mode Instructions 866

3.3.2.1 Entering and Exiting Power-Sav-

ingMode 869
3.4 Event-Based Branch Facility and
Instruction 870

Chapter 4. Fixed-Point Facility .. 871

4.1 Fixed-Point Facility Overview 871
4.2 Special Purpose Registers. 871

4.3 Fixed-Point Facility Registers 871

4.3.1 Processor Version Register 871
4.3.2 Chip Information Register 871
4.3.3 Processor Identification Register 871
4.3.4 ControlRegister............. 872
4.3.5 Program Priority Register. 872
4.3.6 Problem State Priority Boost Regis-
ter .. 873
4.3.7 Relative Priority Register 873
4.3.8 Software-use SPRs 873

4.4 Fixed-Point Facility Instructions. . . 875
4.41 Fixed-Point Load and Store Caching
Inhibited Instructions 875
442 ORlnstruction 878
4.4.3 Transactional Memory Instructions
[Category: Transactional Memory]. . .. 879
4.4.4 Move To/From System Register

Instructions 880
Chapter 5. Storage Control 889

51 Overview.................... 889
5.2 Storage Exceptions. 889
5.3 InstructionFetch 889
5.3.1 ImplicitBranch 889
5.3.2 Address Wrapping Combined with

Changing MSR BitSF............. 889
54 DataAccess 889
5.5 Performing Operations

Out-of-Order 890
5.6 Invalid Real Address........... 890
5.7 Storage Addressing. 891
571 32-BitMode 891
5.7.2 Virtualized Partition Memory (VPM)

Mode 891
5.7.3 Real And Virtual Real Addressing

Modes 891
5.7.3.1 Hypervisor Offset Real Mode

Address........... 892

5.7.3.2 Offset Real Mode Address ... 892
5.7.3.3 Storage Control Attributes for
Accesses in Real and Hypervisor Real

AddressingModes. 893
5.7.3.3.1 Hypervisor Real Mode Storage
Control. 893
5.7.3.4 Virtual Real Mode Addressing
Mechanism 894
5.7.3.5 Storage Control Attributes for
Implicit Storage Accesses 895
5.7.4 Address Ranges Having Defined
Uses ... 895

5.7.5 Address Translation Overview . . 895

5.7.6 Virtual Address Generation 896

5.7.6.1 Segment Lookaside Buffer (SLB).
896

576.2 SLBSearch............... 897

5.7.7 \Virtual to Real Translation 898

Table of Contents XV

Version 2.07 B

5771 PageTable................ 900
5.7.7.2 Storage Description

Register1...... 901
5.7.7.3 Page Table Search.......... 902

5.7.7.4 Relaxed Page Table Alignment
[Category: Server.Relaxed Page Table
Alignment]., 904

5.7.8 Reference and Change Recording . .
905

5.7.9 Storage Protection 908

5.7.9.1 Virtual Page Class Key Protection .
908

5.7.9.2 Basic Storage Protection, Address

Translation Enabled 912
5.7.9.3 Basic Storage Protection, Address
Translation Disabled 913
5.8 Storage Control Attributes 914
5.8.1 Guarded Storage. 914
5.8.1.1 Out-of-Order Accesses to Guarded
Storage. 914
5.8.2 Storage ControlBits 914

5.8.2.1 Storage Control Bit Restrictions. . .
915

5.8.2.2 Altering the Storage Control Bits . .
915

5.9 Storage Control Instructions. 917
5.9.1 Cache Management Instructions 917
5.9.2 Synchronize Instruction. 917
5.9.3 Lookaside Buffer

Management. 918
5.9.3.1 SLB Management Instructions 918
5.9.3.2 Bridge to SLB Architecture [Cate-

gory:Server.Phased-Out] 925
5.9.8.2.1 Segment Register

Manipulation Instructions 925

5.9.3.3 TLB Management Instructions .928
5.10 Page Table Update Synchronization
Requirements. 934
5.10.1 Page Table Updates 934
5.10.1.1 Adding a Page Table Entry. . .935
5.10.1.2 Modifying a Page Table Entry 936
5.10.1.3 Deleting a Page Table Entry .936

Chapter 6. Interrupts 937
6.1 Overview 937
6.2 Interrupt Registers 937
6.2.1 Machine Status Save/Restore Regis-
ters . ..o 937

6.2.2 Hypervisor Machine Status Save/
Restore Registers. 937
6.2.3 Data Address Register 937

6.2.4 Hypervisor Data Address Register . .
938

6.2.5 Data Storage Interrupt
Status Register. 938

6.2.6 Hypervisor Data Storage Interrupt

Status Register. 938
6.2.7 Hypervisor Emulation Instruction
Register. 938
6.2.8 Hypervisor Maintenance Exception
Register. 938
6.2.9 Hypervisor Maintenance Exception
Enable Register. 939

6.2.10 Facility Status and Control Register
939
6.2.11 Hypervisor Facility Status and Con-

trol Register. 940
6.3 Interrupt Synchronization 944
6.4 InterruptClasses 944
6.4.1 Precise Interrupt 944
6.4.2 Imprecise Interrupt. 944
6.4.3 Interrupt Processing 945
6.4.4 Implicit alteration of HSRRO and

HSRR1 947
6.5 Interrupt Definitions 948
6.5.1 System Reset Interrupt 950
6.5.2 Machine Check Interrupt 951
6.5.3 Data Storage Interrupt........ 953
6.5.4 Data Segment Interrupt 954

6.5.5 Instruction Storage Interrupt . .. 955
6.5.6 Instruction Segment

Interrupt. 955
6.5.7 External Interrupt. 955
6.5.8 Alignment Interrupt 956
6.5.9 Program Interrupt 957
6.5.10 Floating-Point Unavailable

Interrupt. 959
6.5.11 Decrementer Interrupt 959
6.5.12 Hypervisor Decrementer

Interrupt. 959
6.5.13 Directed Privileged Doorbell Inter-

rupt ..o 960
6.5.14 System Call Interrupt........ 960

6.5.15 Trace Interrupt [Category: Trace]. .
960

6.5.16 Hypervisor Data Storage Interrupt.
961

6.5.17 Hypervisor Instruction Storage

Interrupt. 962
6.5.18 Hypervisor Emulation Assistance
Interrupt. 963

6.5.19 Hypervisor Maintenance Interrupt .
963
6.5.20 Directed Hypervisor Doorbell Inter-

rupt ..o 964
6.5.21 Performance Monitor

Interrupt., 964
6.5.22 Vector Unavailable Interrupt [Cate-

gory:Vector], 964
6.5.23 VSX Unavailable Interrupt [Cate-

gory: VSX]. ... 964

Xvi

Power ISA™

Version 2.07 B

6.5.24 Facility Unavailable Interrupt . . 965
6.5.25 Hypervisor Facility Unavailable

9.5 Branch History Rolling Buffer ... 1001
9.6 Interaction With Other Facilities . 1001

Interrupt., 965
6.6 Partially Executed Chapter 10. External Control
Instructions 966 .
6.7 Exception Ordering. 967 [Category: External Cont.rOI]' ---1003
6.7.1 Unordered Exceptions. 967 10.1 External Access Reg|ste_r """ 1003
6.7.2 Ordered Exceptions 067 10.2 External Access Instructions. .. 1003
6.8 Interrupt Priorities. 968
6.9 Relationship of Event-Based Branches Chapter 11. Processor Control .1005
tolnterrupts. 970 111 Overview.................. 1005
11.2 Programming Model 1005
Chapter 7. Timer Facilities 973 1121 Message Type 1005
71 Overview.................... 973 11'2.'2 Doorbell Message Payload and Fil-
72 TimeBase (TB) 973 tering............. ERERRER 1005
7.2.1 Writing the Time Base 974 1.3 Propessor Co'nj[rol Registers . . . 1006
73 Virtual Time Base 974 11.3.1 Directed Privileged Doorbell Excep-
7.4 Decrementer................. 975 tion Statg """""" St 1006
7.41 Writing and Reading the Decre- 11.3.2 _Dlrected Hypervisor Doorbell
menter 975 Exception State 1006
75 Hyp.)ér.v.is.o-r.[.).ec.:r.e-n-wéﬁt.ér """" 975 11.4 Processor Control Instructions . 1008
7.6 Processor Utilization of Resources i s
Register (PURR). \vvvvvnn. . 976 ~ Chapter 12. Synchronization
7.7 Scaled Processor Utilization of Requirements for Context Alterations
Resources Register (SPURR). 977 1011
7.8 Instruction Counter............ 977
i Appendix A. Assembler Extended
Chapter 8. Debug Facilities. 979 PP .
. Mnemonics.................. 1017
8.1 Overview.................... 979 : .
8.2 Come-From Address Register ... 979 A1 Move Tq/From Special Purpose Regis-
8.3 Completed Instruction Address Break- terMnemonics. 1017
point [Category: Trace] 979
8.4 Data Address Watchpoint. 980 Book llI-E:

Chapter 9. Performance Monitor Power ISA Operating Environment

Facility, 983 Architecture - Embedded
91 Overview.................... 983 Environment [Category: Embedded] .
9.2 Performance Monitor Operation .. 983 1021
9.3 Probe No-op Instruction 984
9.4 Performance Monitor Facility Registers]
084 Chapter 1. Introduction........ 1023
9.4.1 Performance Monitor SPR Numbers 11 Overview................... 1023
984 1.2 32-Bit Implementations 1023
9.4.2 Performance Monitor Counters . 985 1.3 Document Conventions. 1023
9.4.2.1 Event Counting and Sampling 985 1.3.1 Definitions and Notation. 1023
9.4.3 Threshold Event Counter. 986 1.3.2 ReservedFields............ 1025
9.4.4 Monitor Mode Control Register 0 987 1.4 General Systems Overview. 1025
9.4.5 Monitor Mode Control Register 1 992 1.5 Exceptions.................. 1025
9.4.6 Monitor Mode Control Register 2 994 1.6 Synchronization............. 1026

9.4.7 Monitor Mode Control Register A995 1.6.1 Context Synchronization 1026
9.4.8 Sampled Instruction Address Regis- 1.6.2 Execution Synchronization. ... 1026
ter ... 998
9.4.9 Sampled Data Address Register 998
9.4.10 Sampled Instruction Event Register
999

Table of Contents xvii

Version 2.07 B

Chapter 2. Logical Partitioning
[Category Embedded.Hypervisor]. .

Cha

......................... 1 027
21 Overview 1027
22 Registers 1027
2.2.1 Register Mapping 1027
2.2.2 Logical Partition Identification Regis-

ter LPIDR).............. 1028
2.3 Interrupts and Exceptions 1028
2.3.1 Directed Interrupts 1028
2.3.2 Hypervisor Service Interrupts . .1029
2.4 Instruction Mapping 1029

pter 3. Thread Control [Category:

Embedded Multi-Threading]. ... 1031

3.1 Overview 1031
3.2 Thread ldentification Register (TIR). . .
1031
3.3 Thread Enable Register (TEN). . .1031
3.4 Thread Enable Status Register
(TENSR). ... 1031
3.5 Disabling and Enabling Threads .1032
3.6 Sharing of Multi-Threaded Processor
Resources 1032
3.7 Thread Management Facility [Cate-
gory: Embedded Multithreading.Thread

Management] 1033
3.7.1 Initialize Next Instruction Address
Registers 1033

3.7.2 Thread Management Instructions . . .
1034

Chapter 4. Branch Facility 1035
4.1 Branch Facility Overview 1035

4.2 Branch Facility Registers 1035
4.2.1 Machine State Register. 1035
4.2.2 Machine State Register Protect Reg-

ister (MSRP). 1037

4.2.3 Embedded Processor Control Regis-
ter(EPCR) 1038

4.3 Branch Facility Instructions 1040

Cha

4.3.1 System Linkage Instructions. . .1040

pter 5. Fixed-Point Facility . 1045

5.1 Fixed-Point Facility Overview1045
5.2 Special Purpose Registers. 1045
5.3 Fixed-Point Facility Registers. . ..1045
5.3.1 Processor Version Register. . . .1045

5.3.2 Chip Information Register. 1045
5.3.8 Processor Identification Register. .
............................. 1045

5. 3 4 Guest Processor Identification Reg-
ister [Category:Embedded.Hypervisor]. .
............................. 1046

5.3.5 Program Priority Register 32-bit 1046

5.3.6 Software-use SPRs......... 1046
5.3.7 External Process ID Registers [Cate-
gory: Embedded.External PID]. 1048
5.3.7.1 External Process ID Load Context
(EPLC) Register 1048
5.3.7.2 External Process ID Store Context
(EPSC) Register. 1049

5.4 Fixed-Point Facility Instructions . 1050
5.4.1 Move To/From System Register
Instructions 1050
5.4.2 ORlnstruction............. 1058
5.4.3 External Process ID Instructions
[Category: Embedded.External PID]. 1059

Chapter 6. Storage Control.... 1073
6.1 Overview................... 1073
6.2 Storage Exceptions. 1075
6.3 Instruction Fetch 1075
6.3.1 ImplicitBranch............. 1075
6.3.2 Address Wrapping Combined with

Changing MSR BitCM 1076
6.4 DataAccess................ 1076
6.5 Performing Operations

Out-of-Order 1076
6.6 Invalid Real Address. 1077
6.7 Storage Control. 1077
6.7.1 Translation Lookaside Buffer.. 1077
6.7.2 Virtual Address Spaces. 1081
6.7.3 TLB Address Translation 1082
6.7.4 Page Table Address Translation [Cat-

egory: Embedded.Page Table] 1085

6.7.5 Page Table Update Synchronization
Requirements [Category: Embed-

ded.PageTable] 1092
6.7.5.1 Page Table Updates 1093
6.7.5.1.1 Adding a Page Table Entry 1093

6.7.5.1.2 Deleting a Page Table Entry 1094

6.7.5.1.3 Modifying a Page Table Entry. .
1094

6.7.5.2 Invalidating an Indirect TLB Entry.
1094

6.7.6 Storage Access Control. 1094
6.7.6.1 Execute Access 1095
6.7.6.2 Write Access. 1095
6.7.6.3 ReadAccess 1095

6.7.6.4 Virtualized Access <E.HV>. . 1096
6.7.6.5 Storage Access Control Applied to

Cache Management Instructions ... 1096
6.7.6.6 Storage Access Control Applied to
String Instructions 1096
6.8 Storage Control Attributes 1097
6.8.1 Guarded Storage. 1097
6.8.1.1 Out-of-Order Accesses to Guarded
Storage 1097
6.8.2 User-Definable............. 1097

Xviii

Power ISA™

Version 2.07 B

6.8.3 Storage Control Bits. 1097

6.8.3.1 Storage Control Bit Restrictions . .
1098

6.8.3.2 Altering the Storage Control Bits .
1099

6.9 Logical to Real Address Translation
[Category: Embedded.Hypervisor.LRAT] .
1101

6.10 Storage Control Registers 1103
6.10.1 Process ID Register. 1103
6.10.2 MMU Assist Registers.. 1103
6.10.3 MMU Configuration and Control
Registers. 1104
6.10.3.1 MMU Configuration Register
(MMUCFG)ciii e 1104
6.10.3.2 TLB Configuration Registers
(TLBNCFG) oo 1104
6.10.3.3 TLB Page Size Registers
(TLBnPS) [MAV=2.0]............. 1106
6.10.3.4 Embedded Page Table Configura-
tion Register (EPTCFG) 1106

6.10.3.5 LRAT Configuration Register
(LRATCFG) [Category: Embedded.Hyper-
ViSOr.LRAT], 1107

6.10.3.6 LRAT Page Size Register
(LRATPS) [Category: Embedded.Hypervi-

SOrLRAT] 1107
6.10.3.7 MMU Control and Status Register
(MMUCSRO) 1108
6.10.3.8 MASO Register.......... 1108
6.10.3.9 MAS1 Register.......... 1110
6.10.3.10 MAS2 Register......... 1110
6.10.3.11 MAS3 Register......... 1111
6.10.3.12 MAS4 Register. 1112
6.10.3.13 MASS5 Register. 1113
6.10.3.14 MASG6 Register 1113
6.10.3.15 MAS7 Register 1114
6.10.3.16 MASS Register [Category:
Embedded.Hypervisor] 1114
6.10.3.17 Accesses to Paired MAS Regis-
ters ... 1114

6.10.3.18 MAS Register Update Summary
1115

6.11 Storage Control Instructions. .. 1118

6.11.1 Cache Management Instructions. .
1118

6.11.2 Cache Locking [Category: Embed-

ded Cache Locking] 1119
6.11.2.1 Lock Setting, Query, and Clear-

NG« o 1119
6.11.2.2 Error Conditions 1119
6.11.2.2.1 Overlocking 1120

6.11.2.2.2 Unable-to-lock,
Unable-to-unlock, and Unable-to-query
Conditions. 1120

6.11.2.3 Cache Locking Instructions. 1121

6.11.3 Synchronize Instruction 1124
6.11.4 LRAT [Category: Embedded.Hyper-
visor.LRAT] and TLB Management .. 1124
6.11.4.1 Reading TLB or LRAT Entries. . .
1124
6.11.4.2 Writing TLB or LRAT Entries 1125
6.11.4.2.1 TLB Write Conditional [Embed-
ded.TLB Write Conditional] 1126
6.11.4.3 Invalidating TLB Entries ... 1128
6.11.4.4 TLB Lookaside Information. 1129
6.11.4.5 Invalidating LRAT Entries .. 1130
6.11.4.6 Searching TLB Entries 1130
6.11.4.7 TLB Replacement Hardware
Assist. 1130
6.11.4.8 32-bit and 64-bit Specific MMU
Behavior, 1131
6.11.4.9 TLB Management Instructions. . .
.............................. 1132

Chapter 7. Interrupts and

Exceptions................... 1145
7.1 Overview................... 1145

7.2 Interrupt Registers............ 1145
7.2.1 Save/Restore Register0 1145
7.2.2 Save/Restore Register1 1145
7.2.3 Guest Save/Restore Register 0 [Cat-
egory:Embedded.Hypervisor] 1146
7.2.4 Guest Save/Restore Register 1 [Cat-
egory:Embedded.Hypervisor] 1146

7.2.5 Critical Save/Restore Register 0 . . .
1146
7.2.6 Critical Save/Restore Register 1. . ..

7.2.7 Debug Save/Restore Register 0
[Category: Embedded.Enhanced Debug. .
1147

7.2.8 Debug Save/Restore Register 1
[Category: Embedded.Enhanced Debug]. .
.............................. 1148

7.2.9 Data Exception Address Register. . .
.............................. 1148

7.2.10 Guest Data Exception Address
Register [Category: Embedded.Hypervi-
SO ot 1148

7.2.11 Interrupt Vector Prefix Register . . .
1148

7.2.12 Guest Interrupt Vector Prefix Regis-
ter [Category: Embedded.Hypervisor] 1149

7.2.13 Exception Syndrome Register 1150

7.2.14 Guest Exception Syndrome Regis-
ter [Category: Embedded.Hypervisor] 1151

7.2.15 Interrupt Vector Offset Registers
[Category: Embedded.Phased-Out] . 1151

7.2.16 Guest Interrupt Vector Offset Regis-
ter [Category: Embedded.Hypervi-
sor.Phased-Out]................. 1152

Table of Contents Xix

Version 2.07 B

7.2.17 Logical Page Exception Register
[Category: Embedded.Hypervisor and
Embedded.Page Table] 1153

7.2.18 Machine Check Registers....1153

7.2.18.1 Machine Check Save/Restore

RegisterO...................... 1153
7.2.18.2 Machine Check Save/Restore
Register1...................... 1154
7.2.18.3 Machine Check Syndrome Regis-
ter. .o 1154
7.2.18.4 Machine Check Interrupt Vector
Prefix Register 1154
7.2.19 External Proxy Register [Category:
External Proxy].................. 1154

7.2.20 Guest External Proxy Register [Cat-
egory: Embedded Hypervisor, External

Proxyl 1155
7.3 Exceptions.................. 1156
7.4 Interrupt Classification......... 1156
7.4.1 Asynchronous Interrupts. 1156
7.4.2 Synchronous Interrupts. 1156
7.4.2.1 Synchronous, Precise Interrupts. .

............................. 1157
7. 4 2.2 Synchronous, Imprecise Interrupts.

............................. 1157
7. 4 3 InterruptClasses............ 1157
7.4.4 Machine Check Interrupts. 1157
7.5 Interrupt Processing........... 1158
7.6 Interrupt Definitions 1161
7.6.1 Interrupt Fixed Offsets [Category:

Embedded.Phased-In] 1164
7.6.2 Critical Input Interrupt 1165
7.6.3 Machine Check Interrupt. 1165
7.6.4 Data Storage Interrupt. 1166
7.6.5 Instruction Storage Interrupt . ..1168
7.6.6 External Input Interrupt. 1170
7.6.7 Alignment Interrupt 1170
7.6.8 Program Interrupt 1171
7.6.9 Floating-Point Unavailable Interrupt. .

............................. 1172
7. 6 10 System Call Interrupt 1173
7.6.11 Auxiliary Processor Unavailable

Interrupt L 1173

7.6.12 Decrementer Interrupt. 1173

7.6.13 Guest Decrementer Interrupt .1174

7.6.14 Fixed-Interval Timer Interrupt .1174

7.6.15 Guest Fixed Interval Timer Interrupt
1175

7.6.16 Watchdog Timer Interrupt1175

7.6.17 Guest Watchdog Timer Interrupt. . .
1176

7.6.18 Data TLB Error Interrupt 1176
7.6.19 Instruction TLB Error Interrupt 1177
7.6.20 Debug Interrupt............ 1178

7.6.21 SPE/Embedded Floating-Point/Vec-
tor Unavailable Interrupt

[Categories: SPE.Embedded Float Scalar
Double, SPE.Embedded Float Vector, Vec-
tor]. .. 1179
7.6.22 Embedded Floating-Point Data
Interrupt
[Categories: SPE.Embedded Float Scalar
Double, SPE.Embedded Float Scalar Sin-
gle, SPE.Embedded Float Vector]. .. 1180
7.6.23 Embedded Floating-Point Round
Interrupt
[Categories: SPE.Embedded Float Scalar
Double, SPE.Embedded Float Scalar Sin-
gle, SPE.Embedded Float Vector]. .. 1180
7.6.24 Performance Monitor Interrupt [Cat-
egory: Embedded.Performance Monitor] .
1181
7.6.25 Processor Doorbell Interrupt [Cate-
gory: Embedded.Processor Control]. 1181
7.6.26 Processor Doorbell Critical Interrupt
[Category: Embedded.Processor Control].
............................ 1181
7. 6 27 Guest Processor Doorbell Interrupt
[Category: Embedded.Hypervisor,Embed-
ded.Processor Control] 1181
7.6.28 Guest Processor Doorbell Critical
Interrupt [Category: Embedded.Hypervi-
sor,Embedded.Processor Control] .. 1183
7.6.29 Guest Processor Doorbell Machine
Check Interrupt [Category: Embed-
ded.Hypervisor,Embedded.Processor
Control]....................... 1183
7.6.30 Embedded Hypervisor System Call
Interrupt [Category: Embedded.Hypervi-
SO oo 1183
7.6.31 Embedded Hypervisor Privilege
Interrupt [Category: Embedded.Hypervi-

SON 1184
7.6.32 LRAT Error Interrupt [Category:
Embedded.Hypervisor.LRAT] 1184

7.7 Partially Executed Instructions . . 1186
7.8 Interrupt Ordering and Masking . 1187
7.8.1 Guidelines for System Software 1188

7.8.2 InterruptOrder............. 1189

7.9 Exception Priorities. 1190

7.9.1 Exception Priorities for Defined
Instructions 1190

7.9.1.1 Exception Priorities for Defined
Floating-Point Load and Store Instructions
1190

7.9.1.2 Exception Priorities for Other
Defined Load and Store Instructions and
Defined Cache Management Instructions.
1190

7.9.1.3 Exception Priorities for Other
Defined Floating-Point Instructions . . 1191

XX

Power ISA™

Version 2.07 B

7.9.1.4 Exception Priorities for Defined

Privileged Instructions. 1191
7.9.1.5 Exception Priorities for Defined
Trap Instructions 1191
7.9.1.6 Exception Priorities for Defined
System Call Instruction. 1191
7.9.1.7 Exception Priorities for Defined
Branch Instructions. 1191

7.9.1.8 Exception Priorities for Defined
Return From Interrupt Instructions .. 1192
7.9.1.9 Exception Priorities for Other

Defined Instructions 1192
7.9.2 Exception Priorities for Reserved
Instructions 1192

Chapter 8. Reset and Initialization. . .

.......................... 1193
8.1 Background................. 1193
8.2 Reset Mechanisms........... 1193
8.3 Thread State after Reset 1193

8.4 Software Initialization Requirements .
1195

Chapter 9. Timer Facilities 1197

9.1 Overview................... 1197
9.2 TimeBase(TB) 1197
9.2.1 Writing the Time Base.. 1198
9.3 Decrementer................ 1199
9.3.1 Writing and Reading the Decre-
menter........................ 1199
9.3.2 DecrementerEvents 1199
9.4 Guest Decrementer [Category:
Embedded.Hypervisor] 1200
9.4.1 Writing and Reading the Guest Dec-
rementer, 1200

9.4.2 Guest Decrementer Events ... 1200

9.5 Decrementer Auto-Reload Register . .
1201

9.6 Guest Decrementer Auto-Reload Reg-
ister [Category:Embedded.Hypervisor]. . ..

e 1201
9.7 Timer Control Register 1203
9.7.1 Timer Status Register 1204
9.8 Guest Timer Control Register [Cate-

gory: Embedded.Hypervisor] 1206
9.8.1 Guest Timer Status Register [Cate-

gory: Embedded.Hypervisor] 1207

9.8.2 Guest Timer Status Register Write
Register (GTSRWR) [Category: Embed-

ded.Hypervisor]. 1208
9.9 Fixed-Interval Timer 1208
9.10 Guest Fixed-Interval Timer [Category:

Embedded.Hypervisor] 1208
9.11 Watchdog Timer............ 1208

9.12 Guest Watchdog Timer [Category:
Embedded.Hypervisor] 1210
9.13 Freezing the Timer Facilities . . . 1212

Chapter 10. Debug Facilities ...1213

10.1 Overview.................. 1213
10.2 Internal Debug Mode. 1213
10.3 External Debug Mode [Category:
Embedded.Enhanced Debug] 1213
10.4 DebugEvents.............. 1213
10.4.1 Instruction Address Compare
DebugEvent 1215
10.4.2 Data Address Compare Debug
Event.... 1217
10.4.3 Trap Debug Event.......... 1218

10.4.4 Branch Taken Debug Event .. 1218

10.4.5 Instruction Complete Debug Event.
1219

10.4.6 Interrupt Taken Debug Event . 1219

10.4.6.1 Causes of Interrupt Taken Debug

Events 1219
10.4.6.2 Interrupt Taken Debug Event

Description. 1219
10.4.7 Return Debug Event. 1220

10.4.8 Unconditional Debug Event .. 1220
10.4.9 Critical Interrupt Taken Debug
Event [Category: Embedded.Enhanced
Debug]....... ... it 1220
10.4.10 Critical Interrupt Return Debug
Event [Category: Embedded.Enhanced
Debug]......... ... it 1221
10.5 Debug Registers............ 1221
10.5.1 Debug Control Registers 1221
10.5.1.1 Debug Control Register 0

(DBCRO)o 1221
10.5.1.2 Debug Control Register 1
(DBCR1) ... 1222
10.5.1.3 Debug Control Register 2
(DBCR2) 1224
10.5.2 Debug Status Register. 1225
10.5.3 Debug Status Register Write Regis-
ter (DBSRWR).................. 1227
10.5.4 Instruction Address Compare Reg-
isters 1227

10.5.5 Data Address Compare Registers .
1227
10.6 Debugger Notify Halt Instruction 1228

Chapter 11. Processor Control
[Category: Embedded.Processor

Control]..................... 1229
11.1 Overview.................. 1229
11.2 Programming Model 1229
11.2.1 Message Handling and Filtering. . .

.............................. 1229

Table of Contents xXi

Version 2.07 B

11.2.2 Doorbell Message Filtering . . .1230

11.2.2.1 Doorbell Critical Message Filter-
] T 1230

11.2.2.2 Guest Doorbell Message Filter-
ing [Category: Embedded.Hypervisor]1231

11.2.2.3 Guest Doorbell Critical Message
Filtering [Category: Embedded.Hypervisor]
1232

11.2.2.4 Guest Doorbell Machine Check
Message Filtering [Category: Embed-
ded.Hypervisor] 1232

11.3 Processor Control Instructions. .1233

Chapter 12. Synchronization
Requirements for Context

Alterations. 1235
Appendix

A. Implementation-Dependent

Instructions 1239

A.1 Embedded Cache Initialization
[Category: Embedded.Cache Initialization]
1239

A.2 Embedded Cache Debug Facility
[Category: Embedded.Cache Debug] 1240

A.2.1 Embedded Cache Debug Registers .
1240

A.2.1.1 Data Cache Debug Tag Register
High 1240

A.2.1.2 Data Cache Debug Tag Register
Low. ... 1240

A.2.1.3 Instruction Cache Debug Data
Register 1241

A.2.1.4 Instruction Cache Debug Tag Reg-
isterHigh 1241

A.2.1.5 Instruction Cache Debug Tag Reg-
isterLow. 1241

A.2.2 Embedded Cache Debug Instruc-
tions 1242

Appendix B. Assembler Extended

Mnemonics..........ccvevuun. 1245
B.1 Move To/From Special Purpose Regis-
terMnemonics 1246

B.2 Data Cache Block Flush Mnemonics
[Category: Embedded.Phased In] .. .1247

Appendix C. Guidelines for 64-bit
Implementations in 32-bit Mode and

32-bit Implementations........ 1249

C.1 Hardware Guidelines.......... 1249
C.1.1 64-bit Specific Instructions1249

C.1.2 Registers on 32-bit Implementations

1249
C.1.3 Addressing on 32-bit Implementa-
tions 1249
C.1.4 TLB Fields on 32-bit Implementa-
tions 1249
C.1.5 Thread Control and Status on 32-bit
Implementations 1249
C.2 32-bit Software Guidelines. 1249

C.2.1 32-bit Instruction Selection . .. 1249

Appendix D. Example Performance
Monitor [Category:
Embedded.Performance Monitor]. . ..

............................ 1251
D.1 Overview 1251
D.2 Programming Model. 1251
D.2.1 EventCounting 1252
D.2.2 Thread Context Configurability 1252
D.2.3 EventSelection............ 1252
D.2.4 Thresholds................ 1253

D.2.5 Performance Monitor Exception 1253
D.2.6 Performance Monitor Interrupt 1253
D.3 Performance Monitor Registers . 1253
D.3.1 Performance Monitor Global Control

RegisterO 1253
D.3.2 Performance Monitor Local Control
ARegisters 1254
D.3.3 Performance Monitor Local Control
BRegisters 1255
D.3.4 Performance Monitor Counter Regis-
ters 1255

D.4 Performance Monitor Instructions 1257
D.5 Performance Monitor Software Usage

Notes., 1258

D.5.1 Chaining Counters. 1258

D.5.2 Thresholding.............. 1258
Book VLE:

Power ISA Operating Environment
Architecture -

Variable Length Encoding (VLE) Envi
ronment

[Category: Variable Length

Encoding] 1259
Chapter 1. Variable Length Encoding
Introduction................. 1261
1.1 Overview................... 1261
1.2 Documentation Conventions. ... 1261
1.2.1 Description of Instruction Operation
1261

xxii Power ISA™

Version 2.07 B

1.3 Instruction Mnemonics and Operands
1261

1.4 VLE Instruction Formats....... 1262
1.4.1 BD8-form (16-bit Branch Instruc-
tions)........ 1262

1.4.2 C-form (16-bit Control Instructions) .
1262

1.4.3 IM5-form (16-bit register + immediate
Instructions) 1262

1.4.4 OIM5-form (16-bit register + offset
immediate Instructions). 1262

1.4.5 [IM7-form (16-bit Load immediate
Instructions) 1262

1.4.6 R-form (16-bit Monadic Instructions)
1262

1.4.7 RR-form (16-bit Dyadic Instructions)
1262

1.4.8 SD4-form (16-bit Load/Store Instruc-

tions) 1262
1.49 BDi15form................ 1262
1.410 BD24-form............... 1263
1.411 D8form................. 1263
1.412 ESC-form................ 1263
1.413 H6A-form................ 1263
1.414 HeL-form................ 1263
1415 Mform.................. 1263
1.416 SCI8form 1263
1.417 LI20-form................ 1263
1418 Xform 1263
1.4.19 Instruction Fields.......... 1263

4.1.1.1 Condition Register Setting for

Compare Instructions 1273
4.1.1.2 Condition Register Setting for the

Bit Test Instruction. 1274
41.2 Link Register (LR) 1274
4.1.3 Count Register (CTR) 1274
4.2 Branch Instructions........... 1275

4.3 System Linkage Instructions. ... 1278
4.4 Condition Register Instructions . . 1282

Chapter 5. Fixed-Point Instructions. .
e araaaaaaaa e 1285

5.1 Fixed-Point Load Instructions . .. 1285
5.2 Fixed-Point Store Instructions . .. 1289
5.3 Fixed-Point Load and Store with Byte

Reversal Instructions. 1292
5.4 Fixed-Point Load and Store Multiple
Instructions 1292

5.5 Fixed-Point Arithmetic Instructions . ..
1293
5.6 Fixed-Point Compare and Bit Test
Instructions 1297
5.7 Fixed-Point Trap Instructions. . .. 1301
5.8 Fixed-Point Select Instruction . .. 1301
5.9 Fixed-Point Logical, Bit, and Move
Instructions 1302
5.10 Fixed-Point Rotate and Shift Instruc-
tions. 1307
5.11 Move To/From System Register
Instructions 1310

Chapter 2. VLE Storage Addressing.

............................ 1267 Chapter 6. Storage Control

Instructions 1311

2.1 Data Storage Addressing Modes 1267

2.2 Instruction Storage Addressing Modes.
e 1268

2.2.1 Misaligned, Mismatched, and Byte
Ordering Instruction Storage Exceptions .
1268

2.2.2 VLE Exception Syndrome Bits. 1268

6.1 Storage Synchronization Instructions .
1311

6.2 Cache Management Instructions 1312

6.3 Cache Locking Instructions. 1312

6.4 TLB Management Instructions .. 1312

6.5 Instruction Alignment and Byte Order-

NG .. 1312

Chapter 3. VLE Compatibility with Chapter 7. Additional Categories

Books Il 1271 pvailable in VLE 1313
3.1 Overview................... 1271 71 M Assist 1313
3.2 VLE Processor and Storage Control : OVE ASSISL. -
; 72 Vector 1313
Extensions 1271 73 Signal P ind Enai 1313

3.2.1 Instruction Extensions 1271 ' 'gnal Frocessing Engine.... . ..
. 7.4 Embedded Floating Point 1313

3.22 MMU Extensions........... 1271 ;

3.3 VLE Limitations 1971 7.5 Legacy Move Assist 1313
T T 7.6 Embedded Hypervisor. 1313
. 7.7 ExternalPID 1313
Chapter 4 Branch Operation 7.8 Embedded Performance Monitor 1314

Instructions 1273 7.9 Processor Control 1314
4.1 Branch Facility Registers 1273 7.10 Decorated Storage 1314
4.1.1 Condition Register (CR). 1273 7.11 Embedded Cache Initialization . 1314

7.12 Embedded Cache Debug 1314

Table of Contents xxiii

Version 2.07 B

Appendix A. VLE Instruction Set

Sorted by Mnemonic.......... 1315
Appendix B. VLE Instruction Set

Sorted by Opcode 1331
Appendices:

Power ISA Book I-lll Appendices 1347

Appendix A. Incompatibilities with
the POWER Architecture. 1349

A.1 New Instructions, Formerly Privileged

Instructions. 1349
A.2 Newly Privileged

Instructions. 1349
A.3 Reserved Fields in

Instructions. 1349
A.4 Reserved Bits in Registers 1349
A5 AlignmentCheck 1349
A.6 Condition Register............ 1350
A7 LKandRcBits............... 1350
A8 BOField.................... 1350
A9 BHField.................... 1350
A.10 Branch Conditional to Count Register

1350
A11 SystemCall................ 1350
A.12 Fixed-Point Exception

Register (XER) 1351
A.13 Update Forms of Storage Access

Instructions. 1351
A.14 Multiple Register Loads. 1351
A.15 Load/Store Multiple Instructions 1351
A.16 Move Assist Instructions 1351
A.17 Move To/FromSPR.......... 1351
A.18 Effects of Exceptions on FPSCR Bits

FRandFl...................... 1352
A.19 Store Floating-Point Single Instruc-

tions 1352
A.20 Move FromFPSCR.......... 1352
A.21 Zeroing Bytes in the Data Cache. . ..

1352
A.22 Synchronization............. 1352
A.23 Move To Machine State Register

Instruction. 1352
A.24 Direct-Store Segments 1352
A.25 Segment Register

Manipulation Instructions 1352
A.26 TLB Entry Invalidation 1353
A.27 Alignment Interrupts 1353
A.28 Floating-Point Interrupts 1353
A.29 Timing Facilities. 1353
A.29.1 Real-TimeClock........... 1353
A.29.2 Decrementer.............. 1353

A.30 Deleted Instructions 1354
A.31 Discontinued Opcodes. 1354
A.32 POWER2 Compatibility 1355
A.32.1 Cross-Reference for Changed
POWER2 Mnemonics............ 1355
A.32.2 Load/Store Floating-Point Double .
1355
A.32.3 Floating-Point Conversion to Inte-
ger. . 1355
A.32.4 Floating-Point Interrupts 1356
A325 Trace................... 1356
A.33 Deleted Instructions 1356
A.33.1 Discontinued Opcodes 1356

Appendix B. Platform Support

Requirements 1357
Appendix C. Complete SPR List 1361
Appendix D. lllegal Instructions 1367
Appendix E. Reserved Instructions. .

e raaeaaraaaanes 1369
Appendix F. Opcode Maps 1371
Appendix G. Power ISA Instruction

Set Sorted by Category 1395
Appendix H. Power ISA Instruction

Set Sorted by Opcode 1425
Appendix I. Power ISA Instruction

Set Sorted by Mnemonic 1455
Indexiiiiinan. 1485

Last Page - End of Document ... 1495

Xxiv Power ISA™ - Book |

Version 2.07 B

Figures
Preface ..o iii 35. Instructions and byte ordering 25
36. Assembly language program ‘p’............ 25
.. 37. Big-Endian mapping of program ‘p’ 25
Table of Contentsccccoeevveveinnnnnnne. Vii 38. Little-Endian mapping of program 'p’ o5
39. Condition Register...................... 30
FIQUres......coovvoiieceeee e xxv 40 LinkRegisteroonnnn 32
41. CountRegister. 32
42. Target Address Register 32
Book I: 43. Branch History Rolling Buffer Entry 33
44. BOfieldencodings. 34
Power ISA User Instruction Set Architec- 45, “at” plt encodln.gs 34
1 46. BHfieldencodings. 35
tUre e 47. General Purpose Registers 45
48. Fixed-Point Exception Register 45
1. Category Listing 8 49. Software-use SPRs 46
2. Logical processingmodel 11 50. Floating-Point Registers. 114
3. Registers that are defined in Book | 12 51. Floating-Point Status and Control
4. linstructionformat. 14 Register. 114
5. Binstructionformat...................... 14 52. Floating-Point ResultFlags 117
6. SCinstructionformat. 14 53. Floating-point single format. 117
7. Dinstructionformat. 14 54. Floating-point double format 117
8. DSinstructionformat. 14 55. |EEE floating-pointfields 117
9. DQinstructionformat 14 56. Approximation to real numbers 117
10. XInstruction Format 15 57. Selectionof ZtandZ2.................. 121
11. XL instructionformat.................... 15 58. |EEE 64-bit executionmodel 127
12. XFXinstructionformat. 15 59. Interpretation of G, R, and X bits 127
13. XFL instructionformat................... 16 60. Location of the Guard, Round, and
14. XX1 Instruction Format 16 Sticky bits in the IEEE execution model . .. 127
15. XX2 Instruction Format 16 61. Multiply-add 64-bit execution model. 129
16. XX3 Instruction Format.................. 16 62. Location of the Guard, Round, and Sticky bits in the
17. XX4-Form Instruction Format 16 multiply-add execution model 129
18. XS instructionformat. 16 64. Format for Unsigned Decimal Data 166
19. XO instruction format. 16 65. Format for Signed DecimalData 166
20. Ainstructionformat. 16 66. Summary of BCD Digit and Sign Codes 167
21. Minstructionformat. 16 67. DFP Shortformat. 167
22. MD instructionformat 16 68. DFP Longformat 167
23. MDS instructionformat 16 69. DFP Extended format. 167
24. VAinstructionformat. 16 70. Encoding of the G field for Special Symbols . 168
25. VCinstructionformat. 16 71. Encoding of bits 0:4 of the G field for Finite Numbers
26. VXinstructionformat. 17 168
27. EVXinstructionformat. 17 72. Summary of DFP Formats. 169
28. EVSinstructionformat.................. 17 73. Value Ranges for Finite Number Data Classes ..
29. Z22 instructionformat 17 170
30. Z23instructionformat 17 74. Encoding of NaN and Infinity Data Classes.. 170
31. Storage operands and byte ordering. 24 75. Rounding 171
32. C structure ‘s’, showing values of elements .. 24 76. Encoding of DFP Rounding-Mode Control (DRN) .
33. Big-Endian mapping of structure 's’. 25 171
34. Little-Endian mapping of structure 's’ 25 77. Primary Encoding of Rounding-Mode Control 172
Figures XXV

Version 2.07 B

78.

79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.

101.
102.
103.
104.
105.

106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.

122.

123.

124.

125.

126.

Secondary Encoding of Rounding-Mode Control .
172

Summary of Ideal Exponents 172

Overflow Results When Exception Is Disabled 178

Rounding and Range Actions (Part 1). 180
Rounding and Range Actions (Part 2). 181
Actions: Add 184
Actions: Multiply 185
Actions: Divide., 186
Actions: Compare Unordered 188
Actions: Compare Ordered 189

Actions: Test Exponent 191

Actions: Test Significance 192
DFP Quantize examples 194
Actions (part 1) Quantize. 195
Actions (part2) Quantize 195
DFP Reround examples 197
Actions: Reround. 198
Actions: Round to FP Integer With Inexact.. 200

Actions: Round to FP Integer Without Inexact 201
Actions: Data-Format Conversion Instructions 202
Actions: Convert ToFixed............... 206
Actions: Insert Biased Exponent

Decimal Floating-Point Instructions Summary . .
211
Vector Registerelements 220
Vector Registers 220
Vector Status and Control Register. 220
Aligned quadword storage operand 222
Vector Register contents for aligned quadword
LoadorStore........... ..., 222
Unaligned quadword storage operand 222
Vector Registercontents. 222
Vector Gather Bits by Bytes by Doubleword 310
Vector-Scalar Registers 318
Vector-Scalar Register Elements 318
Floating-Point Registers as part of VSRs .. 319
Vector Registers as part of VSRs 320
Floating-point single-precision format 327
Floating-point double-precision format 327
Approximation to real numbers 328
SelectionofZ1andZ2 334
IEEE floating-point execution model 335
Multiply-add 64-bit execution model 336
Big-Endian storage image of array AW. ... 356
Little-Endian storage image of array AW. .. 356
Vector-Scalar Register contents for aligned quad-
word Load or Store VSX Vector. 356
Storage images ofarrayB. 357

Process to load unaligned quadword from Big-En-
dian storage using Load VSX Vector Word*4 In-
dexed. ... 357

Process to load unaligned quadword from Lit-
tle-Endian storage Load VSX Vector Word*4 In-
dexed. ... 357

Process to store unaligned quadword to Big-Endi-
an storage using Store VSX Vector Word*4 In-
dexed. ... 358

Process to store unaligned quadword to Little-En-

dian storage Store VSX Vector Word*4 Indexed

358
127. GPR 588
128. Accumulator. 588

129. Signal Processing and Embedded Floating-Point

Status and Control Register 588
130. Floating-Point Data Format 642
Book II:
Power ISA Virtual Environment Architec-
TUME o 733
1. Fixed-point load sequences............... 753
2. Vector and VSX load sequences 754
3. Program Priority Register. 757
4. Data Stream Control Register. 759
5. Valid combinations of EE and L values 788
6. Transaction Failure Handler Address Register (TF-
HAR). ..o 803
7. Transaction EXception And Status Register (TEX-
ASR). .. 803
8. Transaction EXception And Status Register Upper
(TEXASRU) ... 803
9. Transaction Failure Instruction Address Register
(TFIAR) . . .o 805
10. TimeBase 813
11. Alternate TimeBase.................... 816

12. Branch Event Status and Control Register (BESCR)
818

13. Branch Event Status and Control Register Upper
(BESCRU) 818

14. Event-Based Branch Handler Register (EBBHR) .
819

15. Event-Based Branch Return Register (EBBRR) . .
819

Book IlI-S:

Power ISA Operating Environment Archi-
tecture - Server Environment [Category:

Server] .. 839
1. Logical Partitioning Control Register 845
2. Real Mode Offset Register. 848
3. Hypervisor Real Mode Offset Register. 848
4. Logical Partition Identification Register 849
5. Processor Compatibility Register. 849
6. Thread Identification Register 856
7. Machine State Register 857
8. Processor Version Register. 871
9. Chip Information Register 871
10. Processor |dentification Register. 872
11. Control Register. 872
12. Problem State Priority Boost Register 873

XXVi

Power ISA™

Version 2.07 B

13. Relative Priority Register. 873 61. Completed Instruction Address Breakpoint Register
14. Software-use SPRs.................... 873 980
15. SPRs for use by hypervisor programs. 874 62. Data Address Watchpoint Register 980
16. Priority levels for or Rx,Rx,Rx 878 63. Data Address Watchpoint Register Extension 980
17. SPRencodings 881 64. Performance Monitor Counter registers. 985
18. SLBEforVRMA. 894 65. Monitor Mode Control Register0.......... 987
19. Address translation overview 896 66. Monitor Mode Control Register 1.......... 992
20. Translation of 64-bit effective address to 67. Monitor Mode Control Register2.......... 994
78 bitvirtual address 896 68. Monitor Mode Control Register A. 995
21. SLBEnNtry 897 69. Sampled Instruction Address Register. 998
22. Page Size Encodings 897 70. Sampled Data Address Register 998
23. Translation of 78-bit virtual address to 60-bit real 71. Sampled Instruction Event Register. 999
addressl 899 72. External Access Register. 1003
24. Page TableEntry. 900 73. Directed Privileged Doorbell Exception State Reg-
25. Format of PTE p when PTEL=1.......... 901 ister. 1006
26. SDR1. ... 901 74. Directed Hypervisor Doorbell Exception State Reg-
27. Setting the Reference and Change bits 907 iSter. ..o 1006
28. Authority Mask Register (AMR). 908
29. Instruction Authority Mask Register (IAMR) . 909 Book llI-E:
30. Authority Mask Override Register (AMOR).. 909)
31. User Authority Mask Override Register (UAMOR)
909 Power ISA Operating Environment Archi-
s2. P'? bit F|>r<t>_te°“°” ts)lta;es’ address o5 tecture - Embedded Environment [Cate-
ranslationenabled. }
33. Protection states, address translation gory: Embedded]coooeeiinnnnns 1021
disabled 913
34. Storage controlbits 915 1. Logical Partition Identification Register 1028
35. GPR contentsforslbmte. 921 2. Thread Identification Register 1031
36. GPR contents forslomfev............... 922 3. Thread Enable Register. 1031
37. GPR contents forslomfee............... 923 4. Thread Enable Status Register 1031
38. GPR contents forsibfee................. 923 5. Initialize Next Instruction Address Register .. 1033
39. GPR contents for mtsr, mtsrin, mfsr, and 6. Thread Management Register Numbers 1034
MISHN .« .o 925 7. Machine State Register 1035
40. Save/Restore Registers 937 8. Machine State Register Protect Register. ... 1037
41. Hypervisor Save/Restore Registers 937 9. Embedded Processor Control Register 1038
42. Data Address Register 938 10. Processor Version Register. 1045
43. Hypervisor Data Address Register 938 11. Chip Information Register 1045
44. Data Storage Interrupt Status Register. 938 12. Processor Identification Register. 1046
45. Hypervisor Data Storage Interrupt Status Register 13. Guest Processor Identification Register. ... 1046
938 14. Special Purpose Registers. 1046
46. Hypervisor Emulation Instruction Register .. 938 15. External Process ID Load Context Register. 1048
47. Hypervisor Maintenance Exception Register 938 16. External Process ID Store Context Register 1049
48. Hypervisor Maintenance Exception Enable Register 17. SPRNumbers 1050
939 18. Priority levels for or Rx,Rx,Rx 1058
49. Facility Status and Control Register 939 19. Address translation with page table. 1074
50. Hypervisor Facility Status and Control Register . . 20. Overlaid TLB Field Example 1081
940 21. Effective-to-Virtual-to-Real TLB Address Transla-
51. MSR setting due to interrupt 949 tionFlow.......................... 1082
52. Effective address of interrupt vector by 22. Address Translation: Virtual Address to direct TLB
interrupttype, 950 Entry Match Process. 1085
53. TimeBase..........c.. .. 973 23. Page Table Translation 1087
54, Virtual TimeBase..................... 974 24. Page TableEntry..................... 1090
55. Decrementerooiiininn.. 975 25. Access Control Process. 1095
56. Hypervisor Decrementer................ 975 26. Storage controlbits 1098
57. Processor Utilization of Resources Register. 976 27. Processor ID Register (PID). 1103
58. Scaled Processor Utilization of Resources Register 28. MMU Configuration Register [MAV=1.0] ... 1104
977 29. MMU Configuration Register [MAV=2.0] ... 1104
59. Instruction Counter 977 30. TLB Configuration Register MAV=1.0] 1105
60. Come-From Address Register............ 979 31. TLB Configuration Register [MAV=2.0] 1105
Figures xxvii

Version 2.07 B

32.
33.

34.
35.
36.

37.

38.
39.
40.
41.
42.
43.
44.
45.

46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.

62.

63.

64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.

TLB n Page Size Register. 1106

Embedded Page Table Configuration Register. . .
1107

LRAT Configuration Register

LRAT Page Size Register. 1107

MMU Control and Status Register 0 [MAV=1.0] . .
1108

MMU Control and Status Register 0 [MAV=2.0] . .
1108

MASOregister 1109
MASH1 register [MAV=1.0] 1110
MASH1 register [MAV=2.0] 1110
MAS2 register[MAV =1.0] 1110
MAS2 register[MAV =2.0] 1110
MASS register for MAS1IND=0 [MAV=1.0]. 1111
MASS3 register for MAS1IND=0 [MAV=2.0]. 1111

MASS register for MAS1IND=1 [MAV=2.0 and Cat-

egory: EPT]. ... 1111
MAS4 register [MAV=1.0] 1112
MAS4 register [MAV=2.0] 1112
MAS5register 1113
MASSG register[MAV=1.0] 1113
MASSG register[MAV=2.0] 1113
MAS7register 1114
MAS8register 1114
Save/Restore Register0............... 1145
Save/Restore Register1............... 1145
Guest Save/Restore Register 0. 1146
Guest Save/Restore Register 1. 1146
Critical Save/Restore Register0......... 1147
Critical Save/Restore Register 1. 1147
Debug Save/Restore Register0......... 1147
Debug Save/Restore Register1......... 1148
Exception Syndrome Register

Definitions 1151
Interrupt Vector Offset Register

Assignments 1152
Guest Interrupt Vector Offset Register

Assignments L 1152
Logical Page Exception Register 1153
Machine Check Save/Restore Register0.. 1153
Machine Check Save/Restore Register 1.. 1154
External Proxy Register. 1154
Guest External Proxy Register 1155
Interrupt and Exception Types 1164
Interrupt Vector Offsets. 1165
Interrupt Hierarchy. 1187
Machine State Register Initial Values 1193
TLB Initial Values 1194
TimeBase............... 1197
Decrementer 1199
Guest Decrementer. 1200
Decrementer Auto-Reload Register 1201
Guest Decrementer Auto-Reload Register . 1201

...... Relationships of the Timer Facilities 1203
. Relationships of the Guest Timer Facilities 1206

Guest Timer Status Register Write Register 1208
Watchdog State Machine 1209
Watchdog Timer Controls 1210

84. Guest Watchdog State Machine 1211
85. Guest Watchdog Timer Controls 1211
86. Debug Status Register Write Register. 1227
87. Data Cache Debug Tag Register High. 1240
88. Data Cache Debug Tag Register Low 1240
89. Instruction Cache Debug Data Register. ... 1241
90. Instruction Cache Debug Tag Register High 1241
91. Instruction Cache Debug Tag Register Low 1241
92. Thread States and PMLCan Bit Settings . . . 1252
93. [User] Performance Monitor Global Control Regis-
terO. ... 1253
94. [User] Performance Monitor Local Control A Regis-
ters ..o 1254
95. [User] Performance Monitor Local Control B Regis-
ter. . o 1255
96. [User] Performance Monitor Counter Registers. . .
1255
97. Embedded.Peformance Monitor PMRs 1257
Book VLE:
Power ISA Operating Environment Archi-
tecture -
Variable Length Encoding (VLE) Environ
ment
[Category: Variable Length Encoding].....
1259
1. BD8instructionformat 1262
2. Cinstructionformat 1262
3. IM5 instruction format. 1262
4. OIM5 instructionformat 1262
5. IM7 instruction format. 1262
6. Rinstructionformat 1262
7. RRinstructionformat................... 1262
8. SD4 instructionformat 1262
9. BD15 instructionformat 1262
10. BD24 instruction format 1263
11. D8instructionformat 1263
12. M6Ainstructionformat................. 1263
18. M6L instructionformat 1263
14. Minstructionformat................... 1263
15. SC18instruction format................ 1263
16. LI20 instructionformat 1263
17. Xinstructionformat 1263
18. Condition Register 1273
19. BO32 field encodings. 1275
20. BO16fieldencodings. 1275

Appendices:

Power ISA Book I-Ill Appendices... 1347

1.
2.

Platform Support Requirements.
SPRNumbers

XXViii

Power ISA™

Version 2.07 B

Figures xxix

Version 2.07 B

XXX Power ISA™ - Book |

Version 2.07 B

Book I:

Power ISA User Instruction Set Architecture

Book I: Power ISA User Instruction Set Architecture 1

Version 2.07 B

2 Power ISA™ - Book |

Version 2.07 B

Chapter 1. Introduction

1.1 Overview

This chapter describes computation modes, document
conventions, a processor overview, instruction formats,
storage addressing, and instruction fetching.

1.2 Instruction Mhemonics and
Operands

The description of each instruction includes the mne-
monic and a formatted list of operands. Some exam-
ples are the following.

stw RS,D(RA)
addis RT,RA,SI

Power ISA-compliant Assemblers will support the mne-
monics and operand lists exactly as shown. They
should also provide certain extended mnemonics, such
as the ones described in Appendix E of Book I.

1.3 Document Conventions

1.3.1 Definitions

The following definitions are used throughout this docu-
ment.

H program
A sequence of related instructions.

B application program
A program that uses only the instructions and
resources described in Books | and II.

H processor
The hardware component that implements the
instruction set, storage model, and other facilities
defined in the Power ISA architecture, and exe-
cutes the instructions specified in a program.

m quadword, doubleword, word, halfword, and
byte
128 bits, 64 bits, 32 bits, 16 bits, and 8 bits,
respectively.

positive
Means greater than zero.

negative
Means less than zero.

floating-point single format (or simply single
format)

Refers to the representation of a single-precision
binary floating-point value in a register or storage.

floating-point double format (or simply double
format)

Refers to the representation of a double-precision
binary floating-point value in a register or storage.

system library program

A component of the system software that can be
called by an application program using a Branch
instruction.

system service program

A component of the system software that can be
called by an application program using a System
Call instruction.

system trap handler

A component of the system software that receives
control when the conditions specified in a Trap
instruction are satisfied.

system error handler

A component of the system software that receives
control when an error occurs. The system error
handler includes a component for each of the vari-
ous kinds of error. These error-specific compo-
nents are referred to as the system alignment error
handler, the system data storage error handler,
etc.

latency

Refers to the interval from the time an instruction
begins execution until it produces a result that is
available for use by a subsequent instruction.

unavailable

Refers to a resource that cannot be used by the
program. For example, storage is unavailable if
access to it is denied. See Book III.

Chapter 1. Introduction 3

Version 2.07 B

B undefined value

May vary between implementations, and between
different executions on the same implementation,
and similarly for register contents, storage con-
tents, etc., that are specified as being undefined.

boundedly undefined

The results of executing a given instruction are
said to be boundedly undefined if they could have
been achieved by executing an arbitrary finite
sequence of instructions (none of which yields
boundedly undefined results) in the state the pro-
cessor was in before executing the given instruc-
tion. Boundedly undefined results may include the
presentation of inconsistent state to the system
error handler as described in Section 1.9.1 of Book
II. Boundedly undefined results for a given instruc-
tion may vary between implementations, and
between different executions on the same imple-
mentation.

“must”
If software violates a rule that is stated using the
word “must” (e.g., “this field must be set to 0”), the
results are boundedly undefined unless otherwise
stated.

sequential execution model

The model of program execution described in
Section 2.2, “Instruction Execution Order” on
page 29.

Auxiliary Processor

An implementation-specific processing unit. Previ-
ous versions of the architecture use the term Auxil-
iary Processing Unit (APU) to describe this
extension of the architecture. Architectural support
for auxiliary processors is part of the Embedded
category.

virtualized implementation

An implementation of the Power Architecture cre-
ated by hypervisor software. A guest operating
system sees a virtualized implementation of the
Power ISA. Architectural support for virtualized
implementations is part of the Embedded category
(see Section 1.3.5, “Categories”).

1.3.2 Notation

The following notation is used throughout the Power
ISA documents.

B All numbers are decimal unless specified in some

special way.

- Obnnnn means a number expressed in binary
format.

- Oxnnnn means a number expressed in hexa-
decimal format.

Underscores may be used between digits.

B RT, RA, R1, ... refer to General Purpose Registers.

FRT, FRA, FR1, ... refer to Floating-Point Regis-
ters.

FRTp, FRAp, FRBp, ... refer to an even-odd pair of
Floating-Point Registers. Values must be even,
otherwise the instruction form is invalid.

B VRT, VRA, VR1, ... refer to Vector Registers.

(x) means the contents of register x, where x is the
name of an instruction field. For example, (RA)
means the contents of register RA, and (FRA)
means the contents of register FRA, where RA
and FRA are instruction fields. Names such as LR
and CTR denote registers, not fields, so parenthe-
ses are not used with them. Parentheses are also
omitted when register x is the register into which
the result of an operation is placed.

(RAIO) means the contents of register RA if the RA
field has the value 1-31, or the value O if the RA
field is 0.

Bytes in instructions, fields, and bit strings are
numbered from left to right, starting with byte 0
(most significant).

Bits in registers, instructions, fields, and bit strings
are specified as follows. In the last three items
(definition of X, etc.), if X is a field that specifies a
GPR, FPR, or VR (e.g., the RS field of an instruc-
tion), the definitions apply to the register, not to the
field.

- Bits in instructions, fields, and bit strings are
numbered from left to right, starting with bit O

- For all registers except the Vector category,
bits in registers that are less than 64 bits start
with bit number 64-L, where L is the register
length; for the Vector category, bits in registers
that are less than 128 bits start with bit num-
ber 128-L.

- The leftmost bit of a sequence of bits is the
most significant bit of the sequence.

- X, means bit p of register/instruction/field/
bit_string X.

= Xp.q means bits p through g of register/instruc-
tion/field/bit_string X.

= X, q.. means bits p, q, ... of register/instruc-
tion/field/bit_string X.

—(RA) means the one’s complement of the con-
tents of register RA.

A period (.) as the last character of an instruction
mnemonic means that the instruction records sta-
tus information in certain fields of the Condition
Register as a side effect of execution.

The symbol Il is used to describe the concatena-
tion of two values. For example, 010 Il 111 is the
same as 010111.

x" means x raised to the ni" power.

4

Power ISA™ - Book |

Version 2.07 B

"x means the replication of x, n times (i.e., x con-
catenated to itself n- 1 times). "0 and "1 are spe-
cial cases:

- "0 means a field of n bits with each bit equal to
0. Thus 50 is equivalent to 0b00000.

- ™ means a field of n bits with each bit equal to
1. Thus °1 is equivalent to Ob11111.

Each bit and field in instructions, and in status and
control registers (e.g., XER, FPSCR) and Special
Purpose Registers, is either defined or reserved.
Some defined fields contain reserved values. In
such cases when this document refers to the spe-
cific field, it refers only to the defined values,
unless otherwise specified.

1, 11, 11, ... denotes a reserved field, in a register,
instruction, field, or bit string.

?, ??, 7?7, ... denotes an implementation-depen-
dent field in a register, instruction, field or bit string.

1.3.3 Reserved Fields, Reserved
Values, and Reserved SPRs

Reserved fields in instructions are ignored by the pro-
cessor. This is a requirement in the Server environment
and is being phased into the Embedded environment.

In some cases a defined field of an instruction has cer-
tain values that are reserved. This includes cases in
which the field is shown in the instruction layout as con-
taining a particular value; in such cases all other values
of the field are reserved. In general, if an instruction is
coded such that a defined field contains a reserved
value the instruction form is invalid; see Section 1.8.2
on page 22. The only exception to the preceding rule is
that it does not apply to Reserved and lllegal classes of
instructions (see Section 1.7) or to portions of defined
fields that are specified, in the instruction description,
as being treated as reserved fields.

To maximize compatibility with future architecture
extensions, software must ensure that reserved fields
in instructions contain zero and that defined fields of
instructions do not contain reserved values.

The handling of reserved bits in System Registers (e.qg.,
XER, FPSCR) depends on whether the processor is in
problem state. Unless otherwise stated, software is per-
mitted to write any value to such a bit. In problem state,
a subsequent reading of the bit returns 0 regardless of
the value written; in privileged states, a subsequent
reading of the bit returns 0 if the value last written to the
bit was 0 and returns an undefined value (0 or 1) other-
wise.

In some cases, a defined field of a System Register has
certain values that are reserved. Software must not set
a defined field of a System Register to a reserved
value. References elsewhere in this document to a
defined field (in an instruction or System Register) that
has reserved values assume the field does not contain
a reserved value, unless otherwise stated or obvious
from context.

In some cases, a given bit of a System Register is
specified to be set to a constant value by a given
instruction or event. Unless otherwise stated or obvious
from context, software should not depend on this con-
stant value because the bit may be assigned a meaning
in a future version of the architecture.

The reserved SPRs include SPRs 808, 809, 810, and
811. mitspr and mfspr instructions specifying these
SPRs are treated as noops. Reserved SPRs are pro-
vided in the architecture to anticipate the eventual
adoption of performance hint functionality that must be
controlled by SPRs. Control of these capabilities using
reserved SPRs will allow software to use these new
capabilities on new implementations that support them
while remaining compatible with existing implementa-
tions that may not support the new functionality.

Chapter 1. Introduction 5

Version 2.07 B

Reserved SPRs are not assigned names. There are no
individual descriptions of reserved SPRs in this docu-
ment.

—— Assembler Note

Assemblers should report uses of reserved values
of defined fields of instructions as errors.

— Programming Note

It is the responsibility of software to preserve bits
that are now reserved in System Registers,
because they may be assigned a meaning in some
future version of the architecture.

In order to accomplish this preservation in imple-
mentation-independent fashion, software should do
the following.

B [nitialize each such register supplying zeros for
all reserved bits.

B Alter (defined) bit(s) in the register by reading
the register, altering only the desired bit(s),
and then writing the new value back to the reg-
ister.

The XER and FPSCR are partial exceptions to this
recommendation. Software can alter the status bits
in these registers, preserving the reserved bits, by
executing instructions that have the side effect of
altering the status bits. Similarly, software can alter
any defined bit in the FPSCR by executing a Float-
ing-Point Status and Control Register instruction.
Using such instructions is likely to yield better per-
formance than using the method described in the
second item above.

1.3.4 Description of Instruction
Operation

Instruction descriptions (including related material such
as the introduction to the section describing the instruc-
tions) mention that the instruction may cause a system
error handler to be invoked, under certain conditions, if
and only if the system error handler may treat the case
as a programming error. (An instruction may cause a
system error handler to be invoked under other condi-
tions as well; see Chapter 6 of Book 11I-S and Chapter 7
of Book IlI-E).

A formal description is given of the operation of each
instruction. In addition, the operation of most instruc-
tions is described by a semiformal language at the reg-
ister transfer level (RTL). This RTL uses the notation
given below, in addition to the notation described in
Section 1.3.2. Some of this notation is also used in the
formal descriptions of instructions. RTL notation not
summarized here should be self-explanatory.

The RTL descriptions cover the normal execution of the
instruction, except that “standard” setting of status reg-

isters, such as the Condition Register, is not shown.
(“Non-standard” setting of these registers, such as the
setting of the Condition Register by the Compare
instructions, is shown.) The RTL descriptions do not
cover cases in which the system error handler is
invoked, or for which the results are boundedly unde-
fined.

The RTL descriptions specify the architectural transfor-
mation performed by the execution of an instruction.
They do not imply any particular implementation.

Notation Meaning

« Assignment

“iea Assignment of an instruction effective
address. In 32-bit mode the high-order 32
bits of the 64-bit target address are set to

0.

- NOT logical operator

+ Two’s complement addition

- Two’s complement subtraction, unary
minus

x Multiplication

Xgi Signed-integer multiplication

X Unsigned-integer multiplication

/ Division

Division, with result truncated to integer
Square root
Equals, Not Equals relations
, >, > Signed comparison relations
, >U Unsigned comparison relations
? Unordered comparison relation
&, | AND, OR logical operators
®, = Exclusive OR, Equivalence logical opera-
tors ((a=b) = (a®-b))
ABS(x) Absolute value of x
BCD_TO_DPD(x)
The low-order 24 bits of x contain six, 4-bit
BCD fields which are converted to two
declets; each set of two declets is placed
into the low-order 20 bits of the result. See
Section B.1, “BCD-to-DPD Translation”.
CEIL(x) Least integer > x
DCR(x) Device Control Register x <E.DC>
DOUBLE(x) Result of converting x from floating-point
single format to floating-point double for-
mat, using the model shown on page 131
DPD_TO_BCD(x)
The low-order 20 bits of x contain two
declets which are converted to six, 4-bit
BCD fields; each set of six, 4-bit BCD
fields is placed into the low-order 24 bits of
the result. See Section B.2, “DPD-to-BCD
Translation”.
Result of extending x on the left with sign
bits
FLOOR(x) Greatest integer < x
GPR(x) General Purpose Register x

IA

i
<
<

c -

EXTS(x)

6 Power ISA™ - Book |

Version 2.07 B

MASK(x, y) Mask having 1s in positions x through y
(wrapping if x > y) and Os elsewhere
MEM(x, y) Contents of a sequence of y bytes of stor-
age. The sequence depends on the byte
ordering used for storage access, as fol-
lows.
Big-Endian byte ordering:
The sequence starts with the byte at
address x and ends with the byte at
address x+y-1.
Little-Endian byte ordering:
The sequence starts with the byte at
address x+y-1 and ends with the byte at
address x.

MEM_DECORATED(x,y,z)
Contents of a sequence of y bytes of storage,
where the storage is accessed with decoration
z applied. The sequence depends on the byte
ordering used for storage access, as follows.
Big-Endian byte ordering:
The sequence starts with the byte at address
x and ends with the byte at address x+y-1.
Little-Endian byte ordering:
The sequence starts with the byte at address
x+y-1 and ends with the byte at address x.

MEM_NOTIFY(x,z)
The decoration z is sent to storage location x.

ROTLe4(x, y)
Result of rotating the 64-bit value x left y
positions

ROTLgs(x, y)
Result of rotating the 64-bit value xlIx left y
positions, where x is 32 bits long

SINGLE(x) Result of converting x from floating-point
double format to floating-point single for-
mat, using the model shown on page 135

SPR(x) Special Purpose Register x

switch/case/default
switch/case/default statement, indenting
shows range. The clause after “switch”
specifies the expression to evaluate. The
clause after “case” specifies individual val-
ues for the expression, followed by a
colon, followed by the actions that are
taken if the evaluated expression has any
of the specified values. “default” is
optional. If present, it must follow all the
“case” clauses. The clause after “default”
starts with a colon, and specifies the
actions that are taken if the evaluated
expression does not have any of the val-
ues specified in the preceding case state-

ments.
TRAP Invoke the system trap handler
characterization

Reference to the setting of status bits, in a
standard way that is explained in the text
undefined An undefined value.

CIA Current Instruction Address, which is the
64-bit address of the instruction being
described by a sequence of RTL. Used by
relative branches to set the Next Instruc-
tion Address (NIA), and by Branch instruc-
tions with LK=1 to set the Link Register.
Does not correspond to any architected
register.

NIA Next Instruction Address, which is the
64-bit address of the next instruction to be
executed. For a successful branch, the
next instruction address is the branch tar-
get address: in RTL, this is indicated by
assigning a value to NIA. For other instruc-
tions that cause non-sequential instruction
fetching (see Book IIl), the RTL is similar.
For instructions that do not branch, and do
not otherwise cause instruction fetching to
be non-sequential, the next instruction
address is CIA+4 (VLE behavior is differ-
ent; see Book VLE). Does not correspond
to any architected register.

if... then... else...

Conditional execution, indenting shows
range; else is optional.

do Do loop, indenting shows range. “To” and/
or “by” clauses specify incrementing an
iteration variable, and a “while” clause
gives termination conditions.

leave Leave innermost do loop, or do loop
described in leave statement.
for For loop, indenting shows range. Clause

after “for” specifies the entities for which to
execute the body of the loop.

Chapter 1. Introduction 7

Version 2.07 B

The precedence rules for RTL operators are summa-
rized in Table 1. Operators higher in the table are
applied before those lower in the table. Operators at the
same level in the table associate from left to right, from
right to left, or not at all, as shown. (For example, -
associates from left to right, so a-b-c = (a-b)-c.)
Parentheses are used to override the evaluation order
implied by the table or to increase clarity; parenthe-
sized expressions are evaluated before serving as
operands.

Table 1: Operator precedence

Operators Associativity
& @, = left to right

| left to right

: (range) none
“,€iea none

1.3.5 Categories

Table 1: Operator precedence Each facility (including registers and fields therein) and
Operators Associativity instruction is in exactly one of the categories listed in
Figure 1.
subscript, function evaluation left to right 9
pre-superscript (replication), right to left A category may bg defined as a dependent .category.
post-superscript (exponentiation) These are categories that are supported only if the cat-
- egory they are dependent on is also supported. Depen-
unary -, = right to left dent categories are identified by the “” in their category
X, + left to right name, e.g., if an implementation supports the Float-
¥ -, left to right ing-Point.Record category, then the Floating-Point cate-
m left to right gory is also supported.
= 2 < < > < 507 left to right An implementation that supports a facility or instruction
in a given category, except for the two categories
Category IAbvr. Notes
Base B Required for all implementations
Server S Required for Server implementations
Embedded E Required for Embedded implementations
Alternate Time Base ATB An additional Time Base; see Book I
Cache Specification CS Specify a specific cache for some instructions; see Book Il
Decimal Floating-Point DFP Decimal Floating-Point facilities
Decorated Storage DS Decorated Storage facilities
Elemental Memory Barriers EMB More granular memory barrier support
Embedded.Cache Debug E.CD Provides direct access to cache data and directory content
Embedded.Cache Initialization E.CI Instructions that invalidate the entire cache
Embedded.Device Control E.DC Legacy Device Control bus support
Embedded.Enhanced Debug E.ED Embedded Enhanced Debug facility; see Book IlI-E
Embedded.External PID E.PD Embedded External PID facility; see Book IlI-E
Embedded.Hypervisor E.HV Embedded Logical Partitioning and hypervisor facilities
Embedded.Hypervisor.LRAT E.HV.LRAT |Embedded Hypervisor Logical to Real Address Translation
facility; see Book IlI-E
Embedded.Little-Endian E.LE Embedded Little-Endian page attribute; see Book IlI-E
Embedded.MMU Type FSL E.MMUF |Type FSL Storage Control
Embedded.Page Table E.PT Embedded Page Table facility; see Book IlI-E
Embedded.TLB Write Conditional E.TWC Embedded TLB Write Conditional facility; see Book IlI-E
Embedded.Performance Monitor E.PM Embedded Performance Monitor example; see Book IlI-E
Embedded.Processor Control E.PC Embedded Processor Control facility; see Book IlI-E
Embedded Cache Locking ECL Embedded Cache Locking facility; see Book IlI-E

Figure 1.

Category Listing (Sheet 1 of 2)

8 Power ISA™ - Book |

Version 2.07 B

Category IAbvr.

Notes

Embedded Multi-Threading EM
Embedded Multi-Threading.Thread |EM.TM
Management

Embedded Multi-Threading; see Book IlI-E
Embedded Multi-Threading Thread Management Facility

External Control EC External Control facility; see Book Il

External Proxy EXP External Proxy facility; see Book IlI-E

Floating-Point FP Floating-Point Facilities
Floating-Point.Record FPR Floating-Point instructions with Rc=1

Legacy Integer Multiply-Accumulate’ |LMA

Legacy Integer Multiply-accumulate instructions

SPE.Embedded Float Scalar Double |SP.FD
SPE.Embedded Float Scalar Single |SP.FS

Legacy Move Assist LMV Determine Left most Zero Byte instruction
Load/Store Quadword LsSQ Load/Store Quadword instructions; see Book IlI-S
Memory Coherence MMC Requirement for Memory Coherence; see Book Il
Move Assist MA Move Assist instructions

Processor Compatibility PCR Processor Compatibility Register

Server.Relaxed Page Table Alignment |S.RPTA HTAB alignment on 256 KB boundary; see Book IlI-S
Signal Processing Engine’ 2 SP Facility for signal processing

GPR-based Floating-Point double-precision instruction set
GPR-based Floating-Point single-precision instruction set

SPE.Embedded Float Vector SP.FV GPR-based Floating-Point Vector instruction set

Store Conditional Page Mobility SCPM Store Conditional accounting for page movement; see Book Il

Stream STM Stream variant of debt instruction; see Book Il

Strong Access Order SAO Assist for X86 and Sparc emulation; see Book Il

Trace TRC Trace Facility; see Book IlI-S

Transactional Memory ™ Full hardware Transactional Memory support

Variable Length Encoding VLE Variable Length Encoding facility; see Book VLE

Vector-Scalar Extension VSX Vector-Scalar Extension
Requires implementation of Floating-Point and Vector catego-
ries

Vector' % Vector facilities

Vector.Little-Endian V.LE Little-Endian support for Vector storage operations.

Vector.AES V.AES Advanced Encryption Standard assist instructions

Vector.SHA2 V.SHA2 Secure Hash Algorithm-2 assist instructions

Vector.RAID V.RAID Vector Permute-XOR instruction

Wait WT wait instruction; see Book Il

64-Bit 64 Required for 64-bit implementations; not defined for 32-bit impl’s

f

Because of overlapping opcode usage, SPE is mutually exclusive with Vector and with Legacy Integer Multi-
ply-Accumulate, and Legacy Integer Multiply-Accumulate is mutually exclusive with Vector.
P The SPE-dependent Floating-Point categories are collectively referred to as SPE.Embedded Float_* or SP.*.

Figure 1. Category Listing (Sheet 2 of 2)

An instruction in a category that is not supported by the
implementation is treated as an illegal instruction or an
unimplemented instruction on that implementation (see
Section 1.7.2).

For an instruction that is supported by the implementa-
tion with field values that are defined by the architec-
ture, the field values defined as part of a category that
is not supported by the implementation are treated as
reserved values on that implementation (see Section
1.3.3 and Section 1.8.2).

Bits in a register that are in a category that is not sup-
ported by the implementation are treated as reserved.

1.3.5.1 Phased-In/Phased-Out

There are two special categories, Phased-In and
Phased-Out, as well as two additional variations of
Phased-In as defined below. Abbreviations, if applica-
ble, are shown in parentheses.

Phased-In

These are facilities and instructions that, in the
next version of the architecture, will be required as
part of the category they are dependent on.

Servers do not implement a facility or instruction in
this category. Servers that comply with earlier ver-

Chapter 1. Introduction 9

Version 2.07 B

sions of this architecture may have optionally
implemented facilities or instructions that were cat-
egory Phased-In.

Server, Embedded.Phased-In (S,E.PI)

These are facilities and instructions that are part of
the Server environment and, in the next version of
the architecture, will be required for the Embedded
environment.

It is implementation-dependent whether Embed-
ded processors implement a facility or instruction
in this category.

Embedded, Server.Phased-In (E,S.PI)

These are facilities and instructions that are part of
the Embedded environment and, in the next ver-
sion of the architecture, will be required for the
Server environment.

Servers do not implement a facility or instruction in
this category.

Phased-Out

These are facilities and instructions that, in some
future version of the architecture, will be dropped
out of the architecture. System developers should
develop a migration plan to eliminate use of them
in new systems.

For Server platforms, Phased-Out facilities and
instructions must be implemented if the facility or
instruction is part of another category (including
the Base category) that is supported by the Server
platform.

—— Programming Note

Warning: Instructions and facilities being phased
out of the architecture are likely to perform poorly
on future implementations. New programs should
not use them.

— Programming Note

Facilities are categorized as Phased-In only in
cases where there is a difference between the
Server and Embedded environments.

1.3.5.2 Corequisite Category

A corequisite category is an additional category that is
associated with an instruction or facility, and must be
implemented if the instruction or facility is implemented.

1.3.5.3 Category Notation

Instructions and facilities are considered part of the
Base category unless otherwise marked. If a section is
marked with a specific category tag, all material in that
section and its subsections are considered part of the
category, unless otherwise marked. Overview sections

may contain discussion of instructions and facilities
from various categories without being explicitly marked.

An example of a category tag is: [Category: Server].
Alternatively, a shorthand notation of a category tag
includes the category name in angled brackets “<>”,
such as <E.HV>.

An example of a dependent category is:
[Category: Server.Phased-In]

The shorthand <E> and <S> may also be used for Cat-
egory: Embedded and Server respectively.

1.3.6 Environments

All implementations support one of the two defined
environments, Server or Embedded. Environments
refer to common subsets of instructions that are shared
across many implementations. The Server environment
describes implementations that support Category:
Base and Server. The Embedded environment
describes implementations that support Category:
Base and Embedded.

10 Power ISA™ - Book |

Version 2.07 B

1.4 Processor Overview

The basic classes of instructions are as follows:

W branch instructions (Chapter 2)

B GPR-based scalar fixed-point instructions (Chap-
ter 3, Chapter 9, and Chapter 11)

B GPR-based vector fixed-point instructions (Chap-
ter 8)

B GPR-based scalar and vector floating-point
instructions (Chapter 10)

B FPR-based scalar floating-point
(Chapter 4)

B FPR-based scalar decimal floating-point instruc-
tions (Chapter 5)

m VR-based vector fixed-point and floating-point
instructions (Chapter 6)

B VSR-based scalar and vector floating-point
instructions (Chapter 7)

instructions

Scalar fixed-point instructions operate on byte, half-
word, word, doubleword, and quadword (see Book
I1I-S) operands, where each operand contained in a
GPR. Vector fixed-point instructions operate on vectors
of byte, halfword, and word operands, where each vec-
tor is contained in a GPR or VR. Scalar floating-point
instructions operate on single-precision or double-pre-
cision floating-point operands, where each operand is
contained in a GPR, FPR, or VSR. Vector floating-point
instructions operate on vectors of single-precision and
double-precision floating-point operands, where each
vector is contained in a GPR, VR, or VSR.

The Power ISA uses instructions that are four bytes
long and word-aligned (VLE has different instruction
characteristics; see Book VLE). It provides for byte,
halfword, word, doubleword, and quadword operand
loads and stores between storage and a set of 32 Gen-
eral Purpose Registers (GPRs). It provides for word
and doubleword operand loads and stores between
storage and a set of 32 Floating-Point Registers
(FPRs). It also provides for byte, halfword, word, and
quadword operand loads and stores between storage
and a set of 32 Vector Registers (VRs). It provides for
doubleword and quadword operand loads and stores
between storage and a set of 64 Vector-Scalar Regis-
ters (VSRs).

Signed integers are represented in two’s complement
form.

There are no computational instructions that modify
storage; instructions that reference storage may refor-
mat the data (e.g. load halfword algebraic). To use a
storage operand in a computation and then modify the
same or another storage location, the contents of the
storage operand must be loaded into a register, modi-
fied, and then stored back to the target location.
Figure 2 is a logical representation of instruction pro-
cessing. Figure 3 shows the registers that are defined
in Book I. (A few additional registers that are available

to application programs are defined in other Books, and
are not shown in the figure.)

branch
p instruction
processing
instructions ¢
4 N
4 v v
GPR-based FPR-based || VR-based | VSR-based
instruction instruction instruction instruction
processing processing || processing | processing
scalar scalar vector scalar
fixed-point floating-point fixed-point floating-point
floating-point floating-point | vector
vector permute floating-point
fixed-point permute
floating-point
4 4 4
- J/
4
4 vy __ data h 4 h 4
4
v
instructions
storage

Figure 2. Logical processing model

Chapter 1. Introduction 11

Version 2.07 B

CR | FPSCR
32 63 32 63
“Condition Register” on page 30 “Floating-Point Status and Control Register” on
page 114
| R |
0 63 Category: Vector:
“Link Register” on page 32 VRO
\ CTR | VR 1
0 63
“Count Register” on page 32
VR 30
GPR O VR 31
GPR 1 0 127

“Vector Registers” on page 220

GPR 30 | VSCR
96 127
GPR 31 “Vector Status and Control Register” on page 220
0 63
“General Purpose Registers” on page 45 Category: Vector-Scalar Extension:
XER | VSR 0
0 63 VSR 1
“Fixed-Point Exception Register” on page 45
| VRSAVE | VSR 62
32 63
“VR Save Register” on page 221 5 VSR 63 =

Category: Embedded:

“Vector-Scalar Registers” on page 318

SPRG4
SPRG5 Category: SPE:
SPRG6
SPRG7 | Accumulator
0 63 0 63

“Software-use SPRs” on page 46. “Accumulator” on page 588

Category: Floating-Point: SPEFSCR |
32 63
FPRO “Signal Processing and Embedded Floating-Point Sta-
FPR 1 tus and Control Register” on page 588
FPR 30
FPR 31
0 63

“Floating-Point Registers” on page 114

Figure 3. Registers that are defined in Book |

12 Power ISA™ - Book |

Version 2.07 B

1.5 Computation modes

1.5.1 Modes [Category: Server]

Processors provide two execution modes, 64-bit mode
and 32-bit mode. In both of these modes, instructions
that set a 64-bit register affect all 64 bits. The computa-
tional mode controls how the effective address is inter-
preted, how Condition Register bits and XER bits are
set, how the Link Register is set by Branch instructions
in which LK=1, and how the Count Register is tested by
Branch Conditional instructions. Nearly all instructions
are available in both modes (the only exceptions are a
few instructions that are defined in Book IlI-S). In both
modes, effective address computations use all 64 bits
of the relevant registers (General Purpose Registers,
Link Register, Count Register, etc.) and produce a
64-bit result. However, in 32-bit mode the high-order 32
bits of the computed effective address are ignored for
the purpose of addressing storage; see Section 1.10.3
for additional details.

— Programming Note

Although instructions that set a 64-bit register affect
all 64 bits in both 32-bit and 64-bit modes, operat-
ing systems often do not preserve the upper 32-bits
of all registers across context switches done in
32-bit mode. For this reason, application programs
operating in 32-bit mode should not assume that
the upper 32 bits of the GPRs are preserved from
instruction to instruction unless the operating sys-
tem is known to preserve these bits.

1.5.2 Modes [Category: Embed-
ded]

64-bit processors provide 64-bit mode and 32-bit mode.
The differences between the two modes are
described below. 32-bit processors provide only
32-bit mode, and do so as described at the end of this
section.

B In 64-bit mode, the processor behaves as
described for 64-bit mode in the Server environ-
ment; see Section 1.5.1.

® In 32-bit mode, the processor behavior depends
on whether the high-order 32 bits of GPRs are
implemented in 32-bit mode, as follows.

- If these bits are implemented in 32-bit mode,
the processor behaves as described for 32-bit
mode in the Server environment.

- If these bits are not implemented in 32-bit
mode, the processor behaves as described for
32-bit mode in the Server Environment except
for the following.

one or more fields as shown below for the different

- When an effective address is placed in a
register other than the Initialize Next
Instruction register (see Section 3.7.1 of
Book IlI-E) by an instruction or event, the
high-order 32 bits are set to an undefined
value (see Section 1.10.3).

- Except for instructions in the SPE cate-
gory, instructions that operate on GPRs
and SPRs use only the low-order 32 bits
of the source GPR or SPR and produce a
32-bit result; the high-order 32 bits of tar-
get GPRs are set to an undefined value,
and the high-order 32 bits of target SPRs
are preserved. The 64-Bit category is not
supported.

— Programming Note

The high-order 32 bits of 64-bit SPRs are
not modified in 32-bit mode because for
some 64-bit SPRs, such as the Thread
Enable Register (see Section 3.3 of Book
IlI-E), these bits control facilities that are
active in 32-bit mode. Treating all 64-bit
SPRs the same way in this regard simpli-
fies architecture and implementation.

Implementations may provide a means for select-
ing between the two treatments of the high-order
32 bits of GPRs in 32-bit mode (i.e., for selecting
between the behavior described in the first
sub-bullet and the behavior described in the sec-
ond sub-bullet). The means, if provided, is imple-
mentation-specific ~ (including any software
synchronization requirements for changing the
selection), but must be hypervisor privileged, and
the hypervisor must ensure that the selection is
constant for a given partition.

32-bit processors provide only 32-bit mode, and pro-
vide it as described by the second sub-bullet of the
32-bit mode bullet above.

1.6 Instruction Formats

All instructions are four bytes long and word-aligned
(except for VLE instructions; see Book VLE). Thus,
whenever instruction addresses are presented to the
processor (as in Branch instructions) the low-order two
bits are ignored. Similarly, whenever the processor
develops an instruction address the low-order two bits
are zero.

Bits 0:5 always specify the opcode (OPCD, below).
Many instructions also have an extended opcode (XO,
below). The remaining bits of the instruction contain

instruction formats.

Chapter 1. Introduction 13

Version 2.07 B

The format diagrams given below show horizontally all
valid combinations of instruction fields. The diagrams
include instruction fields that are used only by instruc-
tions defined in Book Il or in Book III.

Split Field Notation

In some cases an instruction field occupies more than
one contiguous sequence of bits, or occupies one con-
tiguous sequence of bits that are used in permuted
order. Such a field is called a split field. In the format
diagrams given below and in the individual instruction
layouts, the name of a split field is shown in small let-
ters, once for each of the contiguous sequences. In the
RTL description of an instruction having a split field,
and in certain other places where individual bits of a
split field are identified, the name of the field in small
letters represents the concatenation of the sequences
from left to right. In all other places, the name of the
field is capitalized and represents the concatenation of
the sequences in some order, which need not be left to
right, as described for each affected instruction.

1.6.1 |-FORM

0 6 30 31
| OPCD | LI |AA|LK]

Figure 4. |instruction format

1.6.2 B-FORM

0 6 1" 16 31

30
| opcD [BO | BI | BD |AA|LK]|

Figure 5. B instruction format

1.6.3 SC-FORM

11 16 20 27 30 31

OPCD n " /I | LEV {1/
OPCD n " i i /A

Figure 6. SC instruction format

1.6.4 D-FORM

0 1 16 31
OPCD RT RA D
OPCD RT RA SI
OPCD RS RA D
OPCD RS RA ul
OPCD |BF|/|L| RA SI
OPCD |BF|/|L| RA ul
OPCD TO RA SI
OPCD FRT RA D
OPCD FRS RA D

Figure 7. D instruction format

1.6.5 DS-FORM

0 6 11 16 30 31
OPCD RT RA DS X0
OPCD RS RA DS X0
OPCD | RSp RA DS X0
OPCD | FRTp RA DS XO
OPCD | FRSp RA DS X0

Figure 8. DS instruction format

1.6.6 DQ-FORM

0 6 11 16 28 31

| OPCD | RTp RA DQ 1

Figure 9. DAQ instruction format

14 Power ISA™ - Book |

Version 2.07 B

1.6.7 X-FORM 0 6 11 16 21 31

. OPCD | FRT |S FRB X0 Rc
OPCD | RT RA 1 X0 / OPCD | FRTp |S FRBp X0 Rc
OPCD RT RA RB X0 / OPCD FRS RA RB X0 /
OPCD RT RA RB XO EH OPCD FRSp RA RB XO /
OPCD RT RA NB XO / OPCD BT /i ! X0 Rc
OPCD | RT |/[SR | /i XO / OPCD | RA RB X0 /
OPCD RT 1l BB XO / OPCD /i /i RB X0 /
OPCD RT 1l RB XO 1 OPCD /i /i ! X0 /
OPCD RT /] /] XO / OPCD /i /i El /I XO /
oPch | Rs RA RB X0 Rc OPCD | // [H] /i I X0 /
OPCD RT =Y RB XO Rc OPCD Al // /i i XO 1
OPCD RS RA RB XO 1 OPCD Al // |R /i 1 X0 1
OPCD RS RA RB XO / OPCD /i RA RB XO 1
oPcD | RS RA NB X0 / OPCD | /1 WC| /i I X0 /
OPCD RS RA SH XO Rc OPCD | /Il | T RA RB X0 /
OPCD | RS RA /" X0 Rc OPCD | VRT | RA RB X0 /
OPCD RS RA /] XO / OPCD VRS RA RB X0 /
OPCD RS |/ | SR /] XO / OPCD MO 1/ 1 X0 /
gggg 2: ; Z F;/I/B ig j Figure 10. X Instruction Format
OPCD | RS | / | X0 / 1.6.8 XL-FORM
OPCD | TH RA RB X0 /) . ; B . .
OPCD |BF|/[L| RA | RB X0 / oPcD | BT BA | BB X0 /
OPCD |BF| /| FRA | FRB X0 / OPCD | BO Bl |/ BH x0 |K
OPCD |BF [/ [BFA[/| Il X0 / OPCD 7 E X0 ;
OPCD |BF | /| /W W U |/| X0 |Rel * "GpcD | BF [/ [BFA[/] 7 X0 |/
OPCD |BF |/ | /i 1 X0 / OPCD 7 X0 ;
OPCD | TH RA RB X0 / OPCD oC) ;
opcD |/[cT /i 1 X0 /
OPCD /| CT RA RB XO / Figure 11. XL instruction format
OoPcD | //|L| RA | RB X0 /
oPCD | // JL| /W | RB xo [/] 1.6.9 XFX-FORM
opcD | /m L] 1 X0 / 0 6 1 21 s
OPCD |/ [L|/[E | W X0 |/ OPCD | RT Spr X0 |/
OPCD | TO RA RB X0 / OPCD | RT tor X0 /
OPCD | FRT | RA | RB X0 / OPCD | RT [0 n X0 /
OPCD | FRT | FRA | FRB X0 / OPCD | RT 1] FXM |/ XO /
OPCD | FRTp | RA | RB X0 / OPCD | RT der X0 !
OPCD | FRT | // | FRB X0 |Rc OPCD | RT pmm X0 /
OPCD | FRT | // | FRBp X0 |Rc OPCD | RT BHRBE X0 /
OPCD | FRT | /I 7l X0 |Re OPCD | DUI DUIS X0 /
OPCD | FRTp | /Il FRB X0 Rc OPCD | RS 0 FXM |/ X0 /
OPCD | FRTp | /W | FRBp X0 Rc OPCD | RS 1] FBXM |/ X0 /
OPCD | FRTp | FRA | FRBp X0 Rc OPCD | RS spr X0 /
OPCD | FRTp | FRAp | FRBp X0 Rc OPCD | RS der X0 /
OPCD |BF[//| FRA | FRBp X0 / OPCD | RS pmrn X0 /
OPCD | BF | /| FRAp | FRBp X0 / Figure 12. XFX instruction format

Figure 10. X Instruction Format

Chapter 1. Introduction 15

Version 2.07 B

1.6.10 XFL-FORM 1.6.16 XO-FORM
0 6 7 15 16 21 31 0 6 1 16 21 22 31
|OPCD Ll FM W FRB [XO [Rc| OPCD | RT RA | RB |OE[XO |Rc
Figure 13. XFL instruction format OPCD | RT | RA | RB | /| XO |Rc
OPCD RT RA RB / XO /
OPCD RT RA /Il |OEl XO Rc
1.6.11 XX1-FORM
0 6 11 16 21 31 Figure 19. XO instruction format
OPCD T RA RB X0 X
OPCD S RA RB X0 S 1.6.17 A-FORM
0 6 1 16 21 31 0 6 1" 16 21 26 31
i] OPCD FRT FRA FRB | FRC XO |Rc
Figure 14. XX1 Instruction Format oPCD | FRT FRA FRB i X0 |Rc
OPCD FRT FRA " FRC XO |[Rc
1.6.12 XX2-FORM OPCD | FRT I FRB| // | XO |Rc
0 6 99 ww® 2 fad OPCD | RT RA RB | BC | XO |/
OPCD T I B X0 BXITX
Figure 20. A instruction format
OPCD TR X0 BT
opco [BF || m | B x Pl 1.6.18 M-FORM
0 6 9 M 14 16 21 3031 0 o " " o1 ” o
Figure 15. XX2 Instruction Format OPCD RS RA RB MB ME [Rc
OPCD RS RA SH MB ME |Rc
1.6.13 XX3-FORM Figure 21. M instruction format
0 6 9 M 16 2122 24 293031
OPCD A B X0 AX|BXTX 1.6.19 MD-FORM
OPCD A B [k xo bp . y o 8 7w s
OPCD BF | // A B X0 AX|BX | OPCD RS RA sh mb |XO|sh|Rc
OPCD | T A B s xo |ulbim OPCD | RS | RA | sh | me [XOjshjRe
OPCD T A B ixo ml xo AXIBXTX Figure 22. MD instruction format
0 6 9 M 16 2122 24 293031
Figure 16. XX3 Instruction Format 1.6.20 MDS-FORM
0 6 11 16 21 27 31
OPCD RS RA RB mb XO |Rc
1.6.14 XX4-FORM OPCD | RS RA RB me | XO [Rc
0 6 11 16 21 26 28293031
‘ OPCD ‘ T ‘ A ‘ B | c ‘ X0 ‘CX‘AX|BX‘TX| Figure 23. MDS instruction format
0 6 11 16 21 26 28293031
Figure 17. XX4-Form Instruction Format 1-6-21 VA'FORM
0 6 1 16 21 26 31
1.6.15 XS-FORM OPCD | VAT | VRA | VRB | VRC | XO
0 6 1 16 21 30 31 OPCD VRT VRA | VRB /‘ SHB X0
|OoPcD | RS | RA | sh | XO [sh[R]
Figure 18. XS instruction format Figure 24. VA instruction format
1.6.22 VC-FORM
0 6 1 16 21 22 31
[OPCD [VRT | VRA [VRB [R¢[XO |

Figure 25. VC instruction format

16 Power ISA™ - Book |

Version 2.07 B

1.6.23 VX-FORM

0 6 1 16 21 31
OPCD | VRT | VRA |VRB X0
OPCD | VRT | /i | VRB X0
OPCD | VRT | UM |VRB X0
OPCD | VRT |/ UM | VRB X0
OPCD | VRT /[UM | VRB X0
OPCD | VRT | /i [UM| VRB X0
OPCD | VRT | SIM | 71/ X0
OPCD | VRT i X0
OPCD I [VRB X0

Figure 26. VX instruction format

1.6.24 EVX-FORM

0 6 1 16 21 31
OPCD RS RA RB X0
OPCD RS RA ul X0
OPCD RT " RB X0
OPCD RT RA RB X0
OPCD RT RA " X0
OPCD RT ul RB X0
OPCD | BF | /'l RA RB XO
OPCD RT RA ul XO
OPCD RT SI " XO

Figure 27. EVX instruction format

1.6.25 EVS-FORM

1 16 21

29 31

0 6
[OPCD | RT [RA | RB | XO

|BFA|

Figure 28. EVS instruction format

1.6.26 Z22-FORM

0 6 11 1516 22

3

OPCD |BF |//| FRA | DCM X0 /
OPCD |BF |//| FRAp | DCM X0 /
OPCD |BF |//| FRA | DGM XO /
OPCD | BF |//| FRAp | DGM X0 /
OPCD | FRT | FRA | SH XO R
OPCD | FRTp | FRAp | SH X0 Re

Figure 29. Z22 instruction format

1.6.27 Z23-FORM

0 6 11 16 A 28 31
OPCD | FRT TE FRB |RNC XO Re

OPCD | FRTp | TE | FRBp M| XO [
OPCD | FRT | FRA | FRB [AC| XO [
OPCD | FRTp | FRA | FRBp [AC| XO [
OPCD | FRTp | FRAp | FRBp [AC| XO [

OPCD | FRT /Il |R| FRB |RUC X0 Re
OPCD | FRTp | /// |R FRBp |RMC XO Re

Figure 30. Z23 instruction format

1.6.28

A (6)

Field used by the tbegin. instruction to specify an
implementation-specific function.

Instruction Fields

Field used by the tend. instruction to specify the
completion of the outer transaction and all nested

transactions.
AA (30)
Absolute Address bit.
0 The immediate field represents an

address relative to the current instruction
address. For I-form branches the effective
address of the branch target is the sum of
the LI field sign-extended to 64 bits and
the address of the branch instruction. For
B-form branches the effective address of
the branch target is the sum of the BD
field sign-extended to 64 bits and the
address of the branch instruction.

1 The immediate field represents an abso-
lute address. For I-form branches the
effective address of the branch target is
the LI field sign-extended to 64 bits. For
B-form branches the effective address of
the branch target is the BD field
sign-extended to 64 bits.

AX (29) & A(11:15)
Fields that are concatenated to specify a VSR to
be used as a source.

BA (11:15)
Field used to specify a bit in the CR to be used as
a source.

BB (16:20)
Field used to specify a bit in the CR to be used as
a source.

BC (21:25)

Chapter 1. Introduction 17

Version 2.07 B

Field used to specify a bit in the CR to be used as
a source.

BD (16:29)
Immediate field used to specify a 14-bit signed
two’s complement branch displacement which is
concatenated on the right with 0b0O and
sign-extended to 64 bits.

BF (6:8)
Field used to specify one of the CR fields or one of
the FPSCR fields to be used as a target.

BFA (11:13 or 29:31)
Field used to specify one of the CR fields or one of
the FPSCR fields to be used as a source.

BH (19:20)
Field used to specify a hint in the Branch Condi-
tional to Link Register and Branch Conditional to
Count Register instructions. The encoding is
described in Section 2.5, “Branch Instructions”.

BHRB(11:20)
Field used to identify the BHRB entry to be used
as a source by the Move From Branch History Roll-
ing Buffer instruction.

Bl (11:15)
Field used to specify a bit in the CR to be tested by
a Branch Conditional instruction.

BO (6:10)
Field used to specify options for the Branch Condi-
tional instructions. The encoding is described in
Section 2.5, “Branch Instructions”.

BT (6:10)
Field used to specify a bit in the CR or in the
FPSCR to be used as a target.

BX (30) & B(16:20)
Fields that are concatenated to specify a VSR to
be used as a source.

CT (7:10)
Field used in X-form instructions to specify a cache
target (see Section 4.3.2 of Book).

CX (28) & C(21:25)
Fields that are concatenated to specify a VSR to
be used as a source.

D (16:31)
Immediate field used to specify a 16-bit signed
two’s complement integer which is sign-extended
to 64 bits.

DCM (16:21)
Immediate field used as the Data Class Mask.

DCR (11:20)

Field used by the Move To/From Device Control
Register instructions (see Book IlI-E).

DGM (16:21)
Immediate field used as the Data Group Mask.

DM (24:25)
Immediate field used by xxpermdi instruction as
doubleword permute control.

DQ (16:27)
Immediate field used to specify a 12-bit signed
two’s complement integer which is concatenated
on the right with 0b0000 and sign-extended to 64
bits.

DS (16:29)
Immediate field used to specify a 14-bit signed
two’s complement integer which is concatenated
on the right with ObOO and sign-extended to 64
bits.

DUI (6:10)
Field used by the dnh instruction (see Book IlI-E).

DUIS (11:20)
Field used by the dnh instruction (see Book IlI-E).

E (16)
Field used by the Write MSR External Enable
instruction (see Book IlI-E).

E (12:15)
Field used to specify the access types ordered by
an Elemental Memory Barrier type of sync instruc-
tion.

EH (31)
Field used to specify a hint in the Load and
Reserve instructions. The meaning is described in
Section 4.4.2, “Load and Reserve and Store Con-
ditional Instructions”, in Book II.

FLM (7:14)
Field mask used to identify the FPSCR fields that
are to be updated by the mitfsfinstruction.

FRA (11:15)
Field used to specify an FPR to be used as a
source.

FRAp (11:15)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.

FRB (16:20)
Field used to specify an FPR to be used as a
source.

FRBp (16:20)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.

18 Power ISA™ - Book |

Version 2.07 B

FRC (21:25)
Field used to specify an FPR to be used as a
source.

FRS (6:10)
Field used to specify an FPR to be used as a
source.

FRSp (6:10)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.

FRT (6:10)
Field used to specify an FPR to be used as a tar-
get.

FRTp (6:10)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a target.

FXM (12:19)
Field mask used to identify the CR fields that are to
be written by the mterf and mtocrf instructions, or
read by the mfocrf instruction.

IH (8:10)
Field used to specify a hint in the SLB Invalidate All
instruction. The meaning is described in
Section 5.9.3.1, “SLB Management Instructions”,
in Book Il1-S.

L (6)
Field used to specify whether the mifsf instruction
updates the entire FPSCR.

L (10 or 15)
Field used to specify whether a fixed-point Com-
pare instruction is to compare 64-bit numbers or
32-bit numbers.

Field used by the Data Cache Block Flush instruc-
tion (see Section 4.3.2 of Book Il).

Field used by the Move To Machine State Register
and TLB Invalidate Entry instructions (see Book
).

L (9:10)
Field used by the Data Cache Block Flush instruc-
tion (see Section 4.3.2 of Book Il) and also by the
Synchronize instruction (see Section 4.4.3 of Book

1l).

LEV (20:26)
Field used by the System Call instruction.

LI (6:29)
Immediate field used to specify a 24-bit signed
two’s complement integer which is concatenated
on the right with Ob00 and sign-extended to 64
bits.

LK (31)
LINK bit.

0 Do not set the Link Register.

1 Set the Link Register. The address of the
instruction following the Branch instruction
is placed into the Link Register.

MB (21:25) and ME (26:30)
Fields used in M-form instructions to specify a
64-bit mask consisting of 1-bits from bit MB+32
through bit ME+32 inclusive and 0-bits elsewhere,
as described in Section 3.3.14, “Fixed-Point Rotate
and Shift Instructions” on page 92.

MB (21:26)
Field used in MD-form and MDS-form instructions
to specify the first 1-bit of a 64-bit mask, as
described in Section 3.3.14, “Fixed-Point Rotate
and Shift Instructions” on page 92.

ME (21:26)
Field used in MD-form and MDS-form instructions
to specify the last 1-bit of a 64-bit mask, as
described in Section 3.3.14, “Fixed-Point Rotate
and Shift Instructions” on page 92.

MO (6:10)
Field used in X-form instructions to specify a sub-
set of storage accesses.

NB (16:20)
Field used to specify the number of bytes to move
in an immediate Move Assist instruction.

OC (6:20)
Field used by the Embedded Hypervisor Privilege
instruction.

OPCD (0:5)
Primary opcode field.

OE (21)
Field used by XO-form instructions to enable set-
ting OV and SO in the XER.

PMRN (11:20)
Field used to specify a Performance Monitor Reg-
ister for the mfpmr and mtpmr instructions.

R (10)

Field used by the tbegin. instruction to specify the
start of a ROT.

R (15)
Immediate field that specifies whether the RMC is
specifying the primary or secondary encoding

RA (11:15)
Field used to specify a GPR to be used as a
source or as a target.

RB (16:20)
Field used to specify a GPR to be used as a
source.

Chapter 1. Introduction 19

Version 2.07 B

Rc (21 OR 31)
RECORD bit.
0 Do not alter the Condition Register.
1 Set Condition Register Field 0, Field 1, or
Field 6 as described in Section 2.3.1,
“Condition Register” on page 30.

RMC (21:22)
Immediate field used for DFP rounding mode con-
trol.

RS (6:10)
Field used to specify a GPR to be used as a
source.

RSp (6:10)
Field used to specify an even/odd pair of GPRs to
be concatenated and used as a source.

RT (6:10)
Field used to specify a GPR to be used as a target.

RTp (6:10)
Field used to specify an even/odd pair of GPRs to
be concatenated and used as a target.

S (11 or 20)
Immediate field that specifies signed versus
unsigned conversion.
Immediate field that specifies whether or not the
rfebb instruction re-enables event-based
branches.

SH (16:20, or 16:20 and 30, or 16:21)
Field used to specify a shift amount.

SHB (22:25)
Field used to specify a shift amount in bytes.

SHW (24:25)
Field used to specify a shift amount in words.

S1(16:31 or 11:15)
Immediate field used to specify a 16-bit signed
integer.

SIM (11:15)
Immediate field used to specify a 5-bit signed inte-
ger.

SP (11:12)
Immediate field that specifies signed versus
unsigned conversion.

SPR (11:20)
Field used to specify a Special Purpose Register
for the mtspr and mfspr instructions.

SR (12:15)
Field used by the Segment Register Manipulation
instructions (see Book III-S).

SX (31) & S(6:10)
Fields that are concatenated to specify a VSR to
be used as a source.

T(9:10)
Field used to specify the type of invalidation done
by a TLB Invalidate Local instruction (see Book
I-E).

TBR (11:20)
Field used by the Move From Time Base instruc-
tion (see Section 6.2.1 of Book II).

TE (11:15)
Immediate field that specifies a DFP exponent.

TH (6:10)
Field used by the data stream variant of the dcbt
and dcbtst instructions (see Section 4.3.2 of Book

Y

TO (6:10)
Field used to specify the conditions on which to
trap. The encoding is described in Section 3.3.11,
“Fixed-Point Trap Instructions” on page 81.

TX (31) & T (6:10)
Fields that are concatenated to specify a VSR to
be used as a target.

U (16:19)
Immediate field used as the data to be placed into
a field in the FPSCR.

Ul (11:15, 16:20, or 16:31)
Immediate field used to specify an unsigned inte-
ger.

UIM (11:15, 12:15, 13:15, 14:15)
Immediate field used to specify an unsigned inte-
ger.

VRA (11:15)
Field used to specify a VR to be used as a source.

VRB (16:20)
Field used to specify a VR to be used as a source.

VRC (21:25)
Field used to specify a VR to be used as a source.

VRS (6:10)
Field used to specify a VR to be used as a source.

VRT (6:10)
Field used to specify a VR to be used as a target.

W (15)

Field used by the mifsfi and mtfsfinstructions to spec-
ify the target word in the FPSCR.

WC (9:10)

20 Power ISA™ - Book |

Version 2.07 B

Field used to specify the condition or conditions
that cause instruction execution to resume after
executing a wait [Category: Wait] instruction (see
Section 4.4.4 of Book Il).

X0 (21, 21:28, 21:29, 21:30, 21:31, 22:28, 22:30,
22:31, 23:30, 24:28, 26:27, 26:30, 26:31, 27:29,
27:30, or 30:31)

Extended opcode field.

1.7 Classes of Instructions

An instruction falls into exactly one of the following
three classes:

Defined
lllegal
Reserved

The class is determined by examining the opcode, and
the extended opcode if any. If the opcode, or combina-
tion of opcode and extended opcode, is not that of a
defined instruction or a reserved instruction, the
instruction is illegal.

1.7.1 Defined Instruction Class

This class of instructions contains all the instructions
defined in this document.

A defined instruction can have preferred and/or invalid
forms, as described in Section 1.8.1, “Preferred Instruc-
tion Forms” and Section 1.8.2, “Invalid Instruction
Forms”. Instructions that are part of a category that is
not supported are treated as illegal instructions.

1.7.2 lllegal Instruction Class

This class of instructions contains the set of instruc-
tions described in Appendix D of Book Appendices. llle-
gal instructions are available for future extensions of
the Power ISA ; that is, some future version of the
Power ISA may define any of these instructions to per-
form new functions.

Any attempt to execute an illegal instruction will cause
the system illegal instruction error handler to be
invoked and will have no other effect.

An instruction consisting entirely of binary 0s is guaran-
teed always to be an illegal instruction. This increases
the probability that an attempt to execute data or unini-
tialized storage will result in the invocation of the sys-
tem illegal instruction error handler.

1.7.3 Reserved Instruction Class

This class of instructions contains the set of instruc-
tions described in Appendix E of Book Appendices.

Reserved instructions are allocated to specific pur-
poses that are outside the scope of the Power ISA.

Any attempt to execute a reserved instruction will:

B perform the actions described by the implementa-
tion if the instruction is implemented; or

B cause the system illegal instruction error handler to
be invoked if the instruction is not implemented.

Chapter 1. Introduction 21

Version 2.07 B

1.8 Forms of Defined Instruc-
tions

1.8.1 Preferred Instruction Forms

Some of the defined instructions have preferred forms.
For such an instruction, the preferred form will execute
in an efficient manner, but any other form may take sig-
nificantly longer to execute than the preferred form.

Instructions having preferred forms are:

B the Condition Register Logical instructions
the Load Quadword instruction

the Move Assist instructions

the Or Immediate instruction (preferred form of
no-op)

® the Move To Condition Register Fields instruction

1.8.2 Invalid Instruction Forms

Some of the defined instructions can be coded in a
form that is invalid. An instruction form is invalid if one
or more fields of the instruction, excluding the opcode
field(s), are coded incorrectly in a manner that can be
deduced by examining only the instruction encoding.

In general, any attempt to execute an invalid form of an
instruction will either cause the system illegal instruc-
tion error handler to be invoked or yield boundedly
undefined results. Exceptions to this rule are stated in
the instruction descriptions.

Some instruction forms are invalid because the instruc-
tion contains a reserved value in a defined field (see
Section 1.3.3 on page 5); these invalid forms are not
discussed further. All other invalid forms are identified
in the instruction descriptions.

References to instructions elsewhere in this document
assume the instruction form is not invalid, unless other-
wise stated or obvious from context.

Assembler Note

Assemblers should report uses of invalid instruction
forms as errors.

1.8.3 Reserved-no-op Instructions
[Category: Phased-In]

Reserved-no-op instructions include the following
extended opcodes under primary opcode 31: 530, 562,
594, 626, 658, 690, 722, and 754.

Reserved-no-op instructions are provided in the archi-
tecture to anticipate the eventual adoption of perfor-
mance hint instructions to the architecture. For these
instructions, which cause no visible change to archi-

tected state, employing a reserved-no-op opcode will
allow software to use this new capability on new imple-
mentations that support it while remaining compatible
with existing implementations that may not support the
new function.

When a reserved-no-op instruction is executed, no
operation is performed.

Reserved-no-op instructions are not assigned instruc-
tion names or mnemonics. There are no individual
descriptions of reserved-no-op instructions in this docu-
ment.

1.9 Exceptions

There are two kinds of exception, those caused directly
by the execution of an instruction and those caused by
an asynchronous event. In either case, the exception
may cause one of several components of the system
software to be invoked.

The exceptions that can be caused directly by the exe-
cution of an instruction include the following:

B an attempt to execute an illegal instruction, or an
attempt by an application program to execute a
“privileged” instruction (see Book Ill) (system ille-
gal instruction error handler or system privileged
instruction error handler)

B the execution of a defined instruction using an
invalid form (system illegal instruction error handler
or system privileged instruction error handler)

B an attempt to execute an instruction that is not pro-
vided by the implementation (system illegal
instruction error handler)

B an attempt to access a storage location that is
unavailable (system instruction storage error han-
dler or system data storage error handler)

B an attempt to access storage with an effective
address alignment that is invalid for the instruction
(system alignment error handler)

B the execution of a System Call instruction (system
service program)

B the execution of a Trap instruction that traps (sys-
tem trap handler)

B the execution of a floating-point instruction that
causes a floating-point enabled exception to exist
(system floating-point enabled exception error han-
dler)

B the execution of an auxiliary processor instruction
that causes an auxiliary processor enabled excep-
tion to exist (system auxiliary processor enabled
exception error handler)

The exceptions that can be caused by an asynchro-
nous event are described in Book lIl.

22 Power ISA™ - Book |

Version 2.07 B

The invocation of the system error handler is precise,
except that the invocation of the auxiliary processor
enabled exception error handler may be imprecise, and
if one of the imprecise modes for invoking the system
floating-point enabled exception error handler is in
effect (see page 123), then the invocation of the system
floating-point enabled exception error handler may also
be imprecise. When the system error handler is invoked
imprecisely, the excepting instruction does not appear
to complete before the next instruction starts (because
one of the effects of the excepting instruction, namely
the invocation of the system error handler, has not yet
occurred).

Additional information about exception handling can be
found in Book IlI.

1.10 Storage Addressing

A program references storage using the effective
address computed by the processor when it executes a
Storage Access or Branch instruction (or certain other
instructions described in Book Il and Book IlIl), or when
it fetches the next sequential instruction.

Bytes in storage are numbered consecutively starting
with 0. Each number is the address of the correspond-
ing byte.

The byte ordering (Big-Endian or Little-Endian) for a
storage access is specified by the operating system.
This byte ordering is also referred to as the Endian
mode and it applies to both data accesses and instruc-
tion fetches. In the Embedded environment the Endian
mode is a page attribute (see Book Il), which is speci-
fied independently for each virtual page. In the Server
environment the Endian mode is specified by the LE
mode bit (see Section 3.2.1 of Book IlI-S), which
applies to all of storage.

1.10.1 Storage Operands

A storage operand may be a byte, a halfword, a word, a
doubleword, or a quadword, or, for the Load/Store Mul-
tiple and Move Assist instructions, a sequence of bytes
(Move Assist) or words (Load/Store Multiple). The
address of a storage operand is the address of its first
byte (i.e., of its lowest-numbered byte). An instruction
for which the storage operand is a byte is said to cause
a byte access, and similarly for halfword, word, double-
word, and quadword.

The length of the storage operand is the number of
bytes (of the storage operand) that the instruction
would access in the absence of invocations of the sys-
tem error handler. The length is generally implied by
the name of the instruction (equivalently, by the
opcode, and extended opcode if any). For example, the
length of the storage operand of a Load Word and Zero,
Load Floating-Point Single, and Load Vector Element
Word instruction is four bytes (one word), and the

length of a Store Quadword, Store Floating-Point Dou-
ble Pair, and Store VSX Vector Word*4 instruction is 16
bytes (one quadword). The only exceptions are the
Load/Store Multiple and Move Assist instructions, for
which the length of the storage operand is implied by
the identity of the specified source or target register
(Load/Store Multiple), or by an immediate field in the
instruction or the contents of a field in the XER (Move
Assist), as well as by the name of the instruction. For
example, the length of the storage operand of a Load
Multiple Word instruction for which the specified target
register is GPR 20 is 48 bytes ((32-20)x4), and the
length of the storage operand of a Load String Word
Immediate instruction for which the immediate field
contains the number 20 is 20 bytes.

The storage operand of a Load or Store instruction
other than a Load/Store Multiple or Move Assist instruc-
tion is said to be aligned if the address of the storage
operand is an integral multiple of the storage operand
length; otherwise it is said to be unaligned. See the fol-
lowing table. (The storage operand of a Load/Store
Multiple or Move Assist instruction is neither said to be
aligned nor said to be unaligned. Its alignment proper-
ties are described, when necessary, using terms such
as “word-aligned”, which are defined below.)

Operand Length Addrgg.¢3 if aligned

Byte 8 bits XXXX

Halfword 2 bytes xxx0

Word 4 bytes xx00

Doubleword 8 bytes x000

Quadword 16 bytes 0000

Note: An “x” in an address bit position indicates that
the bit can be 0 or 1 independent of the contents of
other bits in the address.

The concept of alignment is also applied more gener-

ally, to any datum in storage.

B A datum having length that is an integral power of
2 is said to be aligned if its address is an integral
multiple of its length.

B A datum of any length is said to be half-
word-aligned (or aligned at a halfword boundary) if
its address is an integral multiple of 2,
word-aligned (or aligned at a word boundary) if its
address is an integral multiple of 4, etc. (All data in
storage is byte-aligned.)

The concept of alignment can also be applied to data in
registers, with the "address" of the datum interpreted
as the byte number of the datum in the register. E.g., a
word element (4 bytes) in a Vector Register is said to
be aligned if its byte number is an integral multiple of 4.

Chapter 1. Introduction 23

Version 2.07 B

—— Programming Note

The technical literature sometimes uses the term
“naturally aligned” to mean “aligned.”

Versions of the architecture that precede Version
2.07 also used “naturally aligned” as defined
above. The term was dropped from the architecture
in Version 2.07 because it seemed to mean differ-
ent things to different readers and is not needed.

Some instructions require their storage operands to
have certain alignments. In addition, alignment may
affect performance. In general, the best performance is
obtained when storage operands are aligned.

When a storage operand of length N bytes starting at
effective address EA is copied between storage and a
register that is R bytes long (i.e., the register contains
bytes numbered from 0, most significant, through R-1,
least significant), the bytes of the operand are placed
into the register or into storage in a manner that
depends on the byte ordering for the storage access as
shown in Figure 31, unless otherwise specified in the
instruction description.

Big-Endian Byte Ordering

Store

for i=0 to N-1: for i=0 to N-1:

RTR-Ny+i€ MEM(EA+i,1) |IMEM(EA+i,1) < (RS)R.Ny+i
Little-Endian Byte Ordering

Load

Load Store

for i=0 to N-1: for i=0 to N-1:

RT(R—1)—i « MEM(EA+I,1) MEM(EA+I,1) &« (RS)(R—1)—i
Notes:

1. In this table, subscripts refer to bytes in a register
rather than to bits as defined in Section 1.3.2.

2. This table does not apply to the Ivebx, Ivehx,
Ivewx, stvebx, stvehx, and stvewx instructions.

Figure 31. Storage operands and byte ordering

Figure 32 shows an example of a C language
structure s containing an assortment of scalars and
one character string. The value assumed to be in each
structure element is shown in hex in the C comments;
these values are used below to show how the bytes
making up each structure element are mapped into
storage. It is assumed that structure s is compiled for
32-bit mode or for a 32-bit implementation. (This affects
the length of the pointer to c.)

C structure mapping rules permit the use of padding
(skipped bytes) in order to align the scalars on desir-
able boundaries. Figures 33 and 34 show each scalar
as aligned. This alignment introduces padding of four
bytes between a and b, one byte between d and e, and
two bytes between e and f. The same amount of pad-
ding is present for both Big-Endian and Little-Endian
mappings.

The Big-Endian mapping of structure s is shown in
Figure 33. Addresses are shown in hex at the left of
each doubleword, and in small figures below each byte.
The contents of each byte, as indicated in the C exam-
ple in Figure 32, are shown in hex (as characters for the
elements of the string).

The Little-Endian mapping of structure s is shown in
Figure 34. Doublewords are shown laid out from right to
left, which is the common way of showing storage maps
for processors that implement only Little-Endian byte
ordering.

struct {
int a; /* 0x1112_1314 word */
double b; /¥ 0x2122 2324 2526 2728 doubleword */
char* c; /* 0x3132_3334 word */
char d[7;; r~ ‘A,'B’,‘C,'D,'E,F, ‘G array of bytes */
short e; /* 0x5152 halfword */
int f; [* 0x6162_6364 word */

}s;

Figure 32. C structure
elements

£s!,

showing values of

24 Power ISA™ - Book |

Version 2.07 B

add r7,r7,rd
00 |11 12 13 14 subi r5,15,4
b loop
00 o1 02 03| 04 05 06 07
08 21 22 23 24 25 26 27 28 done:
08 09 OA 0B 0C 0D OE OF stw r7, total
10 31 32 33 34 ‘A’ ‘B’ ‘C’ ‘D’ Figure 36. Assembly language program ‘p’
101 12 13 1 14 15 16 17 The Big-Endian mapping of program p is shown in
18 |'E" 'F’ G’ 51 52 Figure 37 (assuming the program starts at address 0).
18 19 1A 1B 1C 1D 1E 1F
20 61 62 63 64
20 21 22 23 00 loop: cmplwi r5,0 beq done
Figure 33. Big-Endian mapping of structure ‘s’ % o1 02 o104 O ® O
08 lwzux r4,r5,r6 add r7,r7,r4d
08 09 0A 0B 0oC oD OE OF
11 12 13 14 00 10 subi r5,r5,4 b loop
07 06 05 04 03 02 01 00 10 11 12 13 14 15 16 17
21 22 23 24 25 26 27 28| 08 18 | done: stw r7,total
oF OE oD oc 0B 0A 09 08 18 19 1A 1B 1C 1D 1E 1F
‘D’ ‘'C’ ‘B’ ‘A’|31 32 33 34| 10] . .)
R P 0 Figure 37. Big-Endian mapping of program ‘p
51 52 ‘G’ ‘F' ‘E’ 18 The Little-Endian mapping of program p is shown in
1 1€ | 10 1c | 1B | 1A 19 18 Figure 38.
61 62 63 64 20
23 22 21 20 beq done loop: cmplwi r5,0 00
Figure 34. Little-Endian mapping of structure ‘s’ 07 06 05 04 | 03 02 01 00
add r7,r7,r4 lwzux rd,r5,76 08
1.10.2 Instruction Fetches OF O o oc |08 0A 09 08
) b loop subi r5,r5,4 10
Instruct!ons are always fom_Jr bytgs long and 7 16 15 4|13 12 1 10
word-aligned (except for VLE instructions; see Book 18
done: stw r7,total
VLE).
1F 1E 1D 1C 1B 1A 19 18
When an instruction starting at effective address EA is o
fetched from storage, the relative order of the bytes Figure 38. Little-Endian mapping of program ‘p
within the instruction depend on the byte ordering for
the storage access as shown in Figure 35.
Big-Endian Byte Ordering
for i=0 to 3:
inst; « MEM(EA+i,1)
Little-Endian Byte Ordering
for i=0 to 3:
inst3; « MEM(EA+i,1)
Note: In this table, subscripts refer to
bytes of the instruction rather than
to bits as defined in Section 1.3.2.
Figure 35. Instructions and byte ordering
Figure 36 shows an example of a small assembly lan-
guage program p.
loop:
cmplwi r5,0
beq done
lwzux rd,r5,r6
Chapter 1. Introduction 25

Version 2.07 B

Programming Note

The terms Big-Endian and Little-Endian come from
Part I, Chapter 4, of Jonathan Swift's Gulliver’s Travels.
Here is the complete passage, from the edition printed
in 1734 by George Faulkner in Dublin.

... our Histories of six Thousand Moons make no
Mention of any other Regions, than the two great
Empires of Lilliput and Blefuscu. Which two mighty
Powers have, as | was going to tell you, been
engaged in a most obstinate War for six and thirty
Moons past. It began upon the following Occasion.
It is allowed on all Hands, that the primitive Way of
breaking Eggs before we eat them, was upon the
larger End: But his present Majesty’s Grand-father,
while he was a Boy, going to eat an Egg, and
breaking it according to the ancient Practice, hap-
pened to cut one of his Fingers. Whereupon the
Emperor his Father, published an Edict, command-
ing all his Subjects, upon great Penalties, to break
the smaller End of their Eggs. The People so
highly resented this Law, that our Histories tell us,
there have been six Rebellions raised on that
Account; wherein one Emperor lost his Life, and
another his Crown. These civil Commotions were
constantly fomented by the Monarchs of Blefuscu;
and when they were quelled, the Exiles always fled
for Refuge to that Empire. It is computed that
eleven Thousand Persons have, at several Times,
suffered Death, rather than submit to break their
Eggs at the smaller End. Many hundred large Vol-
umes have been published upon this Controversy:
But the Books of the Big-Endians have been long

forbidden, and the whole Party rendered incapable
by Law of holding Employments. During the
Course of these Troubles, the Emperors of Ble-
fuscu did frequently expostulate by their Ambassa-
dors, accusing us of making a Schism in Religion,
by offending against a fundamental Doctrine of our
great Prophet Lustrog, in the fifty-fourth Chapter of
the Brundrecal, (which is their Alcoran.) This, how-
ever, is thought to be a mere Strain upon the text:
For the Words are these; That all true Believers
shall break their Eggs at the convenient End: and
which is the convenient End, seems, in my humble
Opinion, to be left to every Man’s Conscience, or at
least in the Power of the chief Magistrate to deter-
mine. Now the Big-Endian Exiles have found so
much Credit in the Emperor of Blefuscu’s Court;
and so much private Assistance and Encourage-
ment from their Party here at home, that a bloody
War has been carried on between the two Empires
for six and thirty Moons with various Success; dur-
ing which Time we have lost Forty Capital Ships,
and a much greater Number of smaller Vessels,
together with thirty thousand of our best Seamen
and Soldiers; and the Damage received by the
Enemy is reckoned to be somewhat greater than
ours. However, they have now equipped a numer-
ous Fleet, and are just preparing to make a
Descent upon us: and his Imperial Majesty, placing
great Confidence in your Valour and Strength, hath
commanded me to lay this Account of his Affairs
before you.

1.10.3 Effective Address Calcula-
tion

An effective address is computed by the processor
when executing a Storage Access or Branch instruction
(or certain other instructions described in Book Il, Book
Ill, and Book VLE) when fetching the next sequential
instruction, or when invoking a system error handler.
The following provides an overview of this process.
More detail is provided in the individual instruction
descriptions.

Effective address calculations, for both data and
instruction accesses, use 64-bit two’s complement
addition. All 64 bits of each address component partici-
pate in the calculation regardless of mode (32-bit or
64-bit). In this computation one operand is an address
(which is by definition an unsigned number) and the
second is a signed offset. Carries out of the most signif-
icant bit are ignored.

In 64-bit mode, the entire 64-bit result comprises the
64-bit effective address. The effective address arith-
metic wraps around from the maximum address,
264 _ 1, to address 0, except that if the current instruc-
tion is at effective address 264 - 4 the effective address
of the next sequential instruction is undefined.

In 32-bit mode, the low-order 32 bits of the 64-bit result,
preceded by 32 0 bits, comprise the 64-bit effective
address for the purpose of addressing storage. When
an effective address is placed into a register by an
instruction or event, the value placed into the high-order
32 bits of the register differs between the Server envi-
ronment and the Embedded environment.

B Server environment, and Embedded Environment
when the high-order 32 bits of GPRs are imple-
mented:

- Load with Update and Store with Update
instructions set the high-order 32 bits of regis-
ter RA to the high-order 32 bits of the 64-bit
result.

26 Power ISA™ - Book |

Version 2.07 B

- In all other cases (e.g., the Link Register when
set by Branch instructions having LK=1, Spe-
cial Purpose Registers when set to an effec-
tive address by invocation of a system error
handler) the high-order 32 bits of the register
are set to Os except as described in the last
sentence of this paragraph.

B Embedded environment when the high-order 32

bits of GPRs are not implemented for the following
cases:
The high-order 32 bits of the register are set to an
undefined value except for the Initialize Next
Instruction register [Category: Embedded.Multi-
threading] (see Section 1.5.2 and Book Ill), and for
the following case. For a register that is loaded
with an effective address by the invocation of a
system error handler, the high-order 32 bits of the
register are set to Os if the computation mode is
64-bit after the system error is invoked. The 64-bit
current instruction address is not affected by a
change from 32-bit mode to 64-bit mode, but is
affected by a change from 64-bit mode to 32-bit
mode. In the latter case, the high-order 32 bits are
set to 0. The same is true for the 64-bit next
instruction address, except as described in the last
item of the list below.

As used to address storage, the effective address arith-
metic appears to wrap around from the maximum
address, 2% - 1, to address 0, except that if the current
instruction is at effective address 232 - 4 the effective
address of the next sequential instruction is undefined.

RA is a field in the instruction which specifies an
address component in the computation of an effective
address. A zero in the RA field indicates the absence of
the corresponding address component. A value of zero
is substituted for the absent component of the effective
address computation. This substitution is shown in the
instruction descriptions as (RAIO).

Effective addresses are computed as follows. In the
descriptions below, it should be understood that “the
contents of a GPR” refers to the entire 64-bit contents,
independent of mode, but that in 32-bit mode only bits
32:63 of the 64-bit result of the computation are used to
address storage.

B With X-form instructions, in computing the effective
address of a data element, the contents of the
GPR designated by RB (or the value zero for Iswi
and stswi) are added to the contents of the GPR
designated by RA or to zero if RA=0 or RA is not
used in forming the EA.

m With D-form instructions, the 16-bit D field is
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0.

B With DS-form instructions, the 14-bit DS field is
concatenated on the right with Ob00 and
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0.

B With I-form Branch instructions, the 24-bit LI field is
concatenated on the right with Ob00 and
sign-extended to form a 64-bit address compo-
nent. If AA=0, this address component is added to
the address of the Branch instruction to form the
effective address of the target instruction. If AA=1,
this address component is the effective address of
the target instruction.

B With B-form Branch instructions, the 14-bit BD field
is concatenated on the right with 0bOO and
sign-extended to form a 64-bit address compo-
nent. If AA=0, this address component is added to
the address of the Branch instruction to form the
effective address of the target instruction. If AA=1,
this address component is the effective address of
the target instruction.

® With XL-form Branch instructions, bits 0:61 of the
Link Register or the Count Register are concate-
nated on the right with Ob00 to form the effective
address of the target instruction.

B With sequential instruction fetching, the value 4 is
added to the address of the current instruction to
form the effective address of the next instruction,
except that if the current instruction is at the maxi-
mum instruction effective address for the mode
(2%% - 4 in 64-bit mode, 232 - 4 in 32-bit mode) the
effective address of the next sequential instruction
is undefined. (There is one other exception to this
rule; this exception involves changing between
32-bit mode and 64-bit mode and is described in
Section 6.3.2 of Book IlI-E and Section 6.3.2 of
Book IlI-E.)

If the size of the operand of a Storage Access instruc-
tion is more than one byte, the effective address for
each byte after the first is computed by adding 1 to the
effective address of the preceding byte.

Chapter 1. Introduction 27

Version 2.07 B

28 Power ISA™ - Book |

Version 2.07 B

Chapter 2. Branch Facility

2.1 Branch Facility Overview

This chapter describes the registers and instructions
that make up the Branch Facility.

2.2 Instruction Execution Order

In general, instructions appear to execute sequentially,
in the order in which they appear in storage. The excep-
tions to this rule are listed below.

B Branch instructions for which the branch is taken
cause execution to continue at the target address
specified by the Branch instruction.

B Trap instructions for which the trap conditions are
satisfied, and System Call instructions, cause the
appropriate system handler to be invoked.

B Transaction failure will eventually cause the trans-
action’s failure handler, implied by the tbegin.
instruction, to be invoked. See the programming
note following the tbegin. description in
Section 5.5 of Book .

B Exceptions can cause the system error handler to
be invoked, as described in Section 1.9, “Excep-
tions” on page 22.

B Returning from a system service program, system
trap handler, or system error handler causes exe-
cution to continue at a specified address.

The model of program execution in which the processor
appears to execute one instruction at a time, complet-
ing each instruction before beginning to execute the
next instruction is called the “sequential execution
model”. In general, the processor obeys the sequential
execution model. For the instructions and facilities
defined in this Book, the only exceptions to this rule are
the following.

B A floating-point exception occurs when the proces-
sor is running in one of the Imprecise floating-point
exception modes (see Section 4.4). The instruction
that causes the exception need not complete
before the next instruction begins execution, with
respect to setting exception bits and (if the excep-
tion is enabled) invoking the system error handler.

B A Store instruction modifies one or more bytes in
an area of storage that contains instructions that
will subsequently be executed. Before an instruc-
tion in that area of storage is executed, software
synchronization is required to ensure that the
instructions executed are consistent with the
results produced by the Store instruction.

— Programming Note

This software synchronization will generally be
provided by system library programs (see
Section 1.9 of Book Il). Application programs
should call the appropriate system library pro-
gram before attempting to execute modified
instructions.

Chapter 2. Branch Facility 29

Version 2.07 B

2.3 Branch Facility Registers

2.3.1 Condition Register

The Condition Register (CR) is a 32-bit register which
reflects the result of certain operations, and provides a
mechanism for testing (and branching).

| CR
32 63

Figure 39. Condition Register

The bits in the Condition Register are grouped into
eight 4-bit fields, named CR Field 0 (CRO), ..., CR Field
7 (CR7), which are set in one of the following ways.

B Specified fields of the CR can be set by a move to
the CR from a GPR (mtcrf, mtocrf).

® A specified field of the CR can be set by a move to
the CR from another CR field (merf), from
XERap.35 (merxr), or from the FPSCR (mcrfs).

B CR Field 0 can be set as the implicit result of a
fixed-point instruction.

B CR Field 1 can be set as the implicit result of a
floating-point instruction.

B CR Field 1 can be set as the implicit result of a
decimal floating-point instruction.

B CR Field 6 can be set as the implicit result of a
vector instruction.

B A specified CR field can be set as the result of a
Compare instruction or of a tcheck instruction (see
Book II).

Instructions are provided to perform logical operations
on individual CR bits and to test individual CR bits.

For all fixed-point instructions in which Rc=1, and for
addic., andi., and andis., the first three bits of CR Field
0 (bits 32:34 of the Condition Register) are set by
signed comparison of the result to zero, and the fourth
bit of CR Field 0 (bit 35 of the Condition Register) is
copied from the SO field of the XER. “Result” here
refers to the entire 64-bit value placed into the target
register in 64-bit mode, and to bits 32:63 of the 64-bit
value placed into the target register in 32-bit mode.

if (64-bit mode)

then M « 0

else M « 32
if (target_register)y.¢3 < 0 then ¢ ¢ 0b100
else if (target_register)y.s; > 0 then ¢ ¢ 0b010
else c < 0b001
CRO € ¢ || XERg,

If any portion of the result is undefined, then the value
placed into the first three bits of CR Field 0 is unde-
fined.

The bits of CR Field 0 are interpreted as follows.

Bit Description
0 Negative (LT)
The result is negative.
1 Positive (GT)
The result is positive.
2 Zero (EQ)
The result is zero.
3 Summary Overflow (SO)

This is a copy of the contents of XERgg at the
completion of the instruction.

With the exception of tcheck, the Transactional Mem-
ory instructions set CROg., indicating the state of the
facility prior to instruction execution, or transaction fail-
ure. A complete description of the meaning of these

bits is given in the instruction descriptions in

Section 5.5 of Book Il. These bits are interpreted as

follows:

CRO Description

000110 |Transaction state of Non-transactional prior
to instruction

01011 0 |Transaction state of Transactional prior to
instruction

001110 |Transaction state of Suspended prior to
instruction

101110 |Transaction failure

The tcheck instruction similarly sets bits 1 and 2 of CR
field BF to indicate the transaction state, and addition-
ally sets bit 0 to TDOOMED, as defined in Section 5.5
of Book II.

CR field BF
TDOOMED 100 110

Description

Transaction state of Non-trans-
actional prior to instruction

TDOOMED I 10110 [Transaction state of Transac-

tional prior to instruction

TDOOMED 101110 [Transaction state of Sus-

pended prior to instruction

Programming Note

Setting of bit 3 of the specified CR field to zero by
tcheck and of field CRO; to zero by other TM
instructions is intended to preserve these bits for
future function. Software should not depend on the
bits being zero.

The stbcx., sthex., stwex., stdex., and stqcex. instruc-
tions (see Section 4.4.2, “Load and Reserve and Store

30 Power ISA™ - Book |

Version 2.07 B

Conditional Instructions”, in Book Il) also set CR Field
0.

For all floating-point instructions in which Rc=1, CR
Field 1 (bits 36:39 of the Condition Register) is set to
the Floating-Point exception status, copied from bits
32:35 of the Floating-Point Status and Control Register.
This occurs regardless of whether any exceptions are
enabled, and regardless of whether the writing of the
result is suppressed (see Section 4.4, “Floating-Point
Exceptions” on page 122). These bits are interpreted
as follows.

Bit Description

32 Floating-Point Exception Summary (FX)
This is a copy of the contents of FPSCRgyx at
the completion of the instruction.

33 Floating-Point Enabled Exception Sum-
mary (FEX)
This is a copy of the contents of FPSCRggy at
the completion of the instruction.

34 Floating-Point Invalid Operation Exception
Summary (VX)
This is a copy of the contents of FPSCRyx at
the completion of the instruction.

35 Floating-Point Overflow Exception (OX)
This is a copy of the contents of FPSCRgy at
the completion of the instruction.

For Compare instructions, a specified CR field is set to
reflect the result of the comparison. The bits of the
specified CR field are interpreted as follows. A com-
plete description of how the bits are set is given in the
instruction descriptions in Section 3.3.10, “Fixed-Point
Compare Instructions” on page 79, Section 4.6.8,
“Floating-Point Compare Instructions” on page 158,
and Section 8.3.9, “SPE Instruction Set” on page 594.

Bit Description

0 Less Than, Floating-Point Less Than (LT,
FL)
For fixed-point Compare instructions, (RA) <
Sl or (RB) (signed comparison) or (RA) < Ul
or (RB) (unsigned comparison). For float-
ing-point Compare instructions, (FRA) <
(FRB).

1 Greater Than, Floating-Point Greater Than
(GT, FG)
For fixed-point Compare instructions, (RA) >
Sl or (RB) (signed comparison) or (RA) >! Ul
or (RB) (unsigned comparison). For float-
ing-point Compare instructions, (FRA) >
(FRB).

2 Equal, Floating-Point Equal (EQ, FE)
For fixed-point Compare instructions, (RA) =
Sl, Ul, or (RB). For floating-point Compare
instructions, (FRA) = (FRB).

3 Summary Overflow, Floating-Point Unor-
dered (SO,FU)
For fixed-point Compare instructions, this is a
copy of the contents of XERgg at the comple-
tion of the instruction. For floating-point Com-
pare instructions, one or both of (FRA) and
(FRB) is a NaN.

The Vector Integer Compare instructions (see
Section 6.9.2, “Vector Integer Compare Instructions”)
compare two Vector Registers element by element,
interpreting the elements as unsigned or signed inte-
gers depending on the instruction, and set the corre-
sponding element of the target Vector Register to all 1s
if the relation being tested is true and Os if the relation
being tested is false.

If Re=1, CR Field 6 is set to reflect the result of the
comparison, as follows

Bit Description

0 The relation is true for all element pairs (i.e.,
VRT is set to all 1s).

1 0

2 The relation is false for all element pairs (i.e.,
VRT is set to all 0s).

3 0

The Vector Floating-Point Compare instructions com-
pare two Vector Registers word element by word ele-
ment, interpreting the elements as single-precision
floating-point numbers. With the exception of the Vector
Compare Bounds Floating-Point instruction, they set
the target Vector Register, and CR Field 6 if Rc=1, in
the same manner as do the Vector Integer Compare
instructions.

Bit Description

0 The relation is true for all element pairs (i.e.,
VRT is set to all 1s).

1 0

2 The relation is false for all element pairs (i.e.,
VRT is set to all 0s).

3 0

The Vector Compare Bounds Floating-Point instruction
on page 299 sets CR Field 6 if Rc=1, to indicate
whether the elements in VRA are within the bounds
specified by the corresponding element in VRB, as
explained in the instruction description. A single-preci-
sion floating-point value x is said to be “within the
bounds” specified by a single-precision floating-point
value y if -y <x<y.

Bit Description
0 0
1 0

Chapter 2. Branch Facility 31

Version 2.07 B

2 Set to indicate whether all four elements in
VRA are within the bounds specified by the
corresponding element in VRB, otherwise set
to 0.

3 0

2.3.2 Link Register

The Link Register (LR) is a 64-bit register. It can be
used to provide the branch target address for the
Branch Conditional to Link Register instruction, and it
holds the return address after Branch instructions for
which LK=1.

LR
0 63

Figure 40. Link Register

2.3.3 Count Register

The Count Register (CTR) is a 64-bit register. It can be
used to hold a loop count that can be decremented dur-
ing execution of Branch instructions that contain an
appropriately coded BO field. If the value in the Count
Register is 0 before being decremented, it is - 1 after-
ward. The Count Register can also be used to provide
the branch target address for the Branch Conditional to
Count Register instruction.

CTR |
0 63

Figure 41. Count Register

2.3.4 Target Address Register

The Target Address Register (TAR) is a 64-bit register.
It can be used to provide bits 0:61 of the branch target
address for the Branch Conditional to Branch Target
Address Register instruction. Bits 62:63 are ignored by
the hardware but can be set and reset by software.

Efffective Address |]
0 62

Figure 42. Target Address Register

Programming Note
| Fhe TAR is reserved for system software.

2.4 Branch History Rolling
Buffer [Category: Server]

The Branch History Rolling Buffer (BHRB) is a buffer
containing an implementation-dependent number of
entries, referred to as BHRB Entries (BHRBEs), that

contain information related to branches that have been
taken. Entries are numbered from 0 through n, where n
is implementation-dependent but no more than 1023.
Entry 0 is the most-recently written entry. The BHRB is
read by means of the mfbhrbe instruction.

System software typically controls the availability of the
BHRB as well as the number of entries that it contains.
If the BHRB is accessed when it is unavailable, the sys-
tem facility unavailable error handler is invoked.

Various events or actions by the system software may
result in the BHRB occasionally being cleared. If BHRB
entries are read after this has occurred, Os will be
returned. See the description of the mfbhrbe instruc-
tion for additional information.

The BHRB is typically used in conjunction with Perfor-
mance Monitor event-based branches. (See Chapter 7
of Book Il.) When used in conjunction with this facility,
BESCRppg is set to 1 to enable Performance Monitor
event-based exceptions, and Performance Monitor
alerts are enabled to enable the writing of BHRB
entries. When a Performance Monitor alert occurs,
Performance Monitor alerts are disabled, BHRB entries
are no longer written, and an event-based branch
occurs. (See Chapter 9 of Book Il1-S for additional infor-
mation on the Performance Monitor.) The event-based
branch handler can then access the contents of the
BHRB for analysis.

When the BHRB is written by hardware, only those
Branch instructions that meet the filtering criterion are
written. The filtering criterion is set by system software.
(See Section 9.4.7 of Book II-S.)

The following paragraphs describe the entries written
into the BHRB for various types of Branch instructions
for which the branch was taken. In some circum-
stances, however, the hardware may be unable to make
the entry even though the following paragraphs require
it. In such cases, the hardware sets the EA field to O,
and indicates any missed entries using the T and P
fields. (See Section 2.4.1.)

When an I-form or B-form Branch instruction is entered
into the BHRB, bits 0:61 of the effective address of the
Branch instruction are written into the next available
entry, except that the entry may or may not be written in
the following cases.

B The effective address of the branch target exceeds
the effective address of the Branch instruction by
4.

B The instruction is a B-form Branch, the effective
address of the branch target exceeds the effective
address of the Branch instruction by 8, and the
instruction immediately following the Branch
instruction is not another Branch instruction.

The determination of whether the effective address of
the branch target exceeds the effective address of the
Branch instruction by 4 or 8 is made modulo 254,

32 Power ISA™ - Book |

Version 2.07 B

—— Programming Note

The cases described above, for which the BHRBE
need not be written, are cases for which some
implementations may optimize the execution of the
Branch instruction (first case) or of the Branch
instruction and the following instruction (second
case) in a manner that makes writing the BHRBE
difficult. Such implementations may provide a
means by which system software can disable
these optimizations, thereby ensuring that the cor-
responding BHRBEs are written normally.

When an XL-form Branch instruction is entered into the
BHRB, bits 0:61 of the effective address of the Branch
instruction are written into the next available entry if
allowed by the filtering mode; subsequently, bits 0:61 of
the effective address of the branch target are written
into the following entry.

BHRB entries are written as described above without
regard to transactional state and are not removed due
to transaction failures.

2.4.1 Branch History Rolling
Buffer Entry Format

Branch History Rolling Buffer Entries (BHRBEs) have
the following format.

Effective Address | T | P |
0 62 63

Figure 43. Branch History Rolling Buffer Entry

0:61 Effective Address (EA)
When this field is set to a non-zero value, it
contains bits 0:61 of the effective address of
the instruction indicated by the T field; other-
wise this field indicates that the entry is a
marker with the meaning specified by the T
and P fields.

When the EA field contains a non-zero value, bits 62:63
have the following meanings.

62 Target Address (T)

0 The EA field contains bits 0:61 of the
effective address of a Branch instruction
for which the branch was taken.

1 The EA field contains bits 0:61 of the
branch effective address of the branch tar-
get of an XL-form Branch instruction for
which the branch was taken.

63 Prediction (P)
When T=0, this field has the following mean-
ing.
0 The outcome of the Branch instruction
was correctly predicted.

1 The outcome of the Branch instruction
was mispredicted.

When T=1, this field has the following mean-

ing.

0 The Branch instruction was predicted to
be taken and the target address was pre-
dicted correctly, or the target address was
not predicted because the branch was
predicted to be not taken.

1 The target address was mispredicted.

When the EA field contains a zero value, bits 62:63
specify the type of marker as described below.

—— Programming Note

It is expected that programs will not contain Branch
instructions with instruction or target effective
address equal to 0. If such instructions exist, pro-
grams cannot distinguish between entries that are
markers and entries that correspond to instructions
with instruction or target effective address 0.

Value Meaning

00 This entry either is not implemented or has
been cleared. In these cases there are no
valid entries beyond the current entry.

01 A Branch instruction was executed for which
the branch was taken, but the hardware was
unable to enter its effective address and, for
XL-form Branch instructions, its target effec-
tive address.

10 Reserved

11 The previous entry contains bits 0:61 of the

effective address of an XL-form Branch
instruction for which the branch was taken,
and the filtering mode required bits 0:61 of the
current entry to contain the effective address
of the branch target, but the hardware was
unable to enter the effective address of the
branch target.

Programming Note

Some implementations may use nonzero marker
values due to the occurrence of asynchronous and
infrequent intermittent events that prevent the cor-
rect BHRB entry from being written.

Chapter 2. Branch Facility 33

Version 2.07 B

2.5 Branch Instructions

The sequence of instruction execution can be changed
by the Branch instructions. Because all instructions are
on word boundaries, bits 62 and 63 of the generated
branch target address are ignored by the processor in
performing the branch.

The Branch instructions compute the effective address
(EA) of the target in one of the following five ways, as
described in Section 1.10.3, “Effective Address Calcu-
lation” on page 26.

1. Adding a displacement to the address of the
Branch instruction (Branch or Branch Conditional
with AA=0).

2. Specifying an absolute address (Branch or Branch
Conditional with AA=1).

3. Using the address contained in the Link Register
(Branch Conditional to Link Register).

4. Using the address contained in the Count Register
(Branch Conditional to Count Register).

5. Using the address contained in the Target Address
Register (Branch Conditional to Target Address
Register).

In all five cases, in 32-bit mode the final step in the
address computation is setting the high-order 32 bits of
the target address to 0.

For the first two methods, the target addresses can be
computed sufficiently ahead of the Branch instruction
that instructions can be prefetched along the target
path. For the third through fifth methods, prefetching
instructions along the target path is also possible pro-
vided the Link Register or the Count Register is loaded
sufficiently ahead of the Branch instruction.

Branching can be conditional or unconditional, and the
return address can optionally be provided. If the return
address is to be provided (LK=1), the effective address
of the instruction following the Branch instruction is
placed into the Link Register after the branch target
address has been computed; this is done regardless of
whether the branch is taken.

For Branch Conditional instructions, the BO field speci-
fies the conditions under which the branch is taken, as
shown in Figure 44. In the figure, M=0 in 64-bit mode
and M=32 in 32-bit mode.

BO Description

0000z | Decrement the CTR, then branch if the dec-
remented CTR),.3#0 and CRg=0

0001z | Decrement the CTR, then branch if the dec-
remented CTRy.63=0 and CRg=0

001at | Branch if CRg=0

0100z | Decrement the CTR, then branch if the dec-
remented CTR);.¢3#0 and CRg =1

0101z | Decrement the CTR, then branch if the dec-
remented CTRy.g3=0 and CRg=1

011at | Branch if CRg=1

1a00t | Decrement the CTR, then branch if the dec-
remented CTR).g3%0

1a01t | Decrement the CTR, then branch if the dec-
remented CTRy.g3=0

1z1zz | Branch always

Notes:
1. “2” denotes a bit that is ignored.
2. The “a” and “t” bits are used as described below.

Figure 44. BO field encodings

The “a” and “t” bits of the BO field can be used by soft-
ware to provide a hint about whether the branch is likely
to be taken or is likely not to be taken, as shown in
Figure 45.

at Hint

00 No hint is given

01 Reserved

10 The branch is very likely not to be taken
11 The branch is very likely to be taken

Figure 45. “at” bit encodings

— Programming Note

Many implementations have dynamic mechanisms
for predicting whether a branch will be taken.
Because the dynamic prediction is likely to be very
accurate, and is likely to be overridden by any hint
provided by the “at” bits, the “at” bits should be set
to Ob00 unless the static prediction implied by
at=0b10 or at=0b11 is highly likely to be correct.

For Branch Conditional to Link Register, Branch Condli-
tional to Count Register, and Branch Conditional to Tar-
get Address Register instructions, the BH field provides

34 Power ISA™ - Book |

Version 2.07 B

a hint about the use of the instruction, as shown in
Figure 46.

BH Hint

00 belfll: The instruction is a subroutine
return

becetrl] and betarl]:The instruction is not a
subroutine return; the target
address is likely to be the same as
the target address used the pre-
ceding time the branch was taken

01 belfl]: The instruction is not a subroutine
return; the target address is likely
to be the same as the target
address used the preceding time
the branch was taken

bectrl] and betarl]:Reserved
10 Reserved

11 bcidl], bectrl], and betarl]: The target
address is not predictable

Figure 46. BH field encodings

Programming Note
The hint provided by the BH field is independent of
the hint provided by the “at” bits (e.g., the BH field
provides no indication of whether the branch is
likely to be taken).

Extended mnemonics for branches

Many extended mnemonics are provided so that
Branch Conditional instructions can be coded with por-
tions of the BO and Bl fields as part of the mnemonic
rather than as part of a numeric operand. Some of
these are shown as examples with the Branch instruc-
tions. See Appendix E for additional extended mne-
monics.

— Programming Note

The hints provided by the “at’ bits and by the BH
field do not affect the results of executing the
instruction.

The “Z” bits should be set to 0, because they may
be assigned a meaning in some future version of
the architecture.

Chapter 2. Branch Facility

35

Version 2.07 B

Programming Note

Many implementations have dynamic mechanisms for
predicting the target addresses of belfl] and bectrl]
instructions. These mechanisms may cache return
addresses (i.e., Link Register values set by Branch
instructions for which LK=1 and for which the branch
was taken, other than the special form shown in the first
example below) and recently used branch target
addresses. To obtain the best performance across the
widest range of implementations, the programmer
should obey the following rules.

B Use Branch instructions for which LK=1 only as
subroutine calls (including function calls, etc.), or in
the special form shown in the first example below.

B Pair each subroutine call (i.e., each Branch instruc-
tion for which LK=1 and the branch is taken, other
than the special form shown in the first example
below) with a belr instruction that returns from the
subroutine and has BH=0b00.

B Do not use bclrl as a subroutine call. (Some imple-
mentations access the return address cache at
most once per instruction; such implementations
are likely to treat bclrl as a subroutine return, and
not as a subroutine call.)

B For bclfl] and bcctrl], use the appropriate value
in the BH field.

The following are examples of programming conven-
tions that obey these rules. In the examples, BH is
assumed to contain 0b0O unless otherwise stated. In
addition, the “at” bits are assumed to be coded appro-
priately.

Let A, B, and Glue be specific programs.

B Obtaining the address of the next instruction:
Use the following form of Branch and Link.
bcl 20,31,$+4

W Loop counts:
Keep them in the Count Register, and use a bec
instruction (LK=0) to decrement the count and to
branch back to the beginning of the loop if the dec-
remented count is nonzero.

B Computed goto’s, case statements, etc.:
Use the Count Register to hold the address to

branch to, and use a bectr instruction (LK=0, and
BH=0b11 if appropriate) to branch to the selected
address.

Direct subroutine linkage:

Here A calls B and B returns to A. The two

branches should be as follows.

- Acalls B: use a bl or bcl instruction (LK=1).

- B returns to A: use a bclr instruction (LK=0)
(the return address is in, or can be restored to,
the Link Register).

Indirect subroutine linkage:

Here A calls Glue, Glue calls B, and B returns to A
rather than to Glue. (Such a calling sequence is
common in linkage code used when the subroutine
that the programmer wants to call, here B, is in a
different module from the caller; the Binder inserts
“glue” code to mediate the branch.) The three
branches should be as follows.

A calls Glue: use a bl or bcl instruction

(LK=1).

- Glue calls B: place the address of B into the
Count Register, and use a bcctr instruction
(LK=0).

- B returns to A: use a bclr instruction (LK=0)

(the return address is in, or can be restored to,

the Link Register).

Function call:

Here A calls a function, the identity of which may
vary from one instance of the call to another,
instead of calling a specific program B. This case
should be handled using the conventions of the
preceding two bullets, depending on whether the
call is direct or indirect, with the following differ-
ences.

- If the call is direct, place the address of the
function into the Count Register, and use a
bcctrl instruction (LK=1) instead of a bl or bel
instruction.

- For the bectrl] instruction that branches to
the function, use BH=0b11 if appropriate.

36 Power ISA™ - Book |

Version 2.07 B

—— Compatibility Note
The bits corresponding to the current “a” and “t”
bits, and to the current “z” bits except in the “branch
always” BO encoding, had different meanings in
versions of the architecture that precede Version

2.00.
B The bit corresponding to the “t” bit was called

the “y” bit. The “y” bit indicated whether to use
the architected default prediction (y=0) or to
use the complement of the default prediction
(y=1). The default prediction was defined as

follows.

- If the instruction is bc[l][a] with a negative
value in the displacement field, the branch
is taken. (This is the only case in which
the prediction corresponding to the “y” bit
differs from the prediction corresponding
to the “t” bit.)

- Inall other cases (bcl/][a] with a nonnega-
tive value in the displacement field, belrl],

or becetrl)), the branch is not taken.

B The BO encodings that test both the Count
Register and the Condition Register had a “y”
bit in place of the current “z” bit. The meaning
of the “y” bit was as described in the preceding

item.
B The “a” bit was a “z” bit.

Because these bits have always been defined
either to be ignored or to be treated as hints, a
given program will produce the same result on any
implementation regardless of the values of the bits.
Also, because even the “y” bit is ignored, in prac-
tice, by most processors that comply with versions
of the architecture that precede Version 2.00, the
performance of a given program on those proces-

sors will not be affected by the values of the bits.

Chapter 2. Branch Facility

37

Version 2.07 B

Branch I-form Branch Conditional B-form
b target_addr (AA=0 LK=0) bc BO,Bl,target_addr (AA=0 LK=0)
ba target_addr (AA=1 LK=0) bca BO,Bl,target_addr (AA=1 LK=0)
bl target_addr (AA=0 LK=1) bel BO,Bl,target_addr (AA=0 LK=1)
bla target_addr (AA=1 LK=1) bcla BO,Bl,target_addr (AA=1 LK=1)

18 LI AA|LK 16 BO BI BD AA|LK
0 6 30 | 31 0 6 11 16 30| 31

if AA then NIA «;_, EXTS(LI || 0b00)
else NIA ¢;., CIA + EXTS(LI || 0b00)
if LK then LR ¢;., CIA + 4

lea

target_addr specifies the branch target address.

If AA=0 then the branch target address is the sum of
LIl 0bOO sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
LI I 0b0O0 sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
LR (if LK=1)

if (64-bit mode)

then M « 0

else M € 32
if —BO, then CTR ¢ CTR - 1
ctr_ok ¢ BO, | ((CTRy.e3 # 0) © BOs)
cond_ok ¢ BOy | (CRgr,3, = BO;)

if ctr_ok & cond_ok then

if AA then NIA ¢, .. EXTS(BD || 0b00)

else NIA ¢,., CIA + EXTS(BD || 0b00)
if LK then LR €., CIA + 4

lea

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 44. target_addr specifies the branch target
address.

If AA=0 then the branch target address is the sum of
BD I 0b00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
BD Il 0b00 sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO5=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condli-
tional:

Extended: Equivalent to:

blt target bc 12,0,target
bne cr2,target bc 4,10,target
bdnz target bc 16,0,target

38 Power ISA™ - Book |

Version 2.07 B

Branch Conditional to Link Register

XL-form
belr BO,BI,BH (LK=0)
belrl BO,BI,BH (LK=1)

Branch Conditional to Count Register

XL-form
beetr BO,BI,BH (LK=0)
bectrl BO,BI,BH (LK=1)

19 BO BI il |BH 16 LK
0 6 11 16 [19 |21 31

19 BO BI il |BH 528 LK
0 6 11 16 19 |21 31

if (64-bit mode)

then M < 0
else M « 32
if 7BO, then CTR ¢« CTR - 1
ctr_ok ¢« BO, | ((CTRy.¢3 # 0) @ BOs

cond_ok € BOy | (CRgr,3 = BO;)
if ctr_ok & cond_ok then NIA «;_. LRg.s || 0b0O
if LK then LR €., CIA + 4

lea

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 44. The BH field is used as described in
Figure 46. The branch target address is LRg.g1 || 0b0O,
with the high-order 32 bits of the branch target address
set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO,=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional to Link Register:

Extended: Equivalent to:
bclr 4.6 belr 4,6,0

bltlr bclr 12,0,0
bnelr cr2 bclr 4,10,0
bdnzlr belr 16,0,0

— Programming Note

bclr, belrl, beetr, and bectrl each serve as both a
basic and an extended mnemonic. The Assembler
will recognize a bclr, belrl, beetr, or beetrl mne-
monic with three operands as the basic form, and a
belr, bclrl, beetr, or bectrl mnemonic with two
operands as the extended form. In the extended
form the BH operand is omitted and assumed to be
0b0o0.

cond_ok ¢ BOy | (CRgr,35 = BO;)
if cond_ok then NIA «;_, CTRg.s || 0b0O
if LK then LR €., CIA + 4

lea

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 44. The BH field is used as described in
Figure 46. The branch target address is
CTRg.s1 11 0b00, with the high-order 32 bits of the
branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

If the “decrement and test CTR” option is specified
(BO,=0), the instruction form is invalid.

Special Registers Altered:
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional to Count Register.

Extended: Equivalent to:
becetr 4.6 bccetr 46,0

bltctr becetr 12,0,0
bnectr cr2 bectr 4,10,0

Chapter 2. Branch Facility 39

Version 2.07 B

Branch Conditional to Branch Target
Address Register

XL-form
bctar BO,BI,BH (LK=0)
betarl BO,BI,BH (LK=1)

19 BO BI i |BH 560 LK
0 6 11 16 19 |21 31

if (64-bit mode)

then M « 0
else M « 32
if B0, then CTR ¢ CTR - 1
ctr_ok ¢ BO, | ((CTRy.q3 # 0) @ BOs

cond_ok € BOy | (CRgr,3s = BO;)
if ctr_ok & cond_ok then NIA «;., TAR;.4; || 0b00O
if LK then LR € CIA + 4

lea

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 44. The BH field is used as described in
Figure 46. The branch target address is
TARg.g1 Il 0b00, with the high-order 32 bits of the
branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BOo=0)
LR (if LK=1)

—— Programming Note

In some systems, the system software will restrict
usage of the betar{l] instruction to only selected
programs. If an attempt is made to execute the
instruction when it is not available, the system error
handler will be invoked. See Book III-S for addi-
tional information.

40 Power ISA™ - Book |

Version 2.07 B

2.6 Condition Register Instructions

2.6.1 Condition Register Logical Instructions

The Condition Register Logical instructions have pre-
ferred forms; see Section 1.8.1. In the preferred forms,
the BT and BB fields satisfy the following rule.

B The bit specified by BT is in the same Condition
Register field as the bit specified by BB.

Extended mnemonics for Condition
Register logical operations

A set of extended mnemonics is provided that allow
additional Condition Register logical operations,
beyond those provided by the basic Condition Register
Logical instructions, to be coded easily. Some of these
are shown as examples with the Condition Register
Logical instructions. See Appendix E for additional
extended mnemonics.

Condition Register AND XL-form Condition Register NAND XL-form
crand BT,BA,BB crnand BT,BA,BB

19 BT BA BB 257 / 19 BT BA BB 225 /
(0] 6 11 16 21 31 0 6 11 16 21 31
CRers3z2 € CRpar3z & CRgpis: CRars32 € _'(CRBA+32 & CRBB+32)

The bit in the Condition Register specified by BA+32 is
ANDed with the bit in the Condition Register specified
by BB+32, and the result is placed into the bit in the
Condition Register specified by BT+32.

Special Registers Altered:

The bit in the Condition Register specified by BA+32 is
ANDed with the bit in the Condition Register specified
by BB+32, and the complemented result is placed into
the bit in the Condition Register specified by BT+32.

Special Registers Altered:

C RBT+32 C RBT+32
Condition Register OR XL-form Condition Register XOR XL-form
cror BT,BA,BB crxor BT,BA,BB
19 BT BA BB 449 / 19 BT BA BB 193 /
(0] 6 11 16 21 31 0 6 11 16 21 31

CRgri32 € CRpay3z | CRppyso

The bit in the Condition Register specified by BA+32 is
ORed with the bit in the Condition Register specified by
BB+32, and the result is placed into the bit in the Con-
dition Register specified by BT+32.
Special Registers Altered:

CRBr432

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter OR:

Extended: Equivalent to:
crmove Bx,By cror Bx,By,By

CRgrs32 € CRpai3z @ CRppu3n

The bit in the Condition Register specified by BA+32 is
XORed with the bit in the Condition Register specified
by BB+32, and the result is placed into the bit in the
Condition Register specified by BT+32.
Special Registers Altered:

CRgri32

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter XOR:

Extended:
crclr Bx

Equivalent to:
crxor Bx,Bx,Bx

Chapter 2. Branch Facility 41

Version 2.07 B

Condition Register NOR XL-form Condition Register Equivalent XL-form
crnor BT,BA,BB creqv BT,BA,BB

19 BT BA BB 33 / 19 BT BA BB 289 /
(0] 6 11 16 21 31 0 6 11 16 21 31
CRpr+32 € 7(CRpai3z | CRppysn) CRpr+32 € CRpa+3z = CRppy3n

The bit in the Condition Register specified by BA+32 is
ORed with the bit in the Condition Register specified by
BB+32, and the complemented result is placed into the
bit in the Condition Register specified by BT+32.
Special Registers Altered:

CRgr:32

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter NOR:

Extended:
crnot Bx,By

Equivalent to:
crnor Bx,By,By

Condition Register AND with Complement

The bit in the Condition Register specified by BA+32 is
XORed with the bit in the Condition Register specified
by BB+32, and the complemented result is placed into
the bit in the Condition Register specified by BT+32.
Special Registers Altered:

CRgri32

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter Equivalent:

Extended:
crset Bx

Equivalent to:
creqv Bx,Bx,Bx

Condition Register OR with Complement

XL-form XL-form

crandc BT,BA,BB crorc BT,BA,BB
19 BT BA BB 129 / 19 BT BA BB 417 /
0 6 11 16 21 31 0 6 11 16 21 31

CRpr+32 € CRpasszz & 7CRppi3

The bit in the Condition Register specified by BA+32 is
ANDed with the complement of the bit in the Condition
Register specified by BB+32, and the result is placed
into the bit in the Condition Register specified by
BT+32.

Special Registers Altered:
CRgT.32

CRprs32 € CRpas3z | 7CRgpisz

The bit in the Condition Register specified by BA+32 is
ORed with the complement of the bit in the Condition
Register specified by BB+32, and the result is placed
into the bit in the Condition Register specified by
BT+32.

Special Registers Altered:
CRgT.32

2.6.2 Condition Register Field Instruction

Move Condition Register Field XL-form

mcrf BF,BFA

19 BF (/| BFA | /| 1 0 /
0 6 9 |11 14 [16 21 31

CRaxpr+32:4xBF+35 € CRaxpra+32:4xBFA+35
The contents of Condition Register field BFA are copied
to Condition Register field BF.

Special Registers Altered:
CR field BF

42 Power ISA™ - Book |

Version 2.07 B

2.7 System Call Instruction

This instruction provides the means by which a pro-
gram can call upon the system to perform a service.

System Call SC-form
sc LEV

17 7 i I LEV [/ 1]/
(0] 6 11 16 20 27 30|31

This instruction calls the system to perform a service. A
complete description of this instruction can be found in
Book IlI.

The use of the LEV field is described in Book Ill. The
LEV values greater than 1 are reserved, and bits 0:5 of
the LEV field (instruction bits 20:25) are treated as a
reserved field.

When control is returned to the program that executed
the System Call instruction, the contents of the regis-
ters will depend on the register conventions used by the
program providing the system service.

This instruction is context synchronizing (see Book Ill).
Special Registers Altered:
Dependent on the system service

—— Programming Note

sc serves as both a basic and an extended mne-
monic. The Assembler will recognize an s¢ mne-
monic with one operand as the basic form, and an
sc mnemonic with no operand as the extended
form. In the extended form the LEV operand is
omitted and assumed to be 0.

In application programs the value of the LEV oper-
and for sc should be 0.

Chapter 2. Branch Facility

43

Version 2.07 B

2.8 Branch History Rolling Buffer Instructions

The Branch History Rolling Buffer instructions enable
application programs to clear and read the BHRB. The
availability of these instructions is controlled by the sys-
tem software. (See Chapter 9 of Book IlI-S.) When an
attempt is made to execute these instructions when

they are unavailable, the system facility unavailable
error handler is invoked.

Clear BHRB X-form Move From Branch History Rolling Buffer
Entry
clrbhrb XFX-form
31 I i i 430 / mfohrbe ~ RT,BHRBE
0 6 11 16 21 31
31 RT BHRBE 302 /
for n = 0 to (number_of_BHRBEs implemented - 1) 0 6 " 21 31

BHRB(n) « 0
All BHRB entries are set to 0s.

Special Registers Altered:
None.

n ¢ BHRBE,,

If n < number of BHRBEs implemented then
RT ¢ BHRBE(n)

else

RT « ®4p

The BHRBE field denotes an entry in the BHRB. If the
designated entry is within the range of BHRB entries
implemented and Performance Monitor alterts are dis-
able (see Section 9.5 of Book 1lI-S), the contents of the
designated BHRB entry are placed into register RT;
otherwise, 840s are placed into register RT.

In order to ensure that the current BHRB contents are

read by this instruction, one of the following must have

occurred prior to this instruction and after all previous

Branch and clrbhrb instructions have completed.

B an event-based branch has occurred

B an rfebb (see Chapter 7 of Book Il) has been exe-
cuted

B a context synchronizing event (see Section 1.5 of
Book I11I-S) other than isynch Section 4.4.1 of
Book II) has occurred.

Special Registers Altered:
None

— Programming Note

In order to read all the BHRB entries containing
information about taken branches, software should
read the entries starting from entry number 0 and
continuing until an entry containing all Os is read or
until all implemented BHRB entries have been
read.

Since the number of BHRB entries may decrease
or the BHRB may be cleared at any time, if a given
entry, m, is read as not containing all Os and is read
again subsequently, the subsequent read may
return all Os even though the program has not exe-
cuted cirbhrb.

44 Power ISA™ - Book |

Version 2.07 B

Chapter 3. Fixed-Point Facility

3.1 Fixed-Point Facility Overview

This chapter describes the registers and instructions
that make up the Fixed-Point Facility.

3.2 Fixed-Point Facility Registers

3.2.1 General Purpose Registers

All manipulation of information is done in registers inter-
nal to the Fixed-Point Facility. The principal storage
internal to the Fixed-Point Facility is a set of 32 General
Purpose Registers (GPRs). See Figure 47.

GPRO
GPR 1

GPR 30
GPR 31
0 63

Figure 47. General Purpose Registers
Each GPR is a 64-bit register.

3.2.2 Fixed-Point Exception
Register

The Fixed-Point Exception Register (XER) is a 64-bit
register.

XER
0 63

Figure 48. Fixed-Point Exception Register

The bit definitions for the Fixed-Point Exception Regis-
ter are shown below. Here M=0 in 64-bit mode and
M=32 in 32-bit mode.

The bits are set based on the operation of an instruc-
tion considered as a whole, not on intermediate results
(e.g., the Subtract From Carrying instruction, the result
of which is specified as the sum of three values, sets
bits in the Fixed-Point Exception Register based on the
entire operation, not on an intermediate sum).

Bit(s Description
0:31 Reserved

32 Summary Overflow (SO)

The Summary Overflow bit is set to 1 when-
ever an instruction (except mispr) sets the
Overflow bit. Once set, the SO bit remains set
until it is cleared by an mitspr instruction
(specifying the XER) or an merxr instruction.
It is not altered by Compare instructions, or by
other instructions (except mispr to the XER,
and mcrxr) that cannot overflow. Executing an
mtspr instruction to the XER, supplying the
values 0 for SO and 1 for OV, causes SO to be
setto 0 and OV to be setto 1.

33 Overflow (OV)

The Overflow bit is set to indicate that an over-
flow has occurred during execution of an
instruction.

XO-form Add, Subtract From, and Negate
instructions having OE=1 set it to 1 if the carry
out of bit M is not equal to the carry out of bit
M+1, and set it to O otherwise.

XO-form Multiply Low and Divide instructions
having OE=1 set it to 1 if the result cannot be
represented in 64 bits (mulld, divd, divde,
divdu, divdeu) or in 32 bits (mullw, divw,
divwe, divwu, divweu), and set it to 0 other-
wise. The QV bit is not altered by Compare

Chapter 3. Fixed-Point Facility 45

Version 2.07 B

instructions, or by other instructions (except
mtspr to the XER, and mecrxr) that cannot
overflow.

[Category:

Legacy Integer Multiply-Accumulate]

XO-form Legacy Integer Multiply-Accumulate
instructions set OV when OE=1 to reflect over-
flow of the 32-bit result. For signed-integer
accumulation, overflow occurs when the add
produces a carry out of bit 32 that is not equal
to the carry out of bit 33. For unsigned-integer
accumulation, overflow occurs when the add
produces a carry out of bit 32.

34 Carry (CA)

The Carry bit is set as follows, during execu-
tion of certain instructions. Add Carrying, Sub-
tract From Carrying, Add Extended, and
Subtract From Extended types of instructions
set it to 1 if there is a carry out of bit M, and
set it to O otherwise. Shift Right Algebraic
instructions set it to 1 if any 1-bits have been
shifted out of a negative operand, and set it to
0 otherwise. The CA bit is not altered by Com-
pare instructions, or by other instructions
(except Shift Right Algebraic, mtspr to the
XER, and merxr) that cannot carry.

35:56 Reserved

57:63 This field specifies the number of bytes to be
transferred by a Load String Indexed or Store
String Indexed instruction.

[Category: Legacy Move Assist]

This field is used as a target by dimzb to indi-
cate the byte location of the leftmost zero byte
found.

3.2.3 VR Save Register

| VRSAVE
32 63

The VR Save Register (VRSAVE) is a 32-bit register
that can be used as a software use SPR; see Sections
3.2.4 and 6.3.3.

3.2.4 Software Use SPRs [Cate-
gory: Embedded]

Software Use SPRs are 64-bit registers that have no
defined functionality. SPRG4-7 can be read by applica-

tion programs. Additional Software Use SPRs are
defined in Book III.

SPRG4

SPRG5

SPRG6

SPRG7

0 63

Figure 49. Software-use SPRs

Programming Note

USPRGO was made a 32-bit register and renamed
to VRSAVE; see Sections 3.2.3 and 6.3.3.

3.2.5 Device Control Registers
[Category: Embedded.Device Con-
trol]

Device Control Registers (DCRs) are on-chip registers
that exist architecturally outside the processor and thus
are not actually part of the processor architecture. This
specification simply defines the existence of a Device
Control Register ‘address space’ and the instructions to
access them and does not define the Device Control
Registers themselves.

Device Control Registers may control the use of
on-chip peripherals, such as memory controllers (the
definition of specific Device Control Registers is imple-
mentation-dependent).

The contents of user-mode-accessible Device Control
Registers can be read using mfdcrux and written using
mtdcrux.

46 Power ISA™ - Book |

Version 2.07 B

3.3 Fixed-Point Facility Instructions

3.3.1 Fixed-Point Storage Access Instructions

The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.10.3 on page 26.

Programming Note

The la extended mnemonic permits computing an
effective address as a Load or Store instruction
would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address.

—— Programming Note

The DS field in DS-form Storage Access instruc-
tions is a word offset, not a byte offset like the D
field in D-form Storage Access instructions. How-
ever, for programming convenience, Assemblers
should support the specification of byte offsets for
both forms of instruction.

3.3.1.1

Storage accesses will cause the system data storage
error handler to be invoked if the program is not allowed
to modify the target storage (Store only), or if the pro-
gram attempts to access storage that is unavailable.

Storage Access Exceptions

3.3.2 Fixed-Point Load Instructions

The byte, halfword, word, or doubleword in storage
addressed by EA is loaded into register RT.

Many of the Load instructions have an “update” form, in
which register RA is updated with the effective address.
For these forms, if RA#0 and RA=RT, the effective
address is placed into register RA and the storage ele-
ment (byte, halfword, word, or doubleword) addressed
by EA is loaded into RT.

—— Programming Note

In some implementations, the Load Algebraic and
Load with Update instructions may have greater
latency than other types of Load instructions. More-
over, Load with Update instructions may take
longer to execute in some implementations than
the corresponding pair of a non-update Load
instruction and an Add instruction.

Chapter 3. Fixed-Point Facility 47

Version 2.07 B

Load Byte and Zero D-form Load Byte and Zero Indexed X-form
lbz RT,D(RA) lbzx RT,RA,RB

34 RT RA D 31 RT RA RB 87 /
0 6 11 16 31 0 6 11 16 21 31

if RA =0 then b « 0
else b < (RA)
FA € b + EXTS(D)

RT € °°0 || MEM(EA, 1)

Let the effective address (EA) be the sum (RAIO)+ D.
The byte in storage addressed by EA is loaded into
RTsg.63- RTg:55 are setto 0.

Special Registers Altered:
None

Load Byte and Zero with Update D-form

Ibzu RT,D(RA)

35 RT RA D
0 6 11 16 31

EA ¢ (RA) + EXTS(D)
RT € 60 || MEM(EA, 1)
RA € EA

Let the effective address (EA) be the sum (RA)+ D. The
byte in storage addressed by EA is loaded into RTsg.63.
RTq.55 are set to 0.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

if RA = 0 then b « 0
else b < (Ra)
EA ¢ b + (RB)

RT « 60 || MEM(EA, 1)

Let the effective address (EA) be the sum
(RAIO)+ (RB). The byte in storage addressed by EA is
loaded into RTgg.63. RTg.55 are set to 0.

Special Registers Altered:
None

Load Byte and Zero with Update Indexed

X-form

lbzux RT,RA,RB
31 RT RA RB 119 /
0 6 11 16 21 31

EA € (RA) + (RB)
RT « %0 || MEM(EA, 1)
RA € EA

Let the effective address (EA) be the sum (RA)+ (RB).
The byte in storage addressed by EA is loaded into
RT56263' RTO:55 are set to 0.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

48 Power ISA™ - Book |

Version 2.07 B

Load Halfword and Zero D-form Load Halfword and Zero Indexed X-form
Ihz RT,D(RA) lhzx RT,RA,RB

40 RT RA D 31 RT RA RB 279 /
(0] 6 11 16 31 0 6 1 16 21 31

if RA =0 then b « 0
else b < (RA)
FA € b + EXTS(D)

RT « 480 || MEM(ER, 2)

Let the effective address (EA) be the sum (RAIO)+ D.
The halfword in storage addressed by EA is loaded into
RT48:63' RTO:47 are set to 0.

Special Registers Altered:
None

Load Halfword and Zero with Update

if RA = 0 then b ¢« 0
else b < (Ra)
EA ¢ b + (RB)

RT « ‘%0 || MEM(EA, 2)

Let the effective address (EA) be the sum
(RAIO)+ (RB). The halfword in storage addressed by
EA is loaded into RT4g.63. RT(.47 are set to 0.

Special Registers Altered:
None

Load Halfword and Zero with Update

D-form Indexed X-form

Ihzu RT,D(RA) lhzux RT,RA,RB
41 RT RA D 31 RT RA RB 311 /
0 6 11 16 31 0 6 11 16 21 31

EA ¢ (RA) + EXTS(D)
RT « 80 || MEM(EA, 2)
RA € EA

Let the effective address (EA) be the sum (RA)+ D. The
halfword in storage addressed by EA is loaded into
RT48263' RTO:47 are set to 0.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

EA € (RA) + (RB)
RT « 480 || wEM(EA, 2)
RA € EA

Let the effective address (EA) be the sum (RA)+ (RB).
The halfword in storage addressed by EA is loaded into
RT48263' RTO:47 are set to 0.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Facility 49

Version 2.07 B

Load Halfword Algebraic D-form Load Halfword Algebraic Indexed X-form
lha RT,D(RA) Ihax RT,RA,RB

42 RT RA D 31 RT RA RB 343 /
0 6 11 16 31 0 6 11 16 21 31

if RA =0 thenb « 0
else b < (RA)
EA ¢« b + EXTS(D)

RT ¢« EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum (RAIO)+ D.
The halfword in storage addressed by EA is loaded into
RT4g.63- RTo.47 are filled with a copy of bit 0 of the
loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic with Update

if RA =0 thenb « 0
else b < (Ra)
EA < b + (RB)

RT ¢« EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum
(RAIO)+ (RB). The halfword in storage addressed by
EA is loaded into RT4g.63. RTq.47 are filled with a copy
of bit 0 of the loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic with Update

D-form Indexed X-form

Ihau RT,D(RA) lhaux RT,RA,RB
43 RT RA D 31 RT RA RB 375 /
0 6 11 16 31 0 6 11 16 21 31

EA ¢« (RA) + EXTS(D)
RT ¢« EXTS(MEM(EA, 2))
RA € EA

Let the effective address (EA) be the sum (RA)+ D. The
halfword in storage addressed by EA is loaded into
RT4g.63- RTo.47 are filled with a copy of bit 0 of the
loaded halfword.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

EA < (RA) + (RB)
RT € EXTS(MEM(EA, 2))
RA ¢« EA

Let the effective address (EA) be the sum (RA)+ (RB).
The halfword in storage addressed by EA is loaded into
RT4g.63- RTg.47 are filled with a copy of bit 0 of the
loaded halfword.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

50 Power ISA™ - Book |

Version 2.07 B

Load Word and Zero D-form Load Word and Zero Indexed X-form
Iwz RT,D(RA) lwzx RT,RA,RB

32 RT RA D 31 RT RA RB 23 /
(0] 6 11 16 31 0 6 11 16 21 31

if RA =0 then b « 0
else b < (RA)
FA € b + EXTS(D)

RT € 320 || MEM(EA, 4)

Let the effective address (EA) be the sum (RAIO)+ D.
The word in storage addressed by EA is loaded into
RT32:63. RTO:31 are set to 0.

Special Registers Altered:
None

Load Word and Zero with Update D-form

lwzu RT,D(RA)

33 RT RA D
0 6 11 16 31

EA ¢ (RA) + EXTS(D)
RT € 320 || MEM(EA, 4)
RA € EA

Let the effective address (EA) be the sum (RA)+ D. The
word in storage addressed by EA is loaded into
RT32:63. RTO:31 are set to 0.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

if RA = 0 then b ¢« 0
else b < (Ra)
EA ¢ b + (RB)

RT € 320 || MEM(EA, 4)

Let the effective address (EA) be the sum
(RAI0)+ (RB). The word in storage addressed by EA is
loaded into RT35.63. RTg.31 are set to 0.

Special Registers Altered:
None

Load Word and Zero with Update Indexed

X-form

lwzux RT,RA,RB
31 RT RA RB 55 /
0 6 11 16 21 31

EA € (RA) + (RB)
RT « 320 || MEM(EA, 4)
RA € EA

Let the effective address (EA) be the sum (RA)+ (RB).
The word in storage addressed by EA is loaded into
RT32:63. RTO:31 are set to 0.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Facility 51

Version 2.07 B

3.3.2.1 64-bit Fixed-Point Load Instructions [Category: 64-Bit]

Load Word Algebraic DS-form Load Word Algebraic Indexed X-form
lwa RT,DS(RA) lwax RT,RA,RB

58 RT RA DS 2 31 RT RA RB 341 /
0 6 11 16 30 31 0 6 11 16 21 31

if RA =0 thenb € 0
else b < (RA)
EA € b + EXTS(DS || 0b00)
RT « EXTS(MEM(ER, 4))

Let the effective address (EA) be the sum
(RAIO)+ (DSIIOb00). The word in storage addressed by
EA is loaded into RT3,.63. RTg.3¢ are filled with a copy
of bit 0 of the loaded word.

Special Registers Altered:
None

if RA = 0 then b « 0
else b < (Ra)
EA < b + (RB)

RT ¢ EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum
(RAI0)+ (RB). The word in storage addressed by EA is
loaded into RT35.63. RT(.31 are filled with a copy of bit 0
of the loaded word.

Special Registers Altered:
None

Load Word Algebraic with Update Indexed

X-form

Iwaux RT,RA,RB
31 RT RA RB 373 /
0 6 11 16 21 31

EA € (RA) + (RB)

RT ¢ EXTS(MEM(EA, 4))

RA « EA

Let the effective address (EA) be the sum (RA)+ (RB).
The word in storage addressed by EA is loaded into
RT35.63. RTg.3¢ are filled with a copy of bit 0 of the
loaded word.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

52 Power ISA™ - Book |

Version 2.07 B

Load Doubleword DS-form Load Doubleword Indexed X-form
Id RT,DS(RA) Idx RT,RA,RB

58 RT RA DS 0 31 RT RA RB 21 /
(0] 6 11 16 30 31 0 6 11 16 21 31

if RA = 0 then b « 0
else b < (RA)
EA € b + EXTS(DS || 0b00)
RT ¢ MEM(EA, 8)

Let the effective address (EA) be the sum
(RAIO)+ (DSIIOb00). The doubleword in storage
addressed by EA is loaded into RT.

Special Registers Altered:
None

Load Doubleword with Update = DS-form
Idu RT,DS(RA)

58 RT RA DS 1
0 6 11 16 30 31

if RA =0 then b « 0
else b < (Ra)
EA < b + (RB)

RT < MEM(EA, 8)

Let the effective address (EA) be the sum
(RAI0)+ (RB). The doubleword in storage addressed by
EA is loaded into RT.

Special Registers Altered:
None

Load Doubleword with Update Indexed

EA « (RA) + EXTS(DS || 0b00)
RT ¢ MEM(EA, 8)
RA € EA

Let the effective address (EA) be the sum
(RA)+ (DSIIOb00). The doubleword in storage
addressed by EA is loaded into RT.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

X-form

Idux RT,RA,RB
31 RT RA RB 53 /
0 6 11 16 21 31

EA < (RA) + (RB)
RT ¢ MEM(EA, 8)
RA ¢« EA

Let the effective address (EA) be the sum (RA)+ (RB).
The doubleword in storage addressed by EA is loaded
into RT.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Facility 53

Version 2.07 B

3.3.3 Fixed-Point Store Instructions

The contents of register RS are stored into the byte,
halfword, word, or doubleword in storage addressed by
EA.

Many of the Store instructions have an “update” form, in
which register RA is updated with the effective address.
For these forms, the following rules apply.

B |f RA=0, the effective address is placed into regis-
ter RA.

B |f RS=RA, the contents of register RS are copied
to the target storage element and then EA is
placed into RA (RS).

Store Byte D-form Store Byte Indexed X-form
stb RS,D(RA) stbx RS,RA,RB

38 RS RA D 31 RS RA RB 215 /
0 6 11 16 31 0 6 11 16 21 31

if RA =0 thenb « 0
else b « (RA)
EA € b + EXTS(D)
MEM(EA, 1) € (RS)s6.63

Let the effective address (EA) be the sum (RAIO)+ D.
(RS)s6.63 are stored into the byte in storage addressed
by EA.

Special Registers Altered:
None

if RA =0 then b « 0
else b « (Ra)
EA € b + (RB)

MEM(EA, 1) € (RS)s54.63

Let the effective address (EA) be the sum
(RAIO)+ (RB). (RS)s5¢.63 are stored into the byte in stor-
age addressed by EA.

Special Registers Altered:
None

Store Byte with Update D-form Store Byte with Update Indexed X-form
stbu RS,D(RA) stbux RS,RA,RB

39 RS RA D 31 RS RA RB 247 /
0 6 11 16 31 0 6 11 16 21 31

EA ¢« (RA) + EXTS(D)
MEM(EA, 1) € (RS)s54.43
RA ¢« EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)s6:63 are stored into the byte in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA < (RA) + (RB)
MEM(EA, 1) € (RS)s54.43
RA ¢ EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)s6:63 are stored into the byte in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

54 Power ISA™ - Book |

Version 2.07 B

Store Halfword D-form Store Halfword Indexed X-form
sth RS,D(RA) sthx RS,RA,RB

44 RS RA D 31 RS RA RB 407 /
(0] 6 11 16 31 0 6 1 16 21 31

if RA =0 thenb « 0
else b < (RA)
EA ¢« b + EXTS(D)
MEM(EA, 2) € (RS)4g.63

Let the effective address (EA) be the sum (RAIO)+ D.
(RS)45.65 are stored into the halfword in storage
addressed by EA.

Special Registers Altered:
None

Store Halfword with Update D-form
sthu RS,D(RA)

45 RS RA D
0 6 11 16 31

EA ¢« (RA) + EXTS(D)
MEM(ER, 2) € (RS)4g5.43
RA ¢« EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)4g.63 are stored into the halfword in storage
addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

if RA =0 then b « 0
else b < (Ra)
EA < b + (RB)

MEM(EA, 2) € (RS)4g.63

Let the effective address (EA) be the sum
(RAIO)+ (RB). (RS)4g.63 are stored into the halfword in
storage addressed by EA.

Special Registers Altered:
None

Store Halfword with Update Indexed

X-form

sthux RS,RA,RB
31 RS RA RB 439 /
0 6 11 16 21 31

EA < (RA) + (RB)
MEM(EA, 2) € (RS)4g5.43
RA € EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)4g.63 are stored into the halfword in storage
addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Facility 55

Version 2.07 B

Store Word D-form Store Word Indexed X-form
stw RS,D(RA) stwx RS,RA,RB

36 RS RA D 31 RS RA RB 151 /
(0] 6 11 16 31 0 6 1 16 21 31

if RA =0 thenb « 0
else b < (RA)
EA ¢« b + EXTS(D)
MEM(EA, 4) € (RS)35.43

Let the effective address (EA) be the sum (RAIO)+ D.
(RS)30.63 are stored into the word in storage addressed
by EA.

Special Registers Altered:
None

if RA =0 thenb « 0
else b < (Ra)
EA < b + (RB)

MEM(EA, 4) € (RS)35.63

Let the effective address (EA) be the sum
(RAIO)+ (RB). (RS)30.63 are stored into the word in stor-
age addressed by EA.

Special Registers Altered:
None

Store Word with Update D-form Store Word with Update Indexed X-form
stwu RS,D(RA) stwux RS,RA,RB

37 RS RA D 31 RS RA RB 183 /
0 6 11 16 31 0 6 11 16 21 31

EA < (RA) + EXTS(D)
MEM(ER, 4) € (RS)33.43
RA ¢« EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)30.63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA < (RA) + (RB)
MEM(EA, 4) € (RS)35.43
RA ¢ EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)30.63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

56 Power ISA™ - Book |

Version 2.07 B

3.3.3.1 64-bit Fixed-Point Store Instructions [Category: 64-Bit]

Store Doubleword DS-form Store Doubleword Indexed X-form
std RS,DS(RA) stdx RS,RA,RB

62 RS RA DS 0 31 RS RA RB 149 /
(0] 6 11 16 30 31 0 6 1 16 21 31

if RA =0 thenb € 0
else b « (RA)
EA € b + EXTS(DS || 0b00)
MEM(EA, 8) ¢« (RS)

Let the effective address (EA) be the sum
(RAIO)+ (DSII0b00). (RS) is stored into the doubleword
in storage addressed by EA.

Special Registers Altered:
None

Store Doubleword with Update DS-form
stdu RS,DS(RA)

62 RS RA DS 1
0 6 11 16 30 31

if RA = 0 then b « 0
else b < (Ra)
EA < b + (RB)

MEM(EA, 8) €« (RS)

Let the effective address (EA) be the sum
(RAIO)+ (RB). (RS) is stored into the doubleword in
storage addressed by EA.

Special Registers Altered:
None

Store Doubleword with Update Indexed

EA « (RA) + EXTS(DS || 0b00)
MEM(EA, 8) € (RS)
RA ¢« EA

Let the effective address (EA) be the sum
(RA)+ (DSII0b00). (RS) is stored into the doubleword in
storage addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

X-form

stdux RS,RA,RB
31 RS RA RB 181 /
0 6 11 16 21 31

EA < (RA) + (RB)
MEM (EA, 8) < (RS)
RA ¢« EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS) is stored into the doubleword in storage
addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Facility 57

Version 2.07 B

3.3.4 Fixed Point Load and Store Quadword Instructions

[Category: Load/Store Quadword]

For Iq, the quadword in storage addressed by EA is
loaded into an even-odd pair of GPRs as follows. In
Big-Endian mode, the even-numbered GPR is loaded
with the doubleword from storage addressed by EA and
the odd-numbered GPR is loaded with the doubleword
addressed by EA+8. In Little-Endian mode, the
even-numbered GPR is loaded with the byte-reversed
doubleword from storage addressed by EA+8 and the
odd-numbered GPR is loaded with the byte-reversed
doubleword addressed by EA.

In the preferred form of the Load Qudword instruction
RA = RTp+1.

For stq, the contents of an even-odd pair of GPRs is
stored into the quadword in storage addressed by EA
as follows. In Big-Endian mode, the even-numbered
GPR is stored into the doubleword in storage
addressed by EA and the odd-numbered GPR is stored
into the doubleword addressed by EA+8. In Lit-
tle-Endian mode, the even-numbered GPR is stored
byte-reversed into the doubleword in storage
addressed by EA+8 and the odd-numbered GPR is
stored byte-reversed into the doubleword addressed by
EA.

— Programming Note

The Iq and stq instructions exist primarily to permit
software to access quadwords in storage "atomi-
cally"; see Section 1.4 of Book Il. Because GPRs
are 64 bits long, the Fixed-Point Facility on many
designs is optimized for storage accesses of at
most eight bytes. On such designs, the quadword
atomicity required for Iq and stq makes these
instructions complex to implement, with the result
that the instructions may perform less well on these
designs than the corresponding two Load Double-
word or Store Doubleword instructions.

The complexity of providing quadword atomicity
may be especially great for storage that is Write
Through Required or Caching Inhibited (see
Section 1.6 of Book Il). This is why Iq and stq are
permitted to cause the data storage error handler
to be invoked if the specified storage location is in
either of these kinds of storage (see Section
3.3.1.1).

Load Quadword DQ-form
Iq RTp,DQ(RA)

56 RTp RA DQ 1
0 6 11 16 28 31
if RA =0 thenb « 0
else b « (Ra)

EA € b + EXTS(DQ || 0b0000)
RTp ¢ MEM(EA, 16)

Let the effective address (EA) be the sum (RAIO)+
(DQIIOb0000). The quadword in storage addressed by
EA is loaded into register pair RTp.

If RTp is odd or RTp=RA, the instruction form is invalid.
If RTp=RA, an attempt to execute this instruction will
invoke the system illegal instruction error handler. (The
RTp=RA case includes the case of RTp=RA=0.)

The quadword in storage addressed by EA is loaded
into an even-odd pair of GPRs as follows. In Big-Endian
mode, the even-numbered GPR is loaded with the dou-
bleword from storage addressed by EA and the
odd-numbered GPR is loaded with the doubleword
addressed by EA+8. In Little-Endian mode, the
even-numbered GPR is loaded with the byte-reversed
doubleword from storage addressed by EA+8 and the

odd-numbered GPR is loaded with the byte-reversed
doubleword addressed by EA.

Programming Note

In versions of the architecture prior to V. 2.07, this
instruction was privileged.

Special Registers Altered:
None

58 Power ISA™ - Book |

Version 2.07 B

Store Quadword DS-form
stq RSp,DS(RA)

62 RSp RA DS 2
0 6 11 16 30 31

if RA = 0 then b « 0
else b €« (RA)
EA € b + EXTS(DS || 0b00)
MEM(EA, 16) ¢ RSp

Let the effective address (EA) be the sum (RAIO)+
(DSII0b00). The contents of register pair RSp are
stored into the quadword in storage addressed by EA.

If RSp is odd, the instruction form is invalid.

The contents of an even-odd pair of GPRs is stored into
the quadword in storage addressed by EA as follows. In
Big-Endian mode, the even-numbered GPR is stored
into the doubleword in storage addressed by EA and
the odd-numbered GPR is stored into the doubleword
addressed by EA+8. In Little-Endian mode, the
even-numbered GPR is stored byte-reversed into the
doubleword in storage addressed by EA+8 and the
odd-numbered GPR is stored byte-reversed into the
doubleword addressed by EA.

Programming Note

In versions of the architecture prior to V. 2.07, this
instruction was privileged.

Special Registers Altered:
None

Chapter 3. Fixed-Point Facility

59

Version 2.07 B

3.3.5 Fixed-Point Load and Store with Byte Reversal Instructions

Programming Note

These instructions have the effect of loading and
storing data in the opposite byte ordering from that
which would be used by other Load and Store
instructions.

Programming Note

In some implementations, the Load Byte-Reverse
instructions may have greater latency than other
Load instructions.

Load Halfword Byte-Reverse Indexed

Store Halfword Byte-Reverse Indexed

X-form X-form

Ihbrx RT,RA,RB sthbrx RS,RA,RB
31 RT RA RB 790 / 31 RS RA RB 918 /
0 6 11 16 21 31 0 6 11 16 21 31

if RA =0 thenb « 0

else b < (RA)

EA < b + (RB)

load_data ¢« MEM(EA, 2)

RT « *%0 || load_datag.,s || load_datag.-

Let the effective address (EA) be the sum (RAI0)+(RB).
Bits 0:7 of the halfword in storage addressed by EA are
loaded into RTsg.63. Bits 8:15 of the halfword in storage
addressed by EA are loaded into RTg.55. RT(.47 are
setto 0.

Special Registers Altered:
None

Load Word Byte-Reverse Indexed X-form

lwbrx RT,RA,RB

if RA =0 thenb « 0

else b €< (Ra)
EA ¢ b + (RB)
MEM(EA, 2) € (RS)se.63 || (RS)4g.s5

Let the effective address (EA) be the sum
(RAIO)+ (RB). (RS)s6.63 are stored into bits 0:7 of the
halfword in storage addressed by EA. (RS)4g.55 are
stored into bits 8:15 of the halfword in storage
addressed by EA.

Special Registers Altered:
None

Store Word Byte-Reverse Indexed X-form

stwbrx RS,RA,RB

31 RT RA RB 534 /

0 6 11 16 21 31

31 RS RA RB 662 /
0 6 11 16 21 31

if RA = 0 then b « 0

else b « (RA)

EA € b + (RB)

load_data ¢« MEM(EA, 4)

RT « 20 || load_data,,,;; || load_datag..s
|| load _datag.;s || load_datay.,

Let the effective address (EA) be the sum
(RAIO)+ (RB). Bits 0:7 of the word in storage addressed
by EA are loaded into RTgg.63. Bits 8:15 of the word in
storage addressed by EA are loaded into RT4g.55. Bits
16:23 of the word in storage addressed by EA are
loaded into RT4qg.47. Bits 24:31 of the word in storage
addressed by EA are loaded into RT3o.39. RT(.31 are
set to 0.

Special Registers Altered:
None

if RA =0 then b « 0

else b ¢ (Ra)

EA < b + (RB)

MEM(EA, 4) € (RS)sg.63 || (RS)ag.s5 || (RS)aq.a7
[(RS)32.39

Let the effective address (EA) be the sum
(RAIO)+ (RB). (RS)s6.63 are stored into bits 0:7 of the
word in storage addressed by EA. (RS),g.55 are stored
into bits 8:15 of the word in storage addressed by EA.
(RS)40:47 are stored into bits 16:23 of the word in stor-
age addressed by EA. (RS)30.39 are stored into bits
24:31 of the word in storage addressed by EA.

Special Registers Altered:
None

60 Power ISA™ - Book |

Version 2.07 B

3.3.5.1 64-Bit Load and Store with Byte Reversal Instructions [Category: 64-bit]

Load Doubleword Byte-Reverse Indexed

Store Doubleword Byte-Reverse Indexed

X-form X-form

Idbrx RT,RA,RB stdbrx RS,RA,RB
31 RT RA RB 532 / 31 RS RA RB 660 /
(0] 6 11 16 21 31 0 6 1 16 21 31

if RA =0 thenb « 0

else b ¢« (RA)

EA ¢« b + (RB)

load_data ¢ MEM(EA, 8)

RT ¢« load_datasg.q3 || load_datasg.ss
|| load_datasg.s; || load_datass.sg
|| load datagy.s; || load_datajg.ss
|| load datag.q5 || load_datay.s

Let the effective address (EA) be the sum (RAI0)+(RB).
Bits 0:7 of the doubleword in storage addressed by EA
are loaded into RTgg.63. Bits 8:15 of the doubleword in
storage addressed by EA are loaded into RT4g.55. Bits
16:23 of the doubleword in storage addressed by EA
are loaded into RT4q.47. Bits 24:31 of the doubleword in
storage addressed by EA are loaded into RT35.39. Bits
32:39 of the doubleword in storage addressed by EA
are loaded into RToy4.31. Bits 40:47 of the doubleword in
storage addressed by EA are loaded into RTqg.03. Bits
48:55 of the doubleword in storage addressed by EA
are loaded into RTg.q5. Bits 56:63 of the doubleword in
storage addressed by EA are loaded into RTy.;.

Special Registers Altered:
None

if RA =0 then b « 0

else b < (Ra)

EA < b + (RB)

MEM(EA, 8) € (RS)s6.63 || (RS)4g.55
|| (RS)a0:a7 || (RS)32.30
|| (RS)24.31 || ()16 23
|| (RS)g.15 || (RS)g

Let the effective address (EA) be the sum
(RAIO)+ (RB). (RS)s6.63 are stored into bits 0:7 of the
doubleword in storage addressed by EA. (RS)4g.55 are
stored into bits 8:15 of the doubleword in storage
addressed by EA. (RS)4q.47 are stored into bits 16:23 of
the doubleword in storage addressed by EA. (RS)32.39
are stored into bits 23:31 of the doubleword in storage
addressed by EA. (RS)o4.31 are stored into bits 32:39 of
the doubleword in storage addressed by EA. (RS)1g.03
are stored into bits 40:47 of the doubleword in storage
addressed by EA. (RS)g.15 are stored into bits 48:55 of
the doubleword in storage addressed by EA. (RS)q.7
are stored into bits 56:63 of the doubleword in storage
addressed by EA.

Special Registers Altered:
None

Chapter 3. Fixed-Point Facility 61

Version 2.07 B

3.3.6 Fixed-Point Load and Store Multiple Instructions

Load Multiple Word D-form Store Multiple Word D-form
Imw RT,D(RA) stmw RS,D(RA)

46 RT RA D 47 RS RA D
0 6 11 16 31 0 6 11 16 31

if RA =0 thenb « 0

else b < (RA)
EA € b + EXTS(D)
r € RT

do while r < 31
GPR(r) « 20 || MEM(EA, 4)
rer+ 1
EA € EA + 4

Let n = (32- RT). Let the effective address (EA) be the
sum (RAIQO)+ D.

n consecutive words starting at EA are loaded into the
low-order 32 bits of GPRs RT through 31. The
high-order 32 bits of these GPRs are set to zero.

If RA is in the range of registers to be loaded, including
the case in which RA=0, the instruction form is invalid.

For the Server environment, this instruction is not sup-
ported in Little-Endian mode. If it is executed in Lit-
tle-Endian mode, the system alignment error handler is
invoked.

Special Registers Altered:
None

if RA =0 thenb « 0

else b < (Ra)
EA ¢« b + EXTS(D)
r € RS

do while r £ 31
MEM(EA, 4) € GPR(r)35.63
rer+1
EA € EA + 4

Let n = (32- RS). Let the effective address (EA) be the
sum (RAIO)+ D.

n consecutive words starting at EA are stored from the
low-order 32 bits of GPRs RS through 31.

For the Server environment, this instruction is not sup-
ported in Little-Endian mode. If it is executed in Lit-
tle-Endian mode, the system alignment error handler is
invoked.

Special Registers Altered:
None

62 Power ISA™ - Book |

Version 2.07 B

3.3.7 Fixed-Point Move Assist Instructions [Category: Move Assist.Phased

Out]

The Move Assist instructions allow movement of an
arbitrary sequence of bytes from storage to registers or
from registers to storage without concern for alignment.
These instructions can be used for a short move
between arbitrary storage locations or to initiate a long
move between unaligned storage fields.

The Move Assist instructions have preferred forms; see
Section 1.8.1, “Preferred Instruction Forms” on
page 22. In the preferred forms, register usage satisfies
the following rules.

M RS=4o0or5
B RT=4o0r5
W last register loaded/stored < 12

For some implementations, using GPR 4 for RS and RT
may result in slightly faster execution than using GPR
5.

Chapter 3. Fixed-Point Facility 63

Version 2.07 B

Load String Word Immediate X-form Load String Word Indexed X-form
Iswi RT,RANB Iswx RT,RA,RB

31 RT RA NB 597 / 31 RT RA RB 533 /
(0] 6 11 16 21 31 0 6 11 16 21 31

if RA = 0 then EA « 0

else EA < (RA)
if NB = 0 then n ¢ 32
else n € NB

r € RT -1

i€ 32

do whilen > 0

if 1 = 32 then
r < r+1 (mod 32)
GPR(r) « 0

GPR(r) ;1,7 € MEM(EA, 1)

iei+8

if 1 = 64 then i « 32

EA ¢« EA + 1

nen-1

Let the effective address (EA) be (RAIO). Let n = NB if
NB=0, n = 32 if NB=0; n is the number of bytes to load.
Let nr=CEIL(n/4); nr is the number of registers to
receive data.

n consecutive bytes starting at EA are loaded into
GPRs RT through RT+nr- 1. Data are loaded into the
low-order four bytes of each GPR; the high-order four
bytes are set to 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR O if
required. If the low-order four bytes of register RT+nr- 1
are only partially filled, the unfilled low-order byte(s) of
that register are set to 0.

If RA is in the range of registers to be loaded, including
the case in which RA=0, the instruction form is invalid.

For the Server environment, this instruction is not sup-
ported in Little-Endian mode. If it is executed in Lit-
tle-Endian mode, the system alignment error handler is
invoked.

Special Registers Altered:
None

if RA =0 thenb « 0
else b < (Ra)
EA < b + (RB)
n € XER57.63
r €« RT - 1
1€ 32
RT ¢ undefined
do whilen > 0
if 1 = 32 then
r < r+1 (mod 32)
GPR(r) < 0
GPR(r);.;47 ¢ MEM(ER, 1)
iei+8
if 1 = 64 then i « 32
EA € EA + 1
né n-1

Let the effective address (EA) be the sum
(RAIO)+ (RB). Let n=XERg7.3; n is the number of bytes
to load. Let nr=CEIL(n/4); nr is the number of registers
to receive data.

If n>0, n consecutive bytes starting at EA are loaded
into GPRs RT through RT+nr- 1. Data are loaded into
the low-order four bytes of each GPR; the high-order
four bytes are set to 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR O fif
required. If the low-order four bytes of register RT+nr- 1
are only partially filled, the unfilled low-order byte(s) of
that register are set to 0.

If n=0, the contents of register RT are undefined.

If RA or RB is in the range of registers to be loaded,
including the case in which RA=0, the instruction is
treated as if the instruction form were invalid. If RT=RA
or RT=RB, the instruction form is invalid.

For the Server environment, this instruction is not sup-
ported in Little-Endian mode. If it is executed in Lit-
tle-Endian mode and n>0, the system alignment error
handler is invoked.

Special Registers Altered:
None

64 Power ISA™ - Book |

Version 2.07 B

Store String Word Immediate X-form Store String Word Indexed X-form
stswi RS,RA,NB stswx RS,RA,RB

31 RS RA NB 725 / 31 RS RA RB 661 /
(0] 6 11 16 21 31 0 6 11 16 21 31

if RA = 0 then EA « 0

else EA < (RA)
if NB = 0 then n « 32
else n € NB

r € RS -1

i€ 32

do whilen > 0
if 1 =32thenr € r +1 (mod 32)
MEM(EA, 1) € GPR(T);.i47
i¢e1+38
if 1 = 64 then 1 « 32
EA ¢« EA + 1
nen-1

Let the effective address (EA) be (RAIO). Let n = NB if
NB=0, n = 32 if NB=0; n is the number of bytes to store.
Let nr =CEIL(n/4); nr is the number of registers to sup-
ply data.

n consecutive bytes starting at EA are stored from
GPRs RS through RS+nr- 1. Data are stored from the
low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR 0 if
required.

For the Server environment, this instruction is not sup-
ported in Little-Endian mode. If it is executed in Lit-
tle-Endian mode, the system alignment error handler is
invoked.

Special Registers Altered:
None

if RA =0 then b « 0
else b < (Ra)
EA < b + (RB)
n € XER57.63
r € RS -1
1€ 32
do whilen > 0
if 1 =32 thenr ¢ r + 1 (mod 32)
MEM(EA, 1) ¢ GPR(T);.i47
ie1+8
if 1 = 64 then 1 « 32
EA ¢« EA + 1
néen-1

Let the effective address (EA) be the sum
(RAIO)+ (RB). Let n = XERs7.63; n is the number of
bytes to store. Let nr = CEIL(n/4); nr is the number of
registers to supply data.

If n>0, n consecutive bytes starting at EA are stored
from GPRs RS through RS+nr- 1. Data are stored from
the low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR O if
required.

If n=0, no bytes are stored.

For the Server environment, this instruction is not sup-
ported in Little-Endian mode. If it is executed in Lit-
tle-Endian mode and n>0, the system alignment error
handler is invoked.

Special Registers Altered:
None

Chapter 3. Fixed-Point Facility 65

Version 2.07 B

3.3.8 Other Fixed-Point Instructions

The remainder of the fixed-point instructions use the
contents of the General Purpose Registers (GPRs) as
source operands, and place results into GPRs, into the
Fixed-Point Exception Register (XER), and into Condi-
tion Register fields. In addition, the Trap instructions
test the contents of a GPR or XER bit, invoking the sys-
tem trap handler if the result of the specified test is true.

These instructions treat the source operands as signed
integers unless the instruction is explicitly identified as
performing an unsigned operation.

The X-form and XO-form instructions with Rc=1, and
the D-form instructions addic., andi., and andis., set
the first three bits of CR Field 0 to characterize the
result placed into the target register. In 64-bit mode,

these bits are set by signed comparison of the result to
zero. In 32-bit mode, these bits are set by signed com-
parison of the low-order 32 bits of the result to zero.

Unless otherwise noted and when appropriate, when
CR Field 0 and the XER are set they reflect the value
placed into the target register.

Programming Note

Instructions with the OE bit set or that set CA may
execute slowly or may prevent the execution of sub-
sequent instructions until the instruction has com-
pleted.

66 Power ISA™ - Book |

Version 2.07 B

3.3.9 Fixed-Point Arithmetic Instructions

The XO-form Arithmetic instructions with Rc=1, and the
D-form Arithmetic instruction addic., set the first three
bits of CR Field 0 as described in Section 3.3.8, “Other
Fixed-Point Instructions”.

addic, addic., subfic, addc, subfc, adde, subfe,
addme, subfme, addze, and subfze always set CA, to
reflect the carry out of bit 0 in 64-bit mode and out of bit
32 in 32-bit mode. The XO-form Arithmetic instructions
set SO and OV when OE=1 to reflect overflow of the
result. Except for the Multiply Low and Divide instruc-
tions, the setting of these bits is mode-dependent, and
reflects overflow of the 64-bit result in 64-bit mode and
overflow of the low-order 32-bit result in 32-bit mode.
For XO-form Multiply Low and Divide instructions, the
setting of these bits is mode-independent, and reflects
overflow of the 64-bit result for mulld, divd, divde,
divdu and divdeu, and overflow of the low-order 32-bit
result for mullw, divw, divwe, divwu, and divweu.

Programming Note

Notice that CR Field 0 may not reflect the “true”
(infinitely precise) result if overflow occurs.

Extended mnemonics for addition and
subtraction

Several extended mnemonics are provided that use the
Add Immediate and Add Immediate Shifted instructions
to load an immediate value or an address into a target
register. Some of these are shown as examples with
the two instructions.

The Power ISA supplies Subtract From instructions,
which subtract the second operand from the third. A set
of extended mnemonics is provided that use the more
“normal” order, in which the third operand is subtracted
from the second, with the third operand being either an
immediate field or a register. Some of these are shown
as examples with the appropriate Add and Subtract
From instructions.

See Appendix E for additional extended mnemonics.

Add Immediate D-form Add Immediate Shifted D-form
addi RT,RA,SI addis RT,RA,SI

14 RT RA Sl 15 RT RA Sl
0 6 11 16 31 0 6 11 16 31

if RA = 0 then RT ¢ EXTS(SI)
else RT ¢« (RA) + EXTS(SI)

The sum (RAIO) + Sl is placed into register RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add Immediate:

Extended: Equivalent to:

li Rx,value addi Rx,0,value
la Rx,disp(Ry) addi Rx,Ry,disp
subi Rx,Ry,value addi Rx,Ry,-value

—— Programming Note

addi, addis, add, and subf are the preferred
instructions for addition and subtraction, because
they set few status bits.

Notice that addi and addis use the value 0, not the
contents of GPR 0, if RA=0.

if RA = 0 then RT ¢ EXTS(SI || °0)
else RT « (RA) + EXTS(SI || %0)

The sum (RAIO) + (SI [l 0x0000) is placed into register
RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add Immediate
Shifted:

Extended: Equivalent to:
lis Rx,value addis Rx,0,value
subis Rx,Ry,value addis Rx,Ry,- value

Chapter 3. Fixed-Point Facility 67

Version 2.07 B

Add XO-form Subtract From XO-form
add RT,RA,RB (OE=0 Rc=0) subf RT,RA,RB (OE=0 Rc=0)
add. RT,RA,RB (OE=0 Rc=1) subf. RT,RA,RB (OE=0 Rc=1)
addo RT,RA,RB (OE=1 Rc=0) subfo RT,RA,RB (OE=1 Rc=0)
addo. RT,RA,RB (OE=1Rc=1) subfo. RT,RA,RB (OE=1 Rec=1)
31 RT RA RB [OE|] 266 |Rc 31 RT RA RB [OE| 40 Rc
(0] 6 11 16 21 22 31 0 6 1 16 21 22 31

RT ¢« (RA) + (RB)
The sum (RA) + (RB) is placed into register RT.
Special Registers Altered:

CRO (if Re=1)
SO oV (if OE=1)
Add Immediate Carrying D-form

addic RT,RA,SI

12 RT RA SI

RT < 7 (RA) + (RB) + 1
The sum —(RA) + (RB) +1 is placed into register RT.

Special Registers Altered:
CRO (if Re=1)
SO oV (if OE=1)

Extended Mnemonics:

Example of extended mnemonics for Subtract From:

Extended: Equivalent to:
sub Rx,Ry,Rz subf Rx,Rz,Ry

Add Immediate Carrying and Record
D-form

addic. RT,RA,SI

RT ¢ (RA) + EXTS(SI)
The sum (RA) + Sl is placed into register RT.

Special Registers Altered:
CA

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying:

Extended: Equivalent to:
subic Rx,Ry,value addic Rx,Ry,- value

13 RT RA SI

RT « (RA) + EXTS(SI)
The sum (RA) + Sl is placed into register RT.

Special Registers Altered:
CRO CA

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying and Record.

Extended: Equivalent to:
subic. Rx,Ry,value addic. Rx,Ry,- value

68 Power ISA™ - Book |

Version 2.07 B

Subtract From Immediate Carrying
D-form

subfic RT,RA,SI

8 RT RA Sl
0 6 11 16 31

RT « =(RA) + EXTS(SI) + 1
The sum —(RA) + Sl + 1 is placed into register RT.
Special Registers Altered:

CA

Add Carrying XO-form Subtract From Carrying XO-form
addc RT,RA,RB (OE=0 Rc=0) subfc RT,RA,RB (OE=0 Rc=0)
addc. RT,RA,RB (OE=0 Rc=1) subfc. RT,RA,RB (OE=0 Rc=1)
addco RT,RA,RB (OE=1 Rc=0) subfco RT,RA,RB (OE=1 Rc=0)
addco. RT,RA,RB (OE=1Rc=1) subfco. RT,RA,RB (OE=1Rc=1)

31 RT RA RB [OE[] 10 [Rc 31 RT RA RB [OE 8 Rc
(0] 6 11 16 21 (22 31 0 6 11 16 21 22 31

RT ¢« (RA) + (RB)
The sum (RA) + (RB) is placed into register RT.
Special Registers Altered:

CA
CRO (if Re=1)
sSo ov (if OE=1)

RT < 7 (RA) + (RB) + 1
The sum —(RA) + (RB) + 1 is placed into register RT.
Special Registers Altered:

CA
CRO (if Re=1)
SO oV (if OE=1)

Extended Mnemonics:

Example of extended mnemonics for Subtract From
Carrying:

Extended: Equivalent to:
subc Rx,Ry,Rz subfc Rx,Rz,Ry

Chapter 3. Fixed-Point Facility 69

Version 2.07 B

Add Extended XO-form Subtract From Extended XO-form
adde RT,RA,RB (OE=0 Rc=0) subfe RT,RA,RB (OE=0 Rc=0)
adde. RT,RA,RB (OE=0 Rc=1) subfe. RT,RA,RB (OE=0 Rc=1)
addeo RT,RA,RB (OE=1 Rc=0) subfeo RT,RA,RB (OE=1 Rc=0)
addeo. RT,RA,RB (OE=1 Rc=1) subfeo. RT,RA,RB (OE=1Rc=1)
31 RT RA RB [OE|] 138 [Rc 31 RT RA RB [OE[136 [Rc
(0] 6 11 16 21 22 31 0 6 1 16 21 22 31

RT ¢« (RA) + (RB) + CA
The sum (RA) + (RB) + CA is placed into register RT.
Special Registers Altered:

CA
CRO (if Re=1)
SO Qv (if OE=1)
Add to Minus One Extended XO-form
addme RT,RA (OE=0 Rc=0)
addme. RT,RA (OE=0 Rc=1)
addmeo RT,RA (OE=1 Rc=0)
addmeo. RT,RA (OE=1Rc=1)
31 RT RA /Il |OE| 234 |Rc
o 6 11 16 21 |22 31

RT < (RA) + CA - 1
The sum (RA) + CA + %41 is placed into register RT.
Special Registers Altered:

CA
CRO (if Re=1)
soov (if OE=1)

RT ¢ 7(RA) + (RB) + CA
The sum —(RA) + (RB) + CA is placed into register RT.
Special Registers Altered:

CA
CRO (if Re=1)
SO ov (if OE=1)

Subtract From Minus One Extended

XO-form
subfme RT,RA (OE=0 Rc=0)
subfme. RT,RA (OE=0 Rc=1)
subfmeo RT,RA (OE=1 Rc=0)
subfmeo. RT,RA (OE=1 Rc=1)

31 RT RA /Il |OE| 232 |[Rc
0 6 11 16 21 |22 31

RT ¢ 7(RA) + CA - 1
The sum —(RA) + CA + %1 is placed into register RT.
Special Registers Altered:

CA
CRO (if Re=1)
soov (if OE=1)

70 Power ISA™ - Book |

Version 2.07 B

Add to Zero Extended XO-form Subtract From Zero Extended XO-form
addze RT,RA (OE=0 Rc=0) subfze RT,RA (OE=0 Rc=0)
addze. RT,RA (OE=0 Rc=1) subfze. RT,RA (OE=0 Rc=1)
addzeo RT,RA (OE=1 Rc=0) subfzeo RT,RA (OE=1 Rc=0)
addzeo. RT,RA (OE=1 Rc=1) subfzeo. RT,RA (OE=1 Rc=1)
31 RT RA /il |OE| 202 |Rc 31 RT RA /ll |OE| 200 |[Rc
0 6 11 16 21 |22 31 0 6 11 16 21 |22 31

RT ¢« (RA) + CA
The sum (RA) + CA is placed into register RT.
Special Registers Altered:

CA
CRO (if Re=1)
sSoov (if OE=1)

RT ¢« 7(RA) + CA
The sum —(RA) + CA is placed into register RT.
Special Registers Altered:

CA
CRO (if Re=1)
SO oV (if OE=1)

—— Programming Note

The setting of CA by the Add and Subtract From
instructions, including the Extended versions
thereof, is mode-dependent. If a sequence of these
instructions is used to perform extended-precision
addition or subtraction, the same mode should be
used throughout the sequence.

Negate XO-form
neg RT,RA (OE=0 Rc=0)
neg. RT,RA (OE=0 Rc=1)
nego RT,RA (OE=1 Rc=0)
nego. RT,RA (OE=1 Rc=1)

31 RT RA /ll |OE| 104 |Rc
0 6 1 16 21 |22 31

RT ¢ 7(RA) + 1
The sum 7(RA) + 1 is placed into register RT.

If the processor is in 64-bit mode and register RA con-
tains the most negative 64-bit number (0x8000_
0000_0000_0000), the result is the most negative num-
ber and, if OE=1, OV is set to 1. Similarly, if the proces-
sor is in 32-bit mode and (RA)3z0.¢3 contain the most
negative 32-bit number (0x8000_0000), the low-order
32 bits of the result contain the most negative 32-bit
number and, if OE=1, OV is set to 1.

Special Registers Altered:
CRO (if Re=1)
SO oV (if OE=1)

Chapter 3. Fixed-Point Facility 71

Version 2.07 B

Multiply Low Immediate D-form
mulli RT,RA,SI

7 RT RA S
0 6 11 16 31

prodg,q157 € (RA) x EXTS(SI)
RT ¢ prodgy.127

The 64-bit first operand is (RA). The 64-bit second
operand is the sign-extended value of the Sl field. The
low-order 64 bits of the 128-bit product of the operands
are placed into register RT.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:

None

Multiply Low Word XO-form
mullw RT,RA,RB (OE=0 Rc=0)
mullw. RT,RA,RB (OE=0 Rc=1)
mullwo RT,RA,RB (OE=1 Rc=0)
mullwo. RT,RA,RB (OE=1 Rc=1)

31 RT RA RB |[OE| 235 Rc
0 6 11 16 21 |22 31

RT € (RA)33.63 X (RB)33.63

The 32-bit operands are the low-order 32 bits of RA
and of RB. The 64-bit product of the operands is placed
into register RT.

If OE=1 then OV is set to 1 if the product cannot be rep-
resented in 32 bits.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CRO (if Re=1)
SO Qv (if OE=1)

— Programming Note

For mulli and mullw, the low-order 32 bits of the
product are the correct 32-bit product for 32-bit
mode.

For mulli and mulld, the low-order 64 bits of the
product are independent of whether the operands
are regarded as signed or unsigned 64-bit integers.
For mulli and mullw, the low-order 32 bits of the
product are independent of whether the operands
are regarded as signed or unsigned 32-bit integers.

Multiply High Word XO-form
mulhw RT,RA,RB (Rc=0)
mulhw. RT,RA,RB (Re=1)

31 RT RA RB / 75 Rc
0 6 11 16 21 [22 31

prody.g3 < (RA)33.63 X (RB)33.43
RT33.63 € Drodp,3;
RTg.37 € undefined

The 32-bit operands are the low-order 32 bits of RA
and of RB. The high-order 32 bits of the 64-bit product

of the operands are placed into RT3,.63. The contents
of RTy.31 are undefined.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CRO (bits 0:2 undefined in 64-bit mode) (if Rc=1)

Multiply High Word Unsigned XO-form
mulhwu RT,RA,RB (Rc=0)
mulhwu. RT,RA,RB (Re=1)

31 RT RA RB [/ 11 Rc
0 6 11 16 21 22 31

prodg.g3 ¢ (RA)33.63 X (RB)33.63
RT33.63 € Prodp.s;
RTy.37 € undefined

The 32-bit operands are the low-order 32 bits of RA
and of RB. The high-order 32 bits of the 64-bit product
of the operands are placed into RT3,.63. The contents
of RTy.31 are undefined.

Both operands and the product are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero.

Special Registers Altered:
CRO (bits 0:2 undefined in 64-bit mode) (if Rc=1)

72 Power ISA™ - Book |

Version 2.07 B

Divide Word XO-form Divide Word Unsigned XO-form
divw RT,RA,RB (OE=0 Rc=0) divwu RT,RA,RB (OE=0 Rc=0)
divw. RT,RA,RB (OE=0 Rc=1) divwu. RT,RA,RB (OE=0 Rc=1)
divwo RT,RA,RB (OE=1 Rc=0) divwuo RT,RA,RB (OE=1 Rc=0)
divwo. RT,RA,RB (OE=1 Rc=1) divwuo. RT,RA,RB (OE=1 Rc=1)
31 RT RA RB [OE[491 [Rc 31 RT RA RB [OE| 459 [Rc
(0] 6 11 16 21 |22 31 0 6 11 16 21 |22 31

dividendp,3; € (RA)3p.63

divisorg.3; ¢ (RB)3z.43

RT3,.63 € dividend + divisor

RTg.37 € undefined

The 32-bit dividend is (RA)30.63. The 32-bit divisor is
(RB)3s.63. The 32-bit quotient is placed into RT3o.63.
The contents of RTy.3¢ are undefined. The remainder is
not supplied as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient x divisor) + r

where 0 < r < |divison if the dividend is nonnegative,
and - |divison < r< 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

0x8000_0000 + -1
<anything> + 0

then the contents of register RT are undefined as are
(if Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV is set to 1.

Special Registers Altered:
CRO (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO oV (if OE=1)

—— Programming Note

The 32-bit signed remainder of dividing (RA)z2.63
by (RB)32.63 can be computed as follows, except in
the case that (RA)32:63 =- 231 and (RB)32:63 =-1.

divw RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotientxdivisor
subf RT,RT,RA # RT = remainder

dividendp,31 < (RA)33.63
divisorg.3; € (RB)3j.¢3
RT35.43 ¢ dividend + divisor
RTg.37 € undefined

The 32 bit dividend is (RA)32.63. The 32-bit divisor is
(RB)32.63. The 32-bit quotient is placed into RT35.63.
The contents of RT.31 are undefined. The remainder is
not supplied as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero. The quotient is the unique unsigned inte-
ger that satisfies

dividend = (quotient x divisor) + r

where 0 < r < divisor.

If an attempt is made to perform the division

<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In this case, if OE=1 then OV is set to 1.

Special Registers Altered:
CRO (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO oV (if OE=1)

— Programming Note

The 32-bit unsigned remainder of dividing (RA)35.63
by (RB)30.63 Can be computed as follows.

divwu RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotientxdivisor
subf RT,RT,RA # RT = remainder

Chapter 3. Fixed-Point Facility 73

Version 2.07 B

Divide Word Extended XO-form Divide Word Extended Unsigned XO-form
divwe RT,RA,RB (OE=0 Rc=0) divweu RT,RA,RB (OE=0 Rc=0)
divwe. RT,RA,RB (OE=0 Rc=1) divweu. RT,RA,RB (OE=0 Rc=1)
divweo RT,RA,RB (OE=1 Rc=0) divweuo RT,RA,RB (OE=1 Rc=0)
divweo. RT,RA,RB (OE=1 Rc=1) divweuo. RT,RA,RB (OE=1 Rc=1)
[Category: Server] [Category: Server]
[Category: Embedded.Phased-In] [Category: Embedded.Phased-In]

31 RT RA RB |OE| 427 |Rc 31 RT RA RB |OE| 395 |Rc
o 6 11 16 21 |22 31 0 6 11 16 21 |2 31

dividendy.e3 ¢ (RA)3p,63 || %0
divisorg.3; ¢ (RB)33.¢3

RT35.63 € dividend + divisor
RTg.37 € undefined

The 64-bit dividend is (RA)35.63 Il 320. The 32-bit divisor
is (RB)3o.g3. If the quotient can be represented in 32
bits, it is placed into RT3,.63. The contents of RTg.3¢ are
undefined. The remainder is not supplied as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient x divisor) + r

where 0 < r < |divison if the dividend is nonnegative,
and - |divison < r< 0 if the dividend is negative.

If the quotient cannot be represented in 32 bits, or if an
attempt is made to perform the division

<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV is set to 1.

Special Registers Altered:
CRO (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO ov (if OE=1)

dividendy.e3 ¢ (RA)3p.63 || %0
divisorg.3; € (RB)3j.¢3

RT35.43 ¢ dividend + divisor
RTg.37 € undefined

The 64-bit dividend is (RA)35.63 Il 320. The 32-bit divisor
is (RB)30.63. If the quotient can be represented in 32
bits, it is placed into RT3.63. The contents of RT.3¢ are
undefined. The remainder is not supplied as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero. The quotient is the unique unsigned inte-
ger that satisfies

dividend = (quotient x divisor) + r
where 0 < r< divisor.
If (RA) > (RB), or if an attempt is made to perform the
division
<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV is set to 1.

Special Registers Altered:
CRO (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO oV (if OE=1)

74 Power ISA™ - Book |

Version 2.07 B

Programming Note

Unsigned long division of a 64-bit dividend contained in
two 32-bit registers by a 32-bit divisor can be computed
as follows. The algorithm is shown first, followed by
Assembler code that implements the algorithm. The
dividend is Dh [l DI, the divisor is Dv, and the quotient
and remainder are Q and R respectively, where these
variables and all intermediate variables represent
unsigned 32-bit integers. It is assumed that Dv > Dh,
and that assigning a value to an intermediate variable
assigns the low-order 32 bits of the value and ignores
any higher-order bits of the value. (In both the algorithm
and the Assembler code, “r1” and “r2” refer to “remain-
der 1” and “remainder 27, rather than to GPRs 1 and 2.)

Algorithm:

3. q1 « divweu Dh, Dv
4. r1 < -(q1 x Dv) # remainder of step 1
divide operation
(see Note 1)
5. g2 < divwu DI, Dv
6. r2 « DI - (g2 x Dv) # remainder of step 2
divide operation
Qeqgl+92
Rert+r2
if (R<r2)| (R>Dv)then # (see Note 2)
Q< Q+1 #increment quotient
R < R - Dv # decrement rem’der

© o N

Assembler Code:

Dh in r4, D1 in 5
Dv in r6

divweu r3,rd,ré6 # ql

divwu r7,r5,r6 # a2

mullw r8,r3,r6 # -rl = gl * Dv

mullw r0,r7,r6 # g2 * Dv

subf r10,r0,r5 # r2 =Dl - (g2 * Dv)

add r3,r3,r7 #0Q0=ql + q

subf rd,r8,rl0 #R=1r1+1r2

coplw x4, rl0 #R<12?

blt *412 # must adjust Q and R if yes
cmplw rd, r6 # R >Dv ?

blt *+12 # must adjust Q and R if yes
addi r3,r3,1 $F0=0+1

subf rd, r6,rd # R=R - Dv

Quotient in r3
Remainder in r4

Notes:

1. The remainder is Dh 11 320 - (q1 x Dv). Because the
remainder must be less than Dv and Dv < 2%2, the
remainder is representable in 32 bits. Because the
low-order 32 bits of Dh Il 320 are Os, the remainder
is therefore equal to the low-order 32 bits of -(q1 x
Dv). Thus assigning -(q1 x Dv) to r1 yields the cor-
rect remainder.

2. Ris less than r2 (and also less than r1) if and only
if the addition at step 6 carried out of 32 bits — i.e.,
if and only if the correct sum could not be repre-
sented in 32 bits — in which case the correct sum
is necessarily greater than Dv.

3. For additional information see the book Hacker's
Delight, by Henry S. Warren, Jr., as potentially
amended at the web site hitp://www.hackersde-
light.org.

Chapter 3. Fixed-Point Facility 75

Version 2.07 B

3.3.9.1 64-bit Fixed-Point Arithmetic Instructions [Category: 64-Bit]

Multiply Low Doubleword XO-form Multiply High Doubleword XO-form

mulld RT,RA,RB (OE=0 Rc=0) mulhd RT,RA,RB (Rc=0)

mulld. RT,RA,RB (OE=0 Rc=1) mulhd. RT,RA,RB (Re=1)

mulldo RT,RA,RB (OE=1 Rc=0)

mulldo. RT,RA,RB (OE=1 Rc=1) 31 RT RA RB [/ 73 Rc

0 6 11 16 2122 31

31 RT RA RB [OE|] 233 JRc

0 6 11 16 21 22 31 prod0:127 < (RA) x (RB)

prody.q127 € (RA) x (RB)
RT ¢ prodgy.127

The 64-bit operands are (RA) and (RB). The low-order
64 bits of the 128-bit product of the operands are
placed into register RT.

If OE=1 then OV is set to 1 if the product cannot be rep-
resented in 64 bits.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CRO (if Re=1)
SO oV (if OE=1)

Programming Note

The XO-form Multiply instructions may execute
faster on some implementations if RB contains the
operand having the smaller absolute value.

Multiply High Doubleword Unsigned

XO-form
mulhdu RT,RA,RB (Rc=0)
mulhdu. RT,RA,RB (Re=1)

31 RT RA RB [/ 9 Rc
(0] 6 11 16 21 |22 31

prodg.157 € (RA) x (RB)
RT €« prod0263

The 64-bit operands are (RA) and (RB). The high-order
64 bits of the 128-bit product of the operands are
placed into register RT.

Both operands and the product are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero.

Special Registers Altered:
CRO (if Re=1)

RT ¢ prody.g3

The 64-bit operands are (RA) and (RB). The high-order
64 bits of the 128-bit product of the operands are
placed into register RT.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CRO (if Re=1)

76 Power ISA™ - Book |

Version 2.07 B

Divide Doubleword XO-form Divide Doubleword Unsigned XO-form
divd RT,RA,RB (OE=0 Rc=0) divdu RT,RA,RB (OE=0 Rc=0)
divd. RT,RA,RB (OE=0 Rc=1) divdu. RT,RA,RB (OE=0 Rc=1)
divdo RT,RA,RB (OE=1 Rc=0) divduo RT,RA,RB (OE=1 Rc=0)
divdo. RT,RA,RB (OE=1 Rc=1) divduo. RT,RA,RB (OE=1 Rc=1)
31 RT RA RB [OE[489 [Rc 31 RT RA RB [OE| 457 [Rc
(0] 6 11 16 21 |22 31 0 6 11 16 21 |22 31

diVidendO 163 €« (RA)
diViSOrO:GB &« (RB)
RT ¢ dividend + divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit quotient is placed into register RT. The
remainder is not supplied as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient x divisor) + r

where 0 < r < |divison if the dividend is nonnegative,
and - |divisor < r< 0 if the dividend is negative.

If an attempt is made to perform any of the divisions
0x8000_0000_0000_0000 + -1
<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV is set to 1.

Special Registers Altered:
CRO (if Re=1)
SO ov (if OE=1)

—— Programming Note

The 64-bit signed remainder of dividing (RA) by
(RB) can be computed as follows, except in the
case that (RA) = - 283 and (RB) = - 1.

divd RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotientxdivisor
subf RT,RT,RA # RT = remainder

dividendo 163 €« (RA)
diViSOrO .63 « (RB)
RT ¢ dividend + divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit quotient is placed into register RT. The
remainder is not supplied as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero. The quotient is the unique unsigned inte-
ger that satisfies

dividend = (quotient x divisor) + r

where 0 < r < divisor.

If an attempt is made to perform the division

<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In this case, if OE=1 then OV is set to 1.

Special Registers Altered:
CRO (if Re=1)
SO oV (if OE=1)

— Programming Note

The 64-bit unsigned remainder of dividing (RA) by
(RB) can be computed as follows.

divdu RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotientxdivisor
subf RT,RT,RA # RT = remainder

Chapter 3. Fixed-Point Facility 77

Version 2.07 B

Divide Doubleword Extended XO-form
divde RT,RA,RB (OE=0 Rc=0)
divde. RT,RA,RB (OE=0 Rc=1)
divdeo RT,RA,RB (OE=1 Rc=0)
divdeo. RT,RA,RB (OE=1 Rc=1)
[Category: Server]
[Category: Embedded.Phased-In]

31 RT RA RB |OE| 425 |Rc
o 6 11 16 21 |22 31

Divide Doubleword Extended Unsigned

dividendy.;57 ¢ (RA) || ®%0
diViSOrO:GB &« (RB)

RT ¢ dividend + divisor

The 128-bit dividend is (RA) Il 840. The 64-bit divisor is
(RB). If the quotient can be represented in 64 bits, it is
placed into register RT. The remainder is not supplied
as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient x divisor) + r

where 0 < r < |divison if the dividend is nonnegative,
and - |divison < r< 0 if the dividend is negative.

If the quotient cannot be represented in 64 bits, or if an
attempt is made to perform the division

<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV is set to 1.

Special Registers Altered:
CRO (if Re=1)
SO oV (if OE=1)

XO-form
divdeu RT,RA,RB (OE=0 Rc=0)
divdeu. RT,RA,RB (OE=0 Rc=1)
divdeuo RT,RA,RB (OE=1 Rc=0)
divdeuo. RT,RA,RB (OE=1 Re=1)
[Category: Server]

[Category: Embedded.Phased-In]
31 RT RA RB |OE| 393 |Rc
0 6 11 16 21 |2 31

dividendy.15, ¢ (RA) || ®%0
divisorp.g3 ¢ (RB)

RT ¢ dividend + divisor

The 128-bit dividend is (RA) Il 840. The 64-bit divisor is
(RB). If the quotient can be represented in 64 bits, it is
placed into register RT. The remainder is not supplied
as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero. The quotient is the unique unsigned inte-
ger that satisfies

dividend = (quotient x divisor) + r
where 0 < r < divisor.

If (RA) > (RB), or if an attempt is made to perform the
division

<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV is set to 1.

Special Registers Altered:
CRO (if Re=1)
SO oV (if OE=1)

— Programming Note

Unsigned long division of a 128-bit dividend con-
tained in two 64-bit registers by a 64-bit divisor can
be accomplished using the technique described in
the Programming Note with the divweu instruction
description: divd[e]lu would be used instead of
divwielu (and empld instead of cmplw, etc.).

78 Power ISA™ - Book |

Version 2.07 B

3.3.10 Fixed-Point Compare Instructions

The fixed-point Compare instructions compare the con-
tents of register RA with (1) the sign-extended value of
the Sl field, (2) the zero-extended value of the Ul field,
or (3) the contents of register RB. The comparison is
signed for empi and emp, and unsigned for empli and
cmpl.

The L field controls whether the operands are treated
as 64-bit or 32-bit quantities, as follows:

L Operand length
0 32-bit operands
1 64-bit operands

L=1 is part of Category: 64-Bit.

When the operands are treated as 32-bit signed quanti-
ties, bit 32 of the register (RA or RB) is the sign bit.

The Compare instructions set one bit in the leftmost
three bits of the designated CR field to 1, and the other

two to 0. XERgg is copied to bit 3 of the designated CR
field.

The CR field is set as follows

-Bit Name Description

0 LT (RA) < Sl or (RB) (signed comparison)
(RA) <" Ul or (RB) (unsigned comparison)

1 GT (RA)> Sl or (RB) (signed comparison)
(RA) >! Ul or (RB) (unsigned comparison)

2 EQ (RA)=S8l, Ul or (RB)

3 SO Summary Overflow from the XER

Extended mnemonics for compares

A set of extended mnemonics is provided so that com-
pares can be coded with the operand length as part of
the mnemonic rather than as a numeric operand. Some
of these are shown as examples with the Compare
instructions. See Appendix E for additional extended
mnemonics.

Compare Immediate D-form Compare X-form
cmpi BF,L,RA,SI cmp BF,L,RA,RB

11 BF [/[L] RA S 31 BF [/[L] RA RB 0 /
0 6 911011 16 31 0 6 911011 16 21 31

if L = 0 then a €« EXTS((RA)32:63)
else a « (Ra)

if a < EXTS(SI) then ¢ ¢ 0bl00
else if a > EXTS(SI) then c¢ ¢ 0b010
else ¢ € 0b001

CRuxpr+32:4xBr+35 € C || XERgo

The contents of register RA ((RA)3.63 Sign-extended to
64 bits if L=0) are compared with the sign-extended
value of the Sl field, treating the operands as signed
integers. The result of the comparison is placed into CR
field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Imme-
diate:

Extended: Equivalent to:
cmpdi Rx,value cmpi 0,1,Rx,value
cmpwi cr3,Rx,value cmpi 3,0,Rx,value

if L = 0 then a €« EXTS((RA)32:63)
b € EXTS((RB)35.43)
else a ¢« (RA)

b ¢« (RB)
if a < b then ¢ € 0b100
else if a > b then ¢ « 0b010
else c < 0b001

CRyxpr+32:4xBre35 € C || XERgg

The contents of register RA ((RA)32.63 if L=0) are com-
pared with the contents of register RB ((RB)35.63 if
L=0), treating the operands as signed integers. The
result of the comparison is placed into CR field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare:

Extended: Equivalent to:
cmpd Rx,Ry cmp 0,1,Rx,Ry
cmpw cr3,Rx,Ry cmp 3,0,Rx,Ry

Chapter 3. Fixed-Point Facility 79

Version 2.07 B

Compare Logical Inmediate D-form Compare Logical X-form
cmpli BF,L,RA,UI cmpl BF,L,RA,RB
10 BF [/[L] RA ul 31 BF [/[L] RA RB 32 /
0 6 910|111 16 31 0 6 9 (10 |11 16 21 31
if L= 0 then a « 20 || (RR)3,.63 if L= 0 then a ¢« 320 || (RA)3,.¢3
else a ¢« (RA) b« %0 || (RB)3;.63
if a <* (80 || UI) then ¢ ¢ 0b100 else a € (RA)
else if a >% (*%0 || UT) then ¢ « 0b010 b « (RB)
else c €« (0b001 if a <" b then ¢ ¢« 0b100
CRaxgr+32:4xpr+35 € C || XERgg else if a >% b then ¢ « 0b010
else c € 0b001

The contents of register RA ((RA)3%:863 zero-extended to
64 bits if L=0) are compared with “°0 || UI, treating the
operands as unsigned integers. The result of the com-
parison is placed into CR field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Logical
Immediate:

Extended: Equivalent to:
cmpldi Rx,value cmpli 0,1,Rx,value
cmplwi cr3,Rx,value cmpli 3,0,Rx,value

CRyxprF+32:4xBF+35 € € || XERgo

The contents of register RA ((RA)32.63 if L=0) are com-
pared with the contents of register RB ((RB)35.63 if
L=0), treating the operands as unsigned integers. The
result of the comparison is placed into CR field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Logi-
cal:

Extended: Equivalent to:
cmpld Rx,Ry cmpl 0,1,Rx,Ry
cmplw cr3,Rx,Ry cmpl 3,0,Rx,Ry

80 Power ISA™ - Book |

Version 2.07 B

3.3.11 Fixed-Point Trap Instructions

The Trap instructions are provided to test for a specified
set of conditions. If any of the conditions tested by a
Trap instruction are met, the system trap handler is
invoked. If none of the tested conditions are met,
instruction execution continues normally.

The contents of register RA are compared with either
the sign-extended value of the SI field or the contents
of register RB, depending on the Trap instruction. For
tdi and td, the entire contents of RA (and RB) partici-
pate in the comparison; for twi and tw, only the con-
tents of the low-order 32 bits of RA (and RB) participate
in the comparison.

This comparison results in five conditions which are
ANDed with TO. If the result is not 0 the system trap
handler is invoked. These conditions are as follows.

TO Bit ANDed with Condition

Less Than, using signed comparison
Greater Than, using signed comparison
Equal

Less Than, using unsigned comparison
Greater Than, using unsigned comparison

~AWON-=2O

Extended mnemonics for traps

A set of extended mnemonics is provided so that traps
can be coded with the condition as part of the mne-
monic rather than as a numeric operand. Some of
these are shown as examples with the Trap instruc-
tions. See Appendix E for additional extended mne-
monics.

Trap Word Immediate D-form Trap Word X-form
twi TO,RA,SI tw TO,RA,RB

3 TO RA Sl 31 TO RA RB 4 /
0 6 11 16 31 0 6 11 16 21 31

a € EXTS((RA)3,.¢3

)
if (a < EXTS(SI)) & TOy then TRAP
if (a > EXTS(SI)) & TO; then TRAP
if (a = EXTS(SI)) & TO, then TRAP
if (a <" EXTS(SI)) & TO3 then TRAP
if (a >" EXTS(SI)) & TO, then TRAP

The contents of RAz».g3 are compared with the
sign-extended value of the Sl field. If any bit in the TO
field is set to 1 and its corresponding condition is met
by the result of the comparison, the system trap han-
dler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book Il).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word
Immediate:

Extended: Equivalent to:
twgti Rx,value twi 8,Rx,value
twllei Rx,value twi 6,Rx,value

a © EXTS((RA)5,,¢3)
b ¢ EXTS((RB)3,,¢3)

if (a < b) & TOy then TRAP
if (a > b) & TO; then TRAP
if (a = b) & TO, then TRAP
if (a <" b) & TO; then TRAP
if (a >" b) & TO, then TRAP

The contents of RAgs.g5 are compared with the con-
tents of RBa3o.g3. If any bit in the TO field is set to 1 and
its corresponding condition is met by the result of the
comparison, the system trap handler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book Ill).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word:

Extended: Equivalent to:
tweq Rx,Ry tw 4,Rx,Ry
twige Rx,Ry tw 5,Rx,Ry
trap tw 31,0,0

Chapter 3. Fixed-Point Facility 81

Version 2.07 B

3.3.11.1 64-bit Fixed-Point Trap Instructions [Category: 64-Bit]

Trap Doubleword Immediate D-form
tdi TO,RASI Trap Doubleword X-form
2 TO RA SI td TO,RA,RB
0 6 1 16 31
31 TO RA RB 68 /

a < (RA) o 6 11 16 21 31
b « EXTS(SI)
if (a < b) & TOy then TRAP
if (a > b) & TO; then TRAP a < (Ra)
if (a = b) & TO, then TRAP b < (RB)
if (a <" b) & TO; then TRAP fo (a < b) & TOy then TRAP
if (a >" b) & TO, then TRAP if (a > b) & TO; then TRAP

if (a = b) & TO, then TRAP
The contents of register RA are compared with the if (a <" b) & TO; then TRAP
sign-extended value of the Sl field. If any bit in the TO if (a >" b) & TO, then TRAP

field is set to 1 and its corresponding condition is met
by the result of the comparison, the system trap han-
dler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book IlI).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Doubleword
Immediate:

Extended: Equivalent to:
tdlti Rx,value tdi 16,Rx,value
tdnei Rx,value tdi 24,Rx,value

3.3.12 Fixed-Point Select

Integer Select A-form
isel RT,RA,RB,BC

31 RT RA RB BC 15 7/
0 6 11 16 21 26 31

if RA=0 then a <0 else a ¢ (RA)
if CRpey3p=1 then RT €« a
else RT ¢« (RB)

If the contents of bit BC+32 of the Condition Register
are equal to 1, then the contents of register RA (or 0)
are placed into register RT. Otherwise, the contents of
register RB are placed into register RT.

Special Registers Altered:
None

The contents of register RA are compared with the con-
tents of register RB. If any bit in the TO field is set to 1
and its corresponding condition is met by the result of
the comparison, the system trap handler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book Il1).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Double-
word.

Extended: Equivalent to:
tdge Rx,Ry td 12,Rx,Ry

Extended Mnemonics:

Examples of extended mnemonics for Integer Select:

Extended: Equivalent to:

isellt Rx,Ry,Rz isel Rx,Ry,Rz,0
iselgt Rx,Ry,Rz isel Rx,Ry,Rz,1
iseleq Rx,Ry,Rz isel Rx,Ry,Rz,1

82 Power ISA™ - Book |

Version 2.07 B

3.3.13 Fixed-Point Logical Instructions

The Logical instructions perform bit-parallel operations
on 64-bit operands.

The X-form Logical instructions with Rc=1, and the
D-form Logical instructions andi. and andis., set the
first three bits of CR Field 0 as described in
Section 3.3.8, “Other Fixed-Point Instructions” on
page 66. The Logical instructions do not change the
SO, OV, and CA bits in the XER.

Extended mnemonics for logical oper-
ations

Extended mnemonics are provided that generate two
different types of “no-ops” (instructions that do nothing).
The first type is the preferred form, which is optimized
to minimize its use of the processor's execution
resources. This form is based on the OR Immediate
instruction. The second type is the executed form,
which is intended to consume the same amount of the
processor's execution resources as if it were not a

no-op. This form is based on the XOR Immediate
instruction. (There are also no-ops that have other
uses, such as affecting program priority, for which
extended mnemonics have not been defined.)

Extended mnemonics are provided that use the OR
and NOR instructions to copy the contents of one regis-
ter to another, with and without complementing. These
are shown as examples with the two instructions.

See Appendix E, “Assembler Extended Mnemonics” on
page 709 for additional extended mnemonics.

Programming Note

Warning: Some forms of no-op may have side
effects such as affecting program priority. Program-
mers should use the preferred no-op unless the
side effects of some other form of no-op are
intended.

AND Immediate D-form OR Immediate D-form
andi. RA,RS,Ul ori RA,RS,Ul

28 RS RA ul 24 RS RA ul
(] 6 11 16 31 0 6 1 16 31
RA « (RS) & (*%0 || vl) RA « (RS) | (*]0 || uD)

The contents of register RS are ANDed with 480 || UI
and the result is placed into register RA.

Special Registers Altered:

CRO
AND Immediate Shifted D-form
andis. RA,RS,Ul
29 RS RA ul
(0] 6 11 16 31

RA ¢« (RS) & (320 || Ul || 0)

The contents of register RS are ANDed with
320 |1 UI 11 '®0 and the result is placed into register RA.

Special Registers Altered:
CRO

The contents of register RS are ORed with 80 Il Ul and
the result is placed into register RA.

The preferred “no-op” (an instruction that does nothing)
is:
ori 0,0,0

Special Registers Altered:
None

Extended Mnemonics:

Example of extended mnemonics for OR Immediate:

Extended: Equivalent to:
no-op ori 0,0,0

Chapter 3. Fixed-Point Facility 83

Version 2.07 B

OR Immediate Shifted D-form
oris RA,RS,Ul

25 RS RA ul
(] 6 11 16 31
RA « (RS) | (320 || vT || %0

The contents of register RS are ORed with
320 11 UI 11 '80 and the result is placed into register RA.

Special Registers Altered:

None
XOR Immediate D-form XOR Immediate Shifted D-form
XOri RA,RS,Ul xoris RA,RS,Ul
26 RS RA ul 27 RS RA ul
(0] 6 11 16 31 0 6 1 16 31

RA « (RS) XOR (‘%0 || vuI)

The contents of register RS are XORed with 480 || Ul
and the result is placed into register RA.

The executed form of a “no-op” (an instruction that
does nothing, but consumes execution resources nev-
ertheless) is:

Xori 0,0,0

Special Registers Altered:
None

Extended Mnemonics:

Example of extended mnemonics for XOR Immediate:

Extended: Equivalent to:
xnop xori 0,0,0

Programming Note

The executed form of no-op should be used only
when the intent is to alter the timing of a program.

RA « (RS) XOR (320 || vr || %0

The contents of register RS are XORed with
320 11 UI 11 '®0 and the result is placed into register RA.

Special Registers Altered:
None

84 Power ISA™ - Book |

Version 2.07 B

AND X-form OR X-form
and RA,RS,RB (Rc=0) or RA,RS,RB (Rc=0)
and. RA,RS,RB (Re=1) or. RA,RS,RB (Re=1)

31 RS RA RB 28 Rc 31 RS RA RB 444 Rc
0 6 11 16 21 31 0 6 11 16 21 31
RA ¢« (RS) & (RB) RA « (RS) | (RB)

The contents of register RS are ANDed with the con-
tents of register RB and the result is placed into register
RA.

<S> Some forms of and Rx, Rx, Rx provide special
functions; see Section 9.3 of Book IlI-S.

Special Registers Altered:

CRO (if Re=1)
XOR X-form
xor RA,RS,RB (Rc=0)
XOr. RA,RS,RB (Re=1)

31 RS RA RB 316 Rc
0 6 11 16 21 31

RA < (RS) @ (RB)

The contents of register RS are XORed with the con-
tents of register RB and the result is placed into register
RA.

Special Registers Altered:

CRO (if Re=1)
NAND X-form
nand RA,RS,RB (Rc=0)
nand. RA,RS,RB (Re=1)

31 RS RA RB 476 Rc
0 6 11 16 21 31

RA < 7((RS) & (RB))

The contents of register RS are ANDed with the con-
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
CRO (if Re=1)

Programming Note
nand or nor with RS=RB can be used to obtain the

one’s complement.

The contents of register RS are ORed with the contents
of register RB and the result is placed into register RA.

Some forms of or Rx,Rx,Rx provide special functions;
see Section 3.2 and Section 4.3.3, both in Book II.

Special Registers Altered:
CRO (if Re=1)

Extended Mnemonics:

Example of extended mnemonics for OR:

Extended:
mr Rx,Ry or

Equivalent to:
Rx,Ry,Ry

Chapter 3. Fixed-Point Facility 85

Version 2.07 B

NOR X-form Equivalent X-form

nor RA,RS,RB (Rc=0) eqv RA,RS,RB (Rc=0)

nor. RA,RS,RB (Re=1) eqv. RA,RS,RB (Rc=1)
31 RS RA RB 124 Re 31 RS RA RB 284 Re

0 6 11 16 21 31 0 6 11 16 21 31
RA « T((RS) | (RB)) RA ¢« (RS) = (RB)

The contents of register RS are ORed with the contents
of register RB and the complemented result is placed
into register RA.

Special Registers Altered:
CRO (if Re=1)

Extended Mnemonics:

Example of extended mnemonics for NOR:

The contents of register RS are XORed with the con-
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
CRO (if Re=1)

Extended: Equivalent to:

not Rx,Ry nor Rx,Ry,Ry
AND with Complement X-form OR with Complement X-form
andc RA,RS,RB (Rc=0) orc RA,RS,RB (Rc=0)
andc. RA,RS,RB (Re=1) orc. RA,RS,RB (Re=1)

31 RS RA RB 60 Rc 31 RS RA RB 412 Rc
0 6 11 16 21 31 0 6 11 16 21 31

RA ¢« (RS) & 7(RB)

The contents of register RS are ANDed with the com-
plement of the contents of register RB and the result is
placed into register RA.

Special Registers Altered:
CRO (if Re=1)

RA « (RS) | 7(RB)

The contents of register RS are ORed with the comple-
ment of the contents of register RB and the result is
placed into register RA.

Special Registers Altered:
CRO (if Re=1)

86 Power ISA™ - Book |

Version 2.07 B

Extend Sign Byte X-form Extend Sign Halfword X-form
extsb RA,RS (Rc=0) extsh RA,RS (Rc=0)
extsb. RA,RS (Re=1) extsh. RA,RS (Re=1)

31 RS RA " 954 Rc 31 RS RA " 922 Rc
0 6 11 16 21 31 0 6 11 16 21 31
s « (RS)gg s € (RS)yg

RAsg.63 € _(RS)s56.63
RAg.55 € s

(RS)s6:63 are placed into RAgg.g3. RAq.55 are filled with
a copy of (RS)sg.

Special Registers Altered:

(RS)4g:63 are placed into RAg.g3. RAq.47 are filled with
a copy of (RS)ys.

Special Registers Altered:

CRO (if Re=1)
Count Leading Zeros Word X-form
cntlzw RA,RS (Rc=0)
cntlzw. RA,RS (Re=1)

31 RS RA i 26 Rc
(0] 6 11 16 21 31
n € 32

do while n < 64
if (RS), = 1 then leave
né< n+1

RA € n - 32

A count of the number of consecutive zero bits starting
at bit 32 of register RS is placed into register RA. This
number ranges from 0 to 32, inclusive.

If Re=1, CR Field 0 is set to reflect the result.

Special Registers Altered:
CRO (if Re=1)

Programming Note

For both Count Leading Zeros instructions, if Rc=1
then LT is set to 0 in CR Field 0.

CRoO (if Re=1)
Compare Bytes X-form
cmpb RA,RS,RB

31 RS RA RB 508 /
0 6 11 16 21 31
don=0to?7

if RSSXH:an+7 = (SRB)8><n:8><n+7 then
1

RASXn:an+7 <
else

8
RA8><n:8><n+7 <70

Each byte of the contents of register RS is compared to
each corresponding byte of the contents in register RB.
If they are equal, the corresponding byte in RA is set to
OxFF. Otherwise the corresponding byte in RA is set to
0x00.

Special Registers Altered:
None

Chapter 3. Fixed-Point Facility 87

Version 2.07 B

Population Count Bytes X-form Population Count Words X-form
popcntb RA, RS popcntw RA, RS
[Category: Server]

31 RS RA " 122 / [Category: Embedded.Phased-In]

0 6 11 16 21 31
31 RS RA " 378 /

do i =0 to7 0 6 11 16 21 31

n€o0

doj=0¢to?7 doi=0¢tol

if (RS) (ixg)+j = 1 then neo

n € n+l

RA(ixg): (ixg)+7 € 1

A count of the number of one bits in each byte of regis-

ter RS is placed into the corresponding byte of register
RA. This number ranges from 0 to 8, inclusive.

Special Registers Altered:
None

do j =0 to 31
if (RS)(iX32)+j = 1 then
n € n+l

RA(ix32):(ix32)+31 € 1

A count of the number of one bits in each word of regis-

ter RS is placed into the corresponding word of register
RA. This number ranges from 0 to 32, inclusive.

Special Registers Altered:
None

88 Power ISA™ - Book |

Version 2.07 B

Parity Doubleword X-form

prtyd RA,RS
[Category: 64-bit]

31 RS RA n 186 /

The least significant bit in each byte of the contents of
register RS is examined. If there is an odd number of
one bits the value 1 is placed into register RA; other-
wise the value 0 is placed into register RA.

Special Registers Altered:
None

Parity Word X-form

prtyw RA,RS

31 RS RA n 154 /

The least significant bit in each byte of (RS)y.3¢ is
examined. If there is an odd number of one bits the
value 1 is placed into RAg.34; otherwise the value 0 is
placed into RAg.31. The least significant bit in each byte
of (RS)30.63 is examined. If there is an odd number of
one bits the value 1 is placed into RAgs.g3; Otherwise
the value 0 is placed into RAz5.63.

Special Registers Altered:
None

— Programming Note

The Parity instructions are designed to be used in
conjunction with the Population Count instruction to
compute the parity of words or a doubleword. The
parity of the upper and lower words in (RS) can be
computed as follows.

popcntb RA, RS

prtyw RA, RA

The parity of (RS) can be computed as follows.
popcntb RA, RS
prtyd RA, RA

Chapter 3. Fixed-Point Facility 89

Version 2.07 B

3.3.13.1 64-bit Fixed-Point Logical
Instructions [Category: 64-Bit]

Population Count Doubleword X-form
popcntd RA, RS
[Category: Server.64-bit]
[Category: Embedded.64-bit.Phased-In]

31 RS RA " 506 /
0 6 11 16 21 31

Extend Sign Word X-form
extsw RA,RS (Rc=0)
extsw. RA,RS (Rc=1)

31 RS RA " 986 Rc
0 6 11 16 21 31
s < (RS)3,

(RS)30.63 are placed into RAzs.¢3. RAg.31 are filled with
a copy of (RS)35.

Special Registers Altered:
CRO (if Re=1)

Count Leading Zeros Doubleword X-form

cntlzd RA,RS (Rc=0)
cntlzd. RA,RS (Re=1)

31 RS RA " 58 Rc
o 6 11 16 21 31
n< 0

do while n < 64
if (RS), = 1 then leave
nen+1l

RA € n

A count of the number of consecutive zero bits starting
at bit 0 of register RS is placed into register RA. This
number ranges from 0 to 64, inclusive.

If Re=1, CR Field 0 is set to reflect the result.

Special Registers Altered:
CRO (if Re=1)

n<o0

doi=0 to 63
if (RS); = 1 then
n € n+l

RA € n

A count of the number of one bits in register RS is
placed into register RA. This number ranges from 0 to
64, inclusive.

Special Registers Altered:
None

90 Power ISA™ - Book |

Version 2.07 B

Bit Permute Doubleword X-form

bpermd RA,RS,RB
[Category: Embedded.Phased-in, Server]

31 RS RA RB 252 /
0 6 11 16 21 31

For 1 =0 to 7
index €« (Rs)g*i:g*i+7
If index < 64
then perm; ¢ (RB)
else perm; € 0
RA « %0 || permg.,

index

Eight permuted bits are produced. For each permuted
bit i where i ranges from 0 to 7 and for each byte i of
RS, do the following.

If byte i of RS is less than 64, permuted bit i is set
to the bit of RB specified by byte i of RS; otherwise
permuted bit i is set to 0.

The permuted bits are placed in the least-significant
byte of RA, and the remaining bits are filled with 0Os.

Special Registers Altered:
None

—— Programming Note

The fact that the permuted bit is O if the corre-
sponding index value exceeds 63 permits the per-
muted bits to be selected from a 128-bit quantity,
using a single index register. For example, assume
that the 128-bit quantity Q, from which the per-
muted bits are to be selected, is in registers r2
(high-order 64 bits of Q) and r3 (low-order 64 bits of
Q), that the index values are in register r1, with
each byte of r1 containing a value in the range
0:127, and that each byte of register r4 contains the
value 64. The following code sequence selects
eight permuted bits from Q and places them into
the low-order byte of r6.

bpermd r6,rl,r2 # select from high-
order half of Q

Xor r0,rl,rd # adjust index values

bpermd r5,r0,r3 # select from low-

order half of Q
merge the two
selections

=+

or r6,r6,15

Chapter 3. Fixed-Point Facility 91

Version 2.07 B

3.3.14 Fixed-Point Rotate and Shift Instructions

The Fixed-Point Facility performs rotation operations on
data from a GPR and returns the result, or a portion of
the result, to a GPR.

The rotation operations rotate a 64-bit quantity left by a
specified number of bit positions. Bits that exit from
position 0 enter at position 63.

Two types of rotation operation are supported.

For the first type, denoted rotateg, or ROTLg,, the value
rotated is the given 64-bit value. The rotateg, operation
is used to rotate a given 64-bit quantity.

For the second type, denoted rotateg, or ROTLgy, the
value rotated consists of two copies of bits 32:63 of the
given 64-bit value, one copy in bits 0:31 and the other in
bits 32:63. The rotatez, operation is used to rotate a
given 32-bit quantity.

The Rotate and Shift instructions employ a mask gen-
erator. The mask is 64 bits long, and consists of 1-bits
from a start bit, mstart, through and including a stop bit,
mstop, and 0-bits elsewhere. The values of mstart and
mstop range from 0 to 63. If mstart > mstop, the 1-bits
wrap around from position 63 to position 0. Thus the
mask is formed as follows:

if mstart < mstop then

maSkmstart:mstop = ones

maska11 other bits = Z€r0S
else

maskystart:63 = ONes
maskg.mstop = ONES

maSkall other bits =~ Z€¥O0S

There is no way to specify an all-zero mask.

For instructions that use the rotates, operation, the
mask start and stop positions are always in the
low-order 32 bits of the mask.

The use of the mask is described in following sections.

The Rotate and Shift instructions with Rc=1 set the first
three bits of CR field 0 as described in Section 3.3.8,
“Other Fixed-Point Instructions” on page 66. Rotate and
Shift instructions do not change the OV and SO bits.
Rotate and Shift instructions, except algebraic right
shifts, do not change the CA bit.

Extended mnemonics for rotates and
shifts

The Rotate and Shift instructions, while powerful, can
be complicated to code (they have up to five operands).
A set of extended mnemonics is provided that allow
simpler coding of often-used functions such as clearing
the leftmost or rightmost bits of a register, left justifying
or right justifying an arbitrary field, and performing sim-
ple rotates and shifts. Some of these are shown as
examples with the Rotate instructions. See Appendix E,
“Assembler Extended Mnemonics” on page 709 for
additional extended mnemonics.

3.3.14.1 Fixed-Point Rotate Instructions

These instructions rotate the contents of a register. The
result of the rotation is

B inserted into the target register under control of a
mask (if a mask bit is 1 the associated bit of the
rotated data is placed into the target register, and if
the mask bit is 0 the associated bit in the target
register remains unchanged); or

B ANDed with a mask before being placed into the
target register.

The Rotate Left instructions allow right-rotation of the
contents of a register to be performed (in concept) by a
left-rotation of 64- n, where n is the number of bits by
which to rotate right. They allow right-rotation of the
contents of the low-order 32 bits of a register to be per-
formed (in concept) by a left-rotation of 32- n, where n
is the number of bits by which to rotate right.

Rotate Left Word Immediate then AND

with Mask M-form
rlwinm RA,RS,SH,MB,ME (Rc=0)
rlwinm. RA,RS,SH,MB,ME (Re=1)

21 RS RA SH MB ME [Rc
0 6 11 16 21 26 31
n € SH

r € ROTLBZ((RS)32:63, n)
m ¢ MASK(MB+32, ME+32)
RA € ré&m

The contents of register RS are rotateds, left SH bits. A
mask is generated having 1-bits from bit MB+32
through bit ME+32 and 0-bits elsewhere. The rotated
data are ANDed with the generated mask and the
result is placed into register RA.

Special Registers Altered:
CRO (if Re=1)

92 Power ISA™ - Book |

Version 2.07 B

Extended Mnemonics: Rotate Left Word then AND with Mask
Examples of extended mnemonics for Rotate Left Word M-form
Immediate then AND with Mask: flwnm RA.RS,RB,MB,ME (Rc=0)
Extended: Equivalent to: riwnm. RA,RS,RB,MB,ME (Re=1)
extlwi Rx,Ry,n,b riwinm Rx,Ry,b,0,n- 1
Srwi Rx,Ry,n riwinm Rx,Ry,32- n,n,31 23 RS RA RB MB ME |Rc
clrrwi - Rx,Ry,n riwinm Rx,Ry,0,0,31-n 0 6 ! 16 a 26 3
— Programming Note n € (RB)sg.63
€ ROTL3, ((RS)35.63
Let RSL represent the low-order 32 bits of register e MASK3(I%4](3J(r32)3§I;Ei332)n)
RS, with the bits numbered from 0 through 31. RA € r &m
rlwinm can be used to extract an n-bit field that The contents of register RS are rotateds, left the num-
starts at bit position b in RSL, right-justified into the ber of bits specified by (RB)sg.63. A mask is generated
low-order 32 bits of register RA (clearing the having 1-bits from bit MB+32 through bit ME+32 and
remaining 32- n bits of the low-order 32 bits of RA), 0-bits elsewhere. The rotated data are ANDed with the
by setting SH=b+n, MB=32- n, and ME=31. It can generated mask and the result is placed into register
be used to extract an n-bit field that starts at bit RA.

position b in RSL, left-justified into the low-order 32

bits of register RA (clearing the remaining 32-n bits Special Registers Altered:

of the low-order 32 bits of RA), by setting SH=b, CRO (if Re=1)
MB = 0, and ME=n- 1. It can be used to rotate the Extended Mnemonics:

contents of the low-order 32 bits of a register left .

(right) by n bits, by setting SH=n (32- n), MB=0, and Example of extended mnemonics for Rotate Left Word

ME=31. It can be used to shift the contents of the then AND with Mask:

low-order 32 bits of a register right by n bits, by set-

ting SH=32- n, MB=n, and ME=31. It can be used Extended: Equivalent to:

to clear the high-order b bits of the low-order 32 bits rotiw Rx,Ry,Rz riwnm - Rx,Ry,Rz,0,31
of the contents of a register and then shift the result .

left by n bits, by setting SH=n, MB=b-n, and — Programming Note

ME=31- n. It can be used to clear the low-order n Let RSL represent the low-order 32 bits of register
bits of the low-order 32 bits of a register, by setting RS, with the bits numbered from 0 through 31.

SH=0, MB=0, and ME=31-n. rlwnm can be used to extract an n-bit field that
For all the uses given above, the high-order 32 bits starts at variable bit position b in RSL, right-justified
of register RA are cleared. into the low-order 32 bits of register RA (clearing

E ded . ided for all of th the remaining 32-n bits of the low-order 32 bits of
xtended mnemonics are provided for all of these RA), by sefting RBsggg=b+n, MB=32-n, and

uses; see Appendix E, “Assembler Extended Mne- ME=31. It can be used to extract an n-bit field that

monics” on page 709. starts at variable bit position b in RSL, left-justified
into the low-order 32 bits of register RA (clearing
the remaining 32- n bits of the low-order 32 bits of
RA), by setting RBgg.g3=b, MB = 0, and ME=n- 1. It
can be used to rotate the contents of the low-order
32 bits of a register left (right) by variable n bits, by
setting RBsg.g3=n (32- n), MB=0, and ME=31.

For all the uses given above, the high-order 32 bits
of register RA are cleared.

Extended mnemonics are provided for some of
these uses; see Appendix E, “Assembler Extended
Mnemonics” on page 709.

Chapter 3. Fixed-Point Facility 93

Version 2.07 B

Rotate Left Word Immediate then Mask

Insert M-form
riwimi RA,RS,SH,MB,ME (Rc=0)
riwimi. RA,RS,SH,MB,ME (Re=1)

20 RS RA SH MB ME [Rc
(0] 6 11 16 21 26 31
n € SH

r € ROTL32((RS)32:63, n)
m ¢ MASK(MB+32, ME+32)
RA € r&m | (RA)&™m

The contents of register RS are rotateds, left SH bits. A
mask is generated having 1-bits from bit MB+32
through bit ME+32 and 0-bits elsewhere. The rotated
data are inserted into register RA under control of the
generated mask.

Special Registers Altered:
CRO (if Re=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Word
Immediate then Mask Insert.

Extended: Equivalent to:
inslwi Rx,Ry,n,b rlwimi Rx,Ry,32-b,b,b+n- 1

— Programming Note

Let RAL represent the low-order 32 bits of register
RA, with the bits numbered from 0 through 31.

rlwimi can be used to insert an n-bit field that is
left-justified in the low-order 32 bits of register RS,
into RAL starting at bit position b, by setting
SH=32- b, MB=b, and ME=(b+n)- 1. It can be used
to insert an n-bit field that is right-justified in the
low-order 32 bits of register RS, into RAL starting at
bit position b, by setting SH=32- (b+n), MB=b, and
ME=(b+n)- 1.

Extended mnemonics are provided for both of
these uses; see Appendix E, “Assembler Extended
Mnemonics” on page 709.

924 Power ISA™ - Book |

Version 2.07 B

3.3.14.1.1 64-bit Fixed-Point Rotate Instructions [Category: 64-Bit]

Rotate Left Doubleword Immediate then

Rotate Left Doubleword Immediate then

Clear Left MD-form Clear Right MD-form

ridicl RA,RS,SH,MB (Rc=0) rldicr RA,RS,SH,ME (Rc=0)

ridicl. RA,RS,SH,MB (Re=1) rldicr. RA,RS,SH,ME (Re=1)
30 RS RA sh mb 0 |sh|Rc 30 RS RA sh me 1 |sh|Rc

0 6 11 16 21 27 |30 (31 0 6 11 16 21 27 30|31

n € shg || shg., n € shs || shg.,

r € ROTLg, ((RS), n) T € ROTLg, ((RS), 1)

b € mbs || mby., e € mes || meg.,

m € MASK(b, 63) m € MASK(0, e)

RA € r&m RA € r &m

The contents of register RS are rotatedg, left SH bits. A
mask is generated having 1-bits from bit MB through bit
63 and 0-bits elsewhere. The rotated data are ANDed
with the generated mask and the result is placed into
register RA.

Special Registers Altered:
CRO (if Re=1)

Extended Mnemonics:

Examples of extended mnemonics for Rotate Left Dou-
bleword Immediate then Clear Left.

Extended: Equivalent to:

extrdi Rx,Ry,n,b ridicl Rx,Ry,b+n,64- n
srdi Rx,Ry,n ridicl Rx,Ry,64- n,n
clrldi Rx,Ry,n ridicl Rx,Ry,0,n

—— Programming Note

ridicl can be used to extract an n-bit field that starts
at bit position b in register RS, right-justified into
register RA (clearing the remaining 64- n bits of
RA), by setting SH=b+n and MB=64- n. It can be
used to rotate the contents of a register left (right)
by n bits, by setting SH=n (64- n) and MB=0. It can
be used to shift the contents of a register right by n
bits, by setting SH=64- n and MB=n. It can be used
to clear the high-order n bits of a register, by setting
SH=0 and MB=n.

Extended mnemonics are provided for all of these
uses; see Appendix E, “Assembler Extended Mne-
monics” on page 709.

The contents of register RS are rotatedg, left SH bits. A
mask is generated having 1-bits from bit 0 through bit
ME and 0-bits elsewhere. The rotated data are ANDed
with the generated mask and the result is placed into
register RA.

Special Registers Altered:
CRO (if Re=1)

Extended Mnemonics:

Examples of extended mnemonics for Rotate Left Dou-
bleword Immediate then Clear Right.

Extended: Equivalent to:

extldi Rx,Ry,n,b rldicr Rx,Ry,b,n- 1
sldi Rx,Ry,n ridicr Rx,Ry,n,63-n
clrrdi Rx,Ry,n ridicr Rx,Ry,0,63-n

— Programming Note

rldicr can be used to extract an n-bit field that
starts at bit position b in register RS, left-justified
into register RA (clearing the remaining 64- n bits
of RA), by setting SH=b and ME=n-1. It can be
used to rotate the contents of a register left (right)
by n bits, by setting SH=n (64- n) and ME=63. It
can be used to shift the contents of a register left by
n bits, by setting SH=n and ME=63- n. It can be
used to clear the low-order n bits of a register, by
setting SH=0 and ME=63- n.

Extended mnemonics are provided for all of these
uses (some devolve to rldicl); see Appendix E,
“Assembler Extended Mnemonics” on page 709.

Chapter 3. Fixed-Point Facility 95

Version 2.07 B

Rotate Left Doubleword Immediate then

Rotate Left Doubleword then Clear Left

Clear MD-form MDS-form

ridic RA,RS,SH,MB (Rc=0) ridcl RA,RS,RB,VB (Rc=0)

rldic. RA,RS,SH,MB (Re=1) ridcl. RA,RS,RB,VB (Re=1)
30 RS RA sh mb 2 |sh|Rc 30 RS RA RB mb 8 |Rc

o 6 11 16 21 27 |30 |31 0 6 11 16 21 27 |31

n € shg || shp.y n € (RB)sg.63

r € ROTLg, ((RS), n) r € ROTLg, ((RS), n)

b € mbs || mbg., b € mbs || mbg.,

m € MASK(b, Tn) m € MASK(b, 63)

RA € r&m RA € r&m

The contents of register RS are rotatedg, left SH bits. A
mask is generated having 1-bits from bit MB through bit
63- SH and 0-bits elsewhere. The rotated data are
ANDed with the generated mask and the result is
placed into register RA.

Special Registers Altered:
CRO (if Re=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Dou-
bleword Immediate then Clear:

Extended: Equivalent to:
clrisidi Rx,Ry,b,n rldic Rx,Ry,n,b- n

— Programming Note

ridic can be used to clear the high-order b bits of
the contents of a register and then shift the result
left by n bits, by setting SH=n and MB=b- n. It can
be used to clear the high-order n bits of a register,
by setting SH=0 and MB=n.

Extended mnemonics are provided for both of
these uses (the second devolves to ridicl); see
Appendix E, “Assembler Extended Mnemonics” on
page 709.

The contents of register RS are rotatedg, left the num-
ber of bits specified by (RB)sg.g3. A mask is generated
having 1-bits from bit MB through bit 63 and 0-bits else-
where. The rotated data are ANDed with the generated
mask and the result is placed into register RA.

Special Registers Altered:
CRO (if Re=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Dou-
bleword then Clear Lefft.

Extended: Equivalent to:
rotld Rx,Ry,Rz ridcl Rx,Ry,Rz,0

— Programming Note

ridcl can be used to extract an n-bit field that starts
at variable bit position b in register RS, right-justi-
fied into register RA (clearing the remaining 64- n
bits of RA), by setting RBgg.g3=b+n and MB=64- n.
It can be used to rotate the contents of a register
left (right) by variable n bits, by setting RBgg.g3=n
(64- n) and MB=0.

Extended mnemonics are provided for some of
these uses; see Appendix E, “Assembler Extended
Mnemonics” on page 709.

96 Power ISA™ - Book |

Version 2.07 B

Rotate Left Doubleword then Clear Right

Rotate Left Doubleword Immediate then

MDS-form Mask Insert MD-form
ridcr RA,RS,RB,ME (Rc=0) rldimi RA,RS,SH,MB (Rc=0)
ridcr. RA,RS,RB,ME (Re=1) rldimi. RA,RS,SH,MB (Re=1)

30 RS RA RB me 9 |Rc 30 RS RA sh mb 3 |sh|Rc
0 6 11 16 21 27 31 0 6 11 16 21 27 | 30|31
n € (RB)58:63 n € ShS || Sh0:4
r ¢ ROTLg, ((RS), n) r ¢ ROTLg, ((RS), n)
e € mes || meg, b € mbs || mbg.,
m € MASK(0, e) m € MASK(b, Tn)
RA € r &m RA €« r&m | (RA)&Tm

The contents of register RS are rotatedg, left the num-
ber of bits specified by (RB)sg.g3. A mask is generated
having 1-bits from bit 0 through bit ME and 0-bits else-
where. The rotated data are ANDed with the generated
mask and the result is placed into register RA.

Special Registers Altered:
CRO (if Re=1)

— Programming Note

ridcr can be used to extract an n-bit field that starts
at variable bit position b in register RS, left-justified
into register RA (clearing the remaining 64- n bits
of RA), by setting RBsg.g3=b and ME=n- 1. It can
be used to rotate the contents of a register left
(right) by variable n bits, by setting RBgg.g3=n
(64- n) and ME=63.

Extended mnemonics are provided for some of
these uses (some devolve to ridcl); see
Appendix E, “Assembler Extended Mnemonics” on
page 709.

The contents of register RS are rotatedg, left SH bits. A
mask is generated having 1-bits from bit MB through bit
63- SH and O-bits elsewhere. The rotated data are
inserted into register RA under control of the generated
mask.

Special Registers Altered:
CRO (if Re=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Dou-
bleword Immediate then Mask Insert.

Extended:
insrdi Rx,Ry,n,b ridimi

Equivalent to:
Rx,Ry,64- (b+n),b

— Programming Note

rldimi can be used to insert an n-bit field that is
right-justified in register RS, into register RA start-
ing at bit position b, by setting SH=64- (b+n) and
MB=b.

An extended mnemonic is provided for this use;
see Appendix E, “Assembler Extended Mnemon-
ics” on page 709.

Chapter 3. Fixed-Point Facility 97

Version 2.07 B

3.3.14.2 Fixed-Point Shift Instructions

The instructions in this section perform left and right
shifts.

Extended mnemonics for shifts

Immediate-form logical (unsigned) shift operations are
obtained by specifying appropriate masks and shift val-
ues for certain Rotate instructions. A set of extended
mnemonics is provided to make coding of such shifts
simpler and easier to understand. Some of these are
shown as examples with the Rotate instructions. See
Appendix E, “Assembler Extended Mnemonics” on
page 709 for additional extended mnemonics.

— Programming Note

Any Shift Right Algebraic instruction, followed by
addze, can be used to divide quickly by 2". The
setting of the CA bit by the Shift Right Algebraic
instructions is independent of mode.

— Programming Note

Multiple-precision shifts can be programmed as
shown in Section F.1, “Multiple-Precision Shifts” on
page 723.

Shift Left Word X-form Shift Right Word X-form
slw RA,RS,RB (Rc=0) Srw RA,RS,RB (Rc=0)
slw. RA,RS,RB (Re=1) Srw. RA,RS,RB (Re=1)

31 RS RA RB 24 Rc 31 RS RA RB 536 Rc
0 6 1 16 21 31 0 6 1 16 21 31

n € (RB)sg.63
r € ROTL3;((RS)35.63, D)
if (RB)gg = 0 then

m < MASK(32, 63-n)
else m « %40
RA€ré&m

The contents of the low-order 32 bits of register RS are
shifted left the number of bits specified by (RB)sg.g3.
Bits shifted out of position 32 are lost. Zeros are sup-
plied to the vacated positions on the right. The 32-bit
result is placed into RAgs.63. RAg.3¢ are set to zero.
Shift amounts from 32 to 63 give a zero result.

Special Registers Altered:
CRO (if Re=1)

n € (RB)sg.63
r € ROTL3;5((RS)35.63, 64-n)
if (RB)gg = 0 then

m < MASK(n+32, 63)
else m « %
RA € r&m

The contents of the low-order 32 bits of register RS are
shifted right the number of bits specified by (RB)sg.g3-
Bits shifted out of position 63 are lost. Zeros are sup-
plied to the vacated positions on the left. The 32-bit
result is placed into RAg..g3. RAg.31 are set to zero.
Shift amounts from 32 to 63 give a zero result.

Special Registers Altered:
CRO (if Re=1)

98 Power ISA™ - Book |

Version 2.07 B

Shift Right Algebraic Word Immediate

X-form
srawi RA,RS,SH (Rc=0)
srawi. RA,RS,SH (Re=1)

31 RS RA SH 824 Rc
0 6 11 16 21 31
n € SH
r € ROTL32((RS)32:63, 64‘1’1)
m < MASK (n+32, 63)
s < (RS)s,

RA « r&m | (%%s)&™m
CA € s & ((r&™m)3y,43%#0)

The contents of the low-order 32 bits of register RS are
shifted right SH bits. Bits shifted out of position 63 are
lost. Bit 32 of RS is replicated to fill the vacated posi-
tions on the left. The 32-bit result is placed into RA3.¢3.
Bit 32 of RS is replicated to fill RAg.31. CAis set to 1 if
the low-order 32 bits of (RS) contain a negative number
and any 1-bits are shifted out of position 63; otherwise
CA is set to 0. A shift amount of zero causes RA to
receive EXTS((RS)35.63), and CA to be set to 0.

Special Registers Altered:
CA
CRO (if Re=1)

Shift Right Algebraic Word X-form
sraw RA,RS,RB (Rc=0)
sraw. RA,RS,RB (Re=1)

31 RS RA RB 792 Rc
0 6 11 16 21 31

n € (RB)sg.63
r €« ROTL32((RS)32:63, 64‘1’1)
if (RB)SS = 0 then
m € MASK(n+32, 63)
else m « %4
s € (RS)3,
RA € r&m | (5%s) & m
CA € s & ((r&_‘m)32:63¢0)

The contents of the low-order 32 bits of register RS are
shifted right the number of bits specified by (RB)sg.g3.
Bits shifted out of position 63 are lost. Bit 32 of RS is
replicated to fill the vacated positions on the left. The
32-bit result is placed into RA35.63. Bit 32 of RS is repli-
cated to fill RAg.31. CAis set to 1 if the low-order 32 bits
of (RS) contain a negative number and any 1-bits are
shifted out of position 63; otherwise CA is set to 0. A
shift amount of zero causes RA to receive
EXTS((RS)30.63), and CA to be set to 0. Shift amounts
from 32 to 63 give a result of 64 sign bits, and cause
CA to receive the sign bit of (RS)35.63.

Special Registers Altered:
CA
CRO (if Re=1)

Chapter 3. Fixed-Point Facility 99

Version 2.07 B

3.3.14.2.1 64-bit Fixed-Point Shift Instructions
[Category: 64-Bit]

Shift Left Doubleword X-form Shift Right Doubleword X-form
sld RA,RS,RB (Rc=0) srd RA,RS,RB (Rc=0)
sld. RA,RS,RB (Re=1) srd. RA,RS,RB (Re=1)
31 RS | RA | RB 27 Rc 31 RS | RA | RB 539 Rc
0 6 11 16 21 31 0 6 11 16 21 31

n €< (RB)sg,63
r € ROTLg, ((RS), n)
if (RB)5; = 0 then

m ¢« MASK(0, 63-n)
else m « %
RA€ré&nm

The contents of register RS are shifted left the number
of bits specified by (RB)s7.¢3. Bits shifted out of position
0 are lost. Zeros are supplied to the vacated positions
on the right. The result is placed into register RA. Shift
amounts from 64 to 127 give a zero result.

Special Registers Altered:
CRO (if Re=1)

n € (RB)sg.63
r € ROTLg, ((RS), 64-n)
if (RB)g; = 0 then

m € MASK(n, 63)
else m « %40
RA € ré&m

The contents of register RS are shifted right the num-
ber of bits specified by (RB)s7.63. Bits shifted out of
position 63 are lost. Zeros are supplied to the vacated
positions on the left. The result is placed into register
RA. Shift amounts from 64 to 127 give a zero result.

Special Registers Altered:
CRO (if Re=1)

100 Power ISA™ - Book |

Version 2.07 B

Shift Right Algebraic Doubleword

Shift Right Algebraic Doubleword X-form

srad RA,RS,RB (Rc=0)

srad. RA,RS,RB (Re=1)
31 RS RA RB 794 Rc

0 6 11 16 21 31

Immediate XS-form

sradi RA,RS,SH (Rc=0)

sradi. RA,RS,SH (Re=1)
31 RS RA sh 413 sh|Rc

0 6 11 16 21 30|31

n « shg || shy.y

r ¢ ROTLg, ((RS), 64-n)

m € MASK(n, 63)

s € (RS),

RA « rem | (%%s)&™m
CA € s & ((r&™m)=0)

The contents of register RS are shifted right SH bits.
Bits shifted out of position 63 are lost. Bit 0 of RS is rep-
licated to fill the vacated positions on the left. The result
is placed into register RA. CA is set to 1 if (RS) is nega-
tive and any 1-bits are shifted out of position 63; other-
wise CA is set to 0. A shift amount of zero causes RA to
be set equal to (RS), and CA to be set to 0.

Special Registers Altered:
CA
CRO (if Re=1)

n < (RB)sg.63
r ¢« ROTLgy ((RS), 64-n)
if (RB)57 = 0 then

m < MASK(n, 63)
else m « %4
s € (RS)y
RA € r&m | (5%s) & m
CA < s & ((r&m)=0)

The contents of register RS are shifted right the num-
ber of bits specified by (RB)s7.63. Bits shifted out of
position 63 are lost. Bit 0 of RS is replicated to fill the
vacated positions on the left. The result is placed into
register RA. CA is set to 1 if (RS) is negative and any
1-bits are shifted out of position 63; otherwise CA is set
to 0. A shift amount of zero causes RA to be set equal
to (RS), and CA to be set to 0. Shift amounts from 64 to
127 give a result of 64 sign bits in RA, and cause CA to
receive the sign bit of (RS).

Special Registers Altered:
CA
CRO (if Re=1)

Chapter 3. Fixed-Point Facility 101

Version 2.07 B

3.3.15 Binary Coded Decimal (BCD) Assist Instructions [Category: Embed-

ded.Phased-in, Server]

The Binary Coded Decimal Assist instructions operate
on Binary Coded Decimal operands (cbedtd and

addg6s) and Decimal Floating-Point operands (cdt-
bcd) See Chapter 5. for additional information.

Convert Declets To Binary Coded Decimal
X-form

cdtbed RA, RS
31 RS RA /1] 282 /
o 6 11 16 21 31
doi=0¢tol
n ¢« 1ix 32
RAn+0:n+7 <0

RApig:n419 € DPD_TO_BCD((RS)p415:n421)
RAni20:n+31 € DPD_TO_BCD((RS)pnizp:ne31)

The low-order 20 bits of each word of register RS con-
tain two declets which are converted to six, 4-bit BCD
fields; each set of six, 4-bit BCD fields is placed into the
low-order 24 bits of the corresponding word in RA. The
high-order 8 bits in each word of RA are set to 0.

Special Registers Altered:
None

Convert Binary Coded Decimal To Declets
X-form

cbcdtd RA, RS

31 RS RA iy 314 /

doi=0¢tol
n < ix32
RApio:ns11 € 0
RA;,12:ne21 € BCD_TO_DPD((RS)pig.5419)
RApi22:n431 € BCD_TO_DPD((RS) 4000431)

The low-order 24 bits of each word of register RS con-
tain six, 4-bit BCD fields which are converted to two
declets; each set of two declets is placed into the
low-order 20 bits of the corresponding word in RA. The
high-order 12 bits in each word of RA are set to 0.

If a 4-bit BCD field has a value greater than 9 the
results are undefined.

Special Registers Altered:
None

Add and Generate Sixes XO-form
addg6s RT,RA,RB

31 RT RA RB [/ 74 /
0 6 11 16 21|22 31

doi=0tol5

dc; € carry_out(RA,.i.63 + RBaxi.63)
c « *(deg) || *tdey) || ...] “(degs)
RT ¢« (7c) & 0x6666_6666_6666_6666

The contents of register RA are added to the contents
of register RB. Sixteen carry bits are produced, one
for each carry out of decimal position n (bit posi-
tion 4xn).

A doubleword is composed from the 16 carry bits, and
placed into RT. The doubleword consists of a decimal
six (Ob0110) in every decimal digit position for which
the corresponding carry bit is 0, and a zero (0b0000) in
every position for which the corresponding carry bit is
1.

Special Registers Altered:
None

102 Power ISA™ - Book |

Version 2.07 B

—— Programming Note

addgé6s can be used to add or subtract two BCD
operands. In these examples it is assumed that rO
contains 0x666...666. (BCD data formats are
described in Section 5.3.)

Addition of the unsigned BCD operand in register
RA to the unsigned BCD operand in register RB
can be accomplished as follows.

add rl,RA,r0
add r2,rl,RB
addgb6s RT,rl,RB
subf RT,RT,r2# RT = RA +pp RB

Subtraction of the unsigned BCD operand in regis-
ter RA from the unsigned BCD operand in register
RB can be accomplished as follows. (In this exam-
ple it is assumed that RB is not register 0.)

addi rl,RB,1

nor r2,RA,RA# one's complement of RA
add r3,rl,r2

addgb6s RT,rl,r2

subf RT,RT,r3#% RT = RB -pop RA

Additional instructions are needed to handle signed
BCD operands, and BCD operands that occupy
more than one register (e.g., unsigned BCD oper-
ands that have more than 16 decimal digits).

Chapter 3. Fixed-Point Facility

103

Version 2.07 B

3.3.16 Move To/From Vector-Scalar Register Instructions

Move From VSR Doubleword XX1-form
[Category: Vector-Scalar]

Move From VSR Word and Zero XX1-form
[Category: Vector-Scalar]

mfvsrd RA,XS mfvsrwz RA,XS (0x7C00_00ES6)

31 S RA " 51 15X 31 S RA " 115 S

0 6 1 16 21 31 0 6 1 16 21 31
XS « SX || S XS« SX|]S

if SX=0 & MSR.FP=0 then FP_Unavailable()
if SX=1 & MSR.VEC=0 then Vector_Unavailable()
GPR[RA] « VSR[XS].doubleword[0]

Let XS be the value SX concatenated with S.

The contents of doubleword element 0 of VSR[XS] are
placed into GPR[RA].

For SX=0, mfvsrd is treated as a Floating-Point
instruction in terms of resource availability.

For SX=1, mfvsrd is treated as a Vector instruction in
terms of resource availability.

Extended Mnemonics
mffprd RA,FRS
mfvrd RA,VRS

Equivalent To
mfvsrd
mfvsrd

RA,FRS
RA,VRS+32

Special Registers Altered
None

Data Layout for mfvsrd
src = VSR[XS]

‘ ‘ unused |

tgt = GPR[RA]

0 64 127

if SX=0 & MSR.FP=0 then FP_Unavailable()
if SX=1 & MSR.VEC=0 then Vector_Unavailable()
GPR[RA] « EXTZ(VSR[XS].word[1])

Let XS be the value SX concatenated with S.

The contents of word element 1 of VSR[XS] are placed
into bits 32:63 of GPR[RA]. The contents of bits 0:31 of
GPR[RA] are set to 0.

For SX=0, mfvsrwz is treated as a Floating-Point
instruction in terms of resource availability.

For SX=1, mfvsrwz is treated as a Vector instruction in
terms of resource availability.

Extended Mnemonics
mffprwz RA,FRS
mfvrwz RA,VRS

Equivalent To
mfvsrwz
mfvsrwz

RA,FRS
RA,VRS+32

Special Registers Altered
None

Data Layout for mfvsrwz
src = VSR[XS]

| unused ‘ ‘

unused

tgt = GPR[RA]

0 32 64 127

104 Power ISA™ - Book |

Version 2.07 B

Move To VSR Doubleword XX1-form
[Category: Vector-Scalar]

Move To VSR Word Algebraic XX1-form
[Category: Vector-Scalar]

mtvsrd XT,RA mtvsrwa XT,RA
31 T RA " 179 L) 31 T RA 1" 211 ITX
0 6 1 16 21 31 0 6 1 16 21 31
XTe«TX|IT XTe«TX T

if TX=0 & MSR.FP=0 then FP_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()
VSR[XT].doubleword[0] « GPR[RA]
VSR[XT].doubleword[1] « OxUUUU_UUUU_UUUU_UUUU

Let XT be the value TX concatenated with T.

The contents of GPR[RA] are placed into doubleword
element 0 of VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
undefined.

For TX=0, mtvsrd is treated as a Floating-Point
instruction in terms of resource availability.

For TX=1, mtvsrd is treated as a Vector instruction in
terms of resource availability.

Extended Mnemonics Equivalent To

if TX=0 & MSR.FP=0 then FP_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()
VSR[XT] .doubleword[0] « EXTS(GPR[RA].bit[32:63])
VSR[XT] .doubleword[1] « OxUUUU_UUUU_UUUU_UUWU

Let XT be the value TX concatenated with T.

The two’s-complement integer in bits 32:63 of GPR[RA]
is sign-extended to 64 bits and placed into doubleword
element 0 of VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
undefined.

For TX=0, mtvsrwa is treated as a Floating-Point
instruction in terms of resource availability.

For TX=1, mtvsrwa is treated as a Vector instruction in
terms of resource availability.

mtfprd FRT,RA mtvsrd FRT,RA Extended Mnemonics Equivalent To
mtvrd VRT,RA mtvsrd VRT+32,RA mtfprwa FRT,RA mtvsrwa FRT,RA
mtvrwa VRT,RA mtvsrwa VRT+32,RA
Special Registers Altered
None Special Registers Altered
None
Data Layout for mtvsrd
src = GPR[RA] | DataLayout for mtvsrwa
‘ ‘ | src = GPR[RA]
tgt = VSR[XT] | | undefined ‘ ‘
‘ ‘ undefined | | tgt = VSR[XT]
0 64 127 | I undefined
| 0 32 64 127
Chapter 3. Fixed-Point Facility 105

Version 2.07 B

Move To VSR Word and Zero XX1-form
[Category: Vector-Scalar]

mtvsrwz XT,RA
31 T RA " 243 L)
0 6 1 16 21 31
XTe«TX|IT

if TX=0 & MSR.FP=0 then FP_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()
VSR[XT].doubleword[0] « EXTZ(GPR[RA].word[1])
VSR[XT].doubleword[1] « OxUUUU_UUUU_UUUU_UUUU

Let XT be the value TX concatenated with T.

The contents of bits 32:63 of GPR[RA] are placed into
word element 1 of VSR[XT]. The contents of word
element 0 of VSR[XT] are set to 0.

The contents of doubleword element 1 of VSR[XT] are
undefined.

For TX=0, mtvsrwz is treated as a Floating-Point
instruction in terms of resource availability.

For TX=1, mtvsrwz is treated as a Vector instruction in
terms of resource availability.

Extended Mnemonics Equivalent To
mtfprwz FRT,RA mtvsrwz FRT,RA
mtvrwz VRT,RA mtvsrwz VRT+32,RA

Special Registers Altered
None

Data Layout for mtvsrwz
src = GPR[RA]

‘ unused ‘ ‘
tgt = VSR[XT]

‘ ‘ undefined
0 32 64 127

106 Power ISA™ - Book |

Version 2.07 B

3.3.17 Move To/From System Register Instructions

The Move To Condition Register Fields instruction has
a preferred form; see Section 1.8.1, “Preferred Instruc-
tion Forms” on page 22. In the preferred form, the FXM
field satisfies the following rule.

B Exactly one bit of the FXM field is set to 1.

Extended mnemonics

Extended mnemonics are provided for the mtspr and
mfspr instructions so that they can be coded with the

SPR name as part of the mnemonic rather than as a
numeric operand. An extended mnemonic is provided
for the mterf instruction for compatibility with old soft-
ware (written for a version of the architecture that pre-
cedes Version 2.00) that uses it to set the entire
Condition Register. Some of these extended mnemon-
ics are shown as examples with the relevant instruc-
tions. See AppendixE, “Assembler Extended
Mnemonics” on page 709 for additional extended mne-
monics.

Move To Special Purpose Register

operation of mispr for the AMR, are described in Book

l-S.

XFX-form
mtspr SPR,RS
31 RS spr 467 /
0 6 11 21 31
n € sprs.g || sprp.g
switch (n)
case(13): see Book III-S
case (808, 809, 810, 811):
default:
if length(SPR(n)) = 64 then
SPR(n) ¢ (RS)
else

SPR(n) ¢ (RS)35.¢3

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. If the SPR field
contains a value from 808 through 811, the instruction
specifies a reserved SPR, and is treated as a no-op;
see Section 1.3.3, “Reserved Fields, Reserved Values,
and Reserved SPRs”. Otherwise, unless the SPR field
contains 13 (denoting the AMR<S>), the contents of
register RS are placed into the designated Special Pur-
pose Register. For Special Purpose Registers that are
32 bits long, the low-order 32 bits of RS are placed into
the SPR.

The AMR (Authority Mask Register) is used for “storage
protection” in the Server environment. This use, and

. SPR’ Register
decimal
SPrs:9 SPro:4 Name
1 00000 00001 XER
3 00000 00011 DSCR®
8 00000 01000 LR
9 00000 01001 CTR
13 00000 01101 AMR3
128 00100 00000 TFHAR?
129 00100 00001 TFIAR*
130 00100 00010 TEXASR*
131 00100 00011 TEXASRU*
256 01000 00000 VRSAVE
512 10000 00000 | SPEFSCR?
769 11000 00001 MMCR2°®
770 11000 00010 MMCRA?®
771 11000 00011 PMC13
772 11000 00100 PMC2°
773 11000 00101 PMC3®
774 11000 00110 PMC4®
775 11000 00111 PMC5®
776 11000 01000 PMC6°
779 11000 01011 MMCRO0®
800 11001 00000 BESCRS’
801 11001 00001 BESCRSU’
802 11001 00010 BESCRR’
803 11001 00011 BESCRRU’
804 11001 00100 EBBHR’
805 11001 00101 EBBRR’
806 11001 00110 BESCR’
808 11001 01000 reserved®

T Note that the order of the two 5-bit halves
of the SPR number is reversed.

2 Category: SPE.

3 Category: Server; see Book IlI-S.

4 Category: Transactional Memory. See
Chapter 5 of Book .

5 Category: Stream.

6 Accesses to these registers are noops;
see Section 1.3.3, “Reserved Fields,
Reserved Values, and Reserved SPRs”

7 Category: Server; see Book II.

8 Category: Server; see Section 9.4.4 for
information about writing this register.

Chapter 3. Fixed-Point Facility

107

Version 2.07 B

. SPR' Register
decimal

SPrs:9 SPro:4 Name

809 11001 01001 reserved®

810 11001 01010 reserved®

811 11001 01011 reserved®
815 11001 01111 TAR®
896 11100 00000 PPR’
898 11100 00010 PPR32

Note that the order of the two 5-bit halves
of the SPR number is reversed.

2 Category: SPE.

Category: Server; see Book llI-S.
Category: Transactional Memory. See
Chapter 5 of Book .

Category: Stream.

Accesses to these registers are noops;
see Section 1.3.3, “Reserved Fields,
Reserved Values, and Reserved SPRs”
Category: Server; see Book .
Category: Server; see Section 9.4.4 for
information about writing this register.

If execution of this instruction is attempted specifying
an SPR number that is not shown above, or an SPR
number that is shown above but is in a category that is
not supported by the implementation, one of the follow-
ing occurs.
B If spry = 0, the illegal instruction error handler is
invoked.
B [f spryp = 1, the system privileged instruction error
handler is invoked.

If an attempt is made to execute mtspr specifyinga TM
SPR in other than Non-transactional state, with the
exception of TFAR in suspended state, a TM Bad Thing
type Program interrupt is generated.

A complete description of this instruction can be found
in Book IlI.

Special Registers Altered:
See above

Extended Mnemonics:

Examples of extended mnemonics for Move To Special
Purpose Register:

Extended: Equivalent to:
mixer Rx mtspr 1,Rx
mtlr Rx mtspr 8,Rx
mtctr Rx mtspr 9,Rx
mtppr Rx mtspr 896,Rx
mtppr32 Rx mtspr 898,Rx

—— Programming Note

The AMR is part of the “context” of the program
(see Book l11-S). Therefore modification of the AMR
requires “synchronization” by software. For this rea-
son, most operating systems provide a system
library program that application programs can use
to modify the AMR.

—— Compiler and Assembler Note

For the mtspr and mfspr instructions, the SPR
number coded in Assembler language does not
appear directly as a 10-bit binary number in the
instruction. The number coded is split into two 5-bit
halves that are reversed in the instruction, with the
high-order 5 bits appearing in bits 16:20 of the
instruction and the low-order 5 bits in bits 11:15.

108 Power ISA™ - Book |

Version 2.07 B

Move From Special Purpose Register

XFX-form
mfspr RT,SPR
31 RT spr 339 /
0 6 11 21 31
n € sprs.g || spro.4
switch (n)

case(129): see Book III-S
case (808, 809, 810, 811):
default:
if length(SPR(n)) = 64 then
RT ¢ SPR(n)
else
RT € 320 || SPR(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. If the SPR field
contains 129, the instruction references the Transac-
tion Failure Instruction Address Register (TFIAR)<TM>
and the result is dependent on the privilege with which
it is executed. See Book IlI-S. If the SPR field contains
a value from 808 through 811, the instruction specifies
a reserved SPR, and is treated as a noop; see
Section 1.3.3, “Reserved Fields, Reserved Values, and
Reserved SPRs”. Otherwise, the contents of the desig-
nated Special Purpose Register are placed into register
RT. For Special Purpose Registers that are 32 bits long,
the low-order 32 bits of RT receive the contents of the
Special Purpose Register and the high-order 32 bits of
RT are set to zero.

. SPR! Register
decimal
SPrs.9 SPro:4 Name

1 00000 00001 XER

3 00000 00011 DSCR®

8 00000 01000 LR

9 00000 01001 CTR
13 00000 01101 AMR®
128 00100 00000 TFHAR’
129 00100 00001 TFIAR’
130 00100 00010 TEXASR’
131 00100 00011 TEXASRU’

Note that the order of the two 5-bit halves

of the SPR number is reversed.

Category: Embedded.
See Chapter 6 of Book Il

Category: SPE.

Category: Alternate Time Base.
Category: Server; see Book IlI-S.
Category: Transactional Memory. See
Chapter 5 of Book II.

Category: Stream.

Accesses to these SPRs are noops; see
Section 1.3.3, “Reserved Fields, Reserved
Values, and Reserved SPRs”.

Category: Server; see Book Il.
Category: Server; see Section 9.4.4 for
information about reading this register.

N o g~ WwN

o]

10
11

. SPR! Register
decimal
SPrs:9 SPro:4 Name

136 00100 01000 CTRL
256 01000 00000 VRSAVE
259 01000 00011 SPRG3
260 01000 00100 SPRG4*
261 01000 00101 SPRG5
262 01000 00110 SPRG6°
263 01000 00111 SPRG77
268 01000 01100 TB°
269 01000 01101 TBU®
512 10000 00000 | SPEFSCR*
526 10000 01110 ATB®>
527 10000 01111 ATBUS®
768 11000 00000 | SIER™
769 11000 00001 | MMCR2""
770 11000 00010 | MMCRA™"
771 11000 00011 | PMC1"!
772 11000 00100 | PMC2™"
773 11000 00101 | PMC3""
774 11000 00110 | PMC4""
775 11000 00111 | PMC5""
776 11000 01000 | PMC6'"
779 11000 01011 | MMCROQ""
780 11000 01100 | SIAR""
781 11000 01101 | SDAR™
782 11000 01110 | MMCR1""
800 11001 00000 | BESCRS'™
801 11001 00001 | BESCRSU™
802 11001 00010 | BESCRR'™
803 11001 00011 | BESCRRU™
804 11001 00100 | EBBHR'™
805 11001 00101 EBBRR'™
806 11001 00110 | BESCR'™
808 11001 01000 reserved”
809 11001 01001 reserved”
810 11001 01010 reserved®
811 11001 01011 reserved”
815 11001 01111 | TAR®
896 11100 00000 PPR™
898 11100 00010 PPR32

T Note that the order of the two 5-bit halves
of the SPR number is reversed.

2 Category: Embedded.

3 See Chapter 6 of Book II.

4 Category: SPE.

5 Category: Alternate Time Base.

6 Category: Server; see Book IlI-S.

7 Category: Transactional Memory. See
Chapter 5 of Book II.

8 Category: Stream.

9 Accesses to these SPRs are noops; see
Section 1.3.3, “Reserved Fields, Reserved
Values, and Reserved SPRs”.

10 Category: Server; see Book II.

1 Category: Server; see Section 9.4.4 for
information about reading this register.

If execution of this instruction is attempted specifying
an SPR number that is not shown above, or an SPR

Chapter 3. Fixed-Point Facility 109

Version 2.07 B

number that is shown above but is in a category that is
not supported by the implementation, one of the follow-
ing occurs.
B f spry = 0, the illegal instruction error handler is
invoked.
B If sprg = 1, the system privileged instruction error
handler is invoked.

A complete description of this instruction can be found
in Book lI.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Move From Spe-
cial Purpose Register:

Extended: Equivalent to:
mfxer Rx mfspr Rx,1
mflr Rx mfspr Rx,8
mfctr Rx mfspr Rx,9

Note
’zee the Notes that appear with mtspr.

110 Power ISA™ - Book |

Version 2.07 B

Move To One Condition Register Field

Move From One Condition Register Field

XFX-form XFX-form

mtocrf FXM,RS mfocrf RT,FXM

31 RS |1] FXM |/ 144 / 31 RT |1| FXM |/ 19 /
0 6 11)12 20|21 31 0 6 1112 20|21 31
count < 0 RT ¢ undefined
doi=0¢to7 count < 0

if FXM; = 1 then doi=0¢to7
n <« i if FXM; = 1 then
count € count + 1 n e i

if count = 1 then

CRyxn+32:4xn+35 € (RS) 4xn+32:4xn+3s
else CR ¢ undefined
If exactly one bit of the FXM field is set to 1, let n be the
position of that bit in the field (0 < n < 7). The contents
of bits 4xn+32:4xn+35 of register RS are placed into
CR field n (CR bits 4xn+32:4xn+35). Otherwise, the
contents of the Condition Register are undefined.

Special Registers Altered:
CR field selected by FXM

Move To Condition Register Fields

XFX-form
mtcrf FXM,RS
31 RS |0 FXM / 144 /
0 6 1112 20[21 31
mask « 4(Fxiy) || f(rxuy) || ... f(FxMy)
CR € ((RS)35.63 & mask) | (CR & Tmask)

The contents of bits 32:63 of register RS are placed
into the Condition Register under control of the field
mask specified by FXM. The field mask identifies the
4-bit fields affected. Let i be an integer in the range 0-7.
If FXM;=1 then CR field i (CR bits 4xi+32:4xi+35) is set
to the contents of the corresponding field of the
low-order 32 bits of RS.

Special Registers Altered:
CR fields selected by mask

Extended Mnemonics:

Example of extended mnemonics for Move To Condi-
tion Register Fields:

Extended: Equivalent to:
mtcr Rx mtcrf OxFF,Rx

count € count + 1
if count = 1 then
[Category: Phased-In: RT ¢« 640]

RT4><n+32:4><n+35 < CR4><n+32:4><n+35

If exactly one bit of the FXM field is set to 1, let n be the
position of that bit in the field (0 < n < 7). The contents
of CR field n (CR bits 4xn+32:4xn+35) are placed into
bits 4xn+32:4xn+35 of register RT, and the contents of
the remaining bits of register RT are undefined. Other-
wise, the contents of register RT are undefined.

[Category: Phased-In] If exactly one bit of the FXM field
is set to 1, the contents of the remaining bits of register
RT are set to 0's instead of being undefined as speci-
fied above.

Special Registers Altered:
None

—— Programming Note

[Category: Phased-In] Warning: mfocrf is not
backward compatible with processors that comply
with versions of the architecture that precede Ver-
sion 2.08. Such processors may not set to 0 the
bits of register RT that do not correspond to the
specified CR field. If programs that depend on this
clearing behavior are run on such processors, the
programs may get incorrect results.

The POWER4, POWER5, POWER7 and POWERS
processors set to 0's all bytes of register RT other
than the byte that contains the specified CR field. In
the byte that contains the CR field, bits other than
those containing the CR field may or may not be
set to 0s.

Move From Condition Register XFX-form

mfcr RT

31 RT |0 i 19 /

0 6 1112 21 31

RT « %20 || cR

The contents of the Condition Register are placed into
RT32:63. RTO:31 are setto 0.

Chapter 3. Fixed-Point Facility 111

Version 2.07 B

Special Registers Altered:
None

3.3.17.1 Move To/From System Registers [Category: Embedded]

Move to Condition Register from XER

X-form

mcrxr BF
31 BF |/ " " 512 /
0 6 9 |11 16 21 31

CRyxpr+32:4xBr+35 € XER33.35
XER3,, 35 € 000000

The contents of XER3,.35 are copied to Condition Reg-
ister field BF. XER32.35 are set to zero.

Special Registers Altered:
CR field BF XER3».35

Move To Device Control Register

Move From Device Control Register

User-mode Indexed X-form
mtdcrux RS,RA
[Category: Embedded.Device Control]

31 RS RA " 419 /
0 6 11 16 21 31

DCRN ¢« (RA)
DCR(DCRN) ¢« RS

Let the contents of register RA denote a Device Control
Register. (The supported Device Control Registers are
implementation-dependent.)

The contents of RS are placed into the designated
Device Control Register. For 32-bit Device Control Reg-
isters, the contents of bits 32:63 of RS are placed into
the Device Control Register.

See “Move To Device Control Register Indexed X-form”
on page 1054 in Book Il for more information on this
instruction.

Special Registers Altered:
Implementation-dependent

User-mode Indexed X-form
mfdcrux RT,RA
[Category: Embedded.Device Control]

31 RT RA " 291 /
0 6 11 16 21 31
DCRN ¢« (RA)

RT ¢ DCR(DCRN)

Let the contents of register RA denote a Device Control
Register. (The supported Device Control Registers are
implementation-dependent.)

The contents of the designated Device Control Register
are placed into RT. For 32-bit Device Control Registers,
the contents of bits 32:63 of the designated Device
Control Register are placed into RT.

See “Move From Device Control Register Indexed
X-form” on page 1055 in Book Il for more information
on this instruction.

Special Registers Altered:
Implementation-dependent

112 Power ISA™ - Book |

Version 2.07 B

Chapter 4. Floating-Point Facility [Category: Floating-Point]

4.1 Floating-Point Facility Over-
view

This chapter describes the registers and instructions
that make up the Floating-Point Facility.

The processor (augmented by appropriate software
support, where required) implements a floating-point
system compliant with the ANSVIEEE Standard
754-1985, “IEEE Standard for Binary Floating-Point
Arithmetic” (hereafter referred to as “the IEEE stan-
dard”). That standard defines certain required “opera-
tions” (addition, subtraction, etc.). Herein, the term
“floating-point operation” is used to refer to one of these
required operations and to additional operations
defined (e.g., those performed by Multiply-Add or
Reciprocal Estimate instructions). A Non-IEEE mode is
also provided. This mode, which may produce results
not in strict compliance with the IEEE standard, allows
shorter latency.

Instructions are provided to perform arithmetic, round-
ing, conversion, comparison, and other operations in
floating-point registers; to move floating-point data
between storage and these registers; and to manipu-
late the Floating-Point Status and Control Register
explicitly.

These instructions are divided into two categories.
B computational instructions

The computational instructions are those that per-
form addition, subtraction, multiplication, division,
extracting the square root, rounding, conversion,
comparison, and combinations of these opera-
tions. These instructions provide the floating-point
operations. They place status information into the
Floating-Point Status and Control Register. They
are the instructions described in Sections 4.6.6
through 4.6.8.

B non-computational instructions

The non-computational instructions are those that
perform loads and stores, move the contents of a
floating-point register to another floating-point reg-
ister possibly altering the sign, manipulate the
Floating-Point Status and Control Register explic-

itly, and select the value from one of two float-
ing-point registers based on the value in a third
floating-point register. The operations performed
by these instructions are not considered float-
ing-point operations. With the exception of the
instructions that manipulate the Floating-Point Sta-
tus and Control Register explicitly, they do not alter
the Floating-Point Status and Control Register.
They are the instructions described in Sections
4.6.2 through 4.6.5, and 4.6.10.

A floating-point number consists of a signed exponent
and a signed significand. The quantity expressed by
this number is the product of the significand and the
number 28XPOMeNt Encodings are provided in the data
format to represent finite numeric values, +Infinity, and
values that are “Not a Number” (NaN). Operations
involving infinities produce results obeying traditional
mathematical conventions. NaNs have no mathemati-
cal interpretation. Their encoding permits a variable
diagnostic information field. They may be used to indi-
cate such things as uninitialized variables and can be
produced by certain invalid operations.

There is one class of exceptional events that occur dur-
ing instruction execution that is unique to the Float-
ing-Point Facility: the Floating-Point Exception.
Floating-point exceptions are signaled with bits set in
the Floating-Point Status and Control Register
(FPSCR). They can cause the system floating-point
enabled exception error handler to be invoked, pre-
cisely or imprecisely, if the proper control bits are set.

Floating-Point Exceptions

The following floating-point exceptions are detected by
the processor:

® Invalid Operation Exception (VX)
SNaN (VXSNAN)
Infinity- Infinity (VXISI)
Infinity+Infinity (VXIDI)
Zero+Zero (VXZDZz)
InfinityxZero (VXIMZ)
Invalid Compare (VXVC)
Software-Defined Condition (VXSOFT)
Invalid Square Root (VXSQRT)

Chapter 4. Floating-Point Facility [Category: Floating-Point] 113

Version 2.07 B

Invalid Integer Convert (VXCVI)
B Zero Divide Exception (ZX)
® Overflow Exception (OX)
B Underflow Exception (UX)
B Inexact Exception (XX)

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in the
FPSCR. In addition, each floating-point exception has a
corresponding enable bit in the FPSCR. See
Section 4.2.2, “Floating-Point Status and Control Reg-
ister” on page 114 for a description of these exception
and enable bits, and Section 4.4, “Floating-Point
Exceptions” on page 122 for a detailed discussion of
floating-point exceptions, including the effects of the
enable bits.

4.2 Floating-Point Facility Regis-
ters

4.2.1 Floating-Point Registers

Implementations of this architecture provide 32 float-
ing-point registers (FPRs). The floating-point instruction
formats provide 5-bit fields for specifying the FPRs to
be used in the execution of the instruction. The FPRs
are numbered 0-31. See Figure 50 on page 114.

Each FPR contains 64 bits that support the float-
ing-point double format. Every instruction that interprets
the contents of an FPR as a floating-point value uses
the floating-point double format for this interpretation.

The computational instructions, and the Move and
Select instructions, operate on data located in FPRs
and, with the exception of the Compare instructions,
place the result value into an FPR and optionally (when
Rc=1) place status information into the Condition Reg-
ister. Instruction forms with Rc=1 are part of Category:
Floating-Point.Record.

Load Double and Store Double instructions are pro-
vided that transfer 64 bits of data between storage and
the FPRs with no conversion. Load Single instructions
are provided to transfer and convert floating-point val-
ues in floating-point single format from storage to the
same value in floating-point double format in the FPRs.
Store Single instructions are provided to transfer and
convert floating-point values in floating-point double
format from the FPRs to the same value in float-
ing-point single format in storage.

Instructions are provided that manipulate the Float-
ing-Point Status and Control Register and the Condition
Register explicitly. Some of these instructions copy
data from an FPR to the Floating-Point Status and Con-
trol Register or vice versa.

The computational instructions and the Select instruc-
tion accept values from the FPRs in double format. For
single-precision arithmetic instructions, all input values

must be representable in single format; if they are not,
the result placed into the target FPR, and the setting of
status bits in the FPSCR and in the Condition Register
(if Rc=1), are undefined.

FPRO

FPR 1

FPR 30

FPR 31

0 63

Figure 50. Floating-Point Registers

4.2.2 Floating-Point Status and
Control Register

The Floating-Point Status and Control Register
(FPSCR) controls the handling of floating-point excep-
tions and records status resulting from the float-
ing-point operations. Bits 32:55 are status bits. Bits
56:63 are control bits.

The exception bits in the FPSCR (bits 35:44, 53:55) are
sticky; that is, once set to 1 they remain set to 1 until
they are set to 0 by an mcrfs, mtfsfi, mtfsf, or mtfsb0
instruction. The exception summary bits in the FPSCR
(FX, FEX, and VX, which are bits 32:34) are not consid-
ered to be “exception bits”, and only FX is sticky.

FEX and VX are simply the ORs of other FPSCR bits.
Therefore these two bits are not listed among the
FPSCR bits affected by the various instructions.

FPSCR

0 63

Figure 51. Floating-Point Status and Control
Register

The bit definitions for the FPSCR are as follows.

Bit(s) Description
0:31 Reserved

32 Floating-Point Exception Summary (FX)
Every floating-point instruction, except mifsfi
and mtfsf, implicitly sets FPSCRgx to 1 if that
instruction causes any of the floating-point
exception bits in the FPSCR to change from 0
to 1. merfs, mifsfi, mifsf, mtfsb0, and
mtfsb1 can alter FPSCRgx explicitly.

114 Power ISA™ - Book |

Version 2.07 B

33

34

35

36

37

38

39

40

—— Programming Note

FPSCRgx is defined not to be altered
implicitly by mtfsfi and mtfsf because
permitting these instructions to alter
FPSCRgx implicitly could cause a para-
dox. An example is an mtfsfi or mtfsf
instruction that supplies 0 for FPSCRgx
and 1 for FPSCRpy, and is executed
when FPSCRpx=0. See also the Pro-
gramming Notes with the definition of
these two instructions.

Floating-Point Enabled Exception Sum-
mary (FEX)

This bit is the OR of all the floating-point
exception bits masked by their respective
enable bits. merfs, mtfsfi, mtfsf, mtfsb0, and
mtfsb1 cannot alter FPSCRgex explicitly.

Floating-Point Invalid Operation Exception
Summary (VX)

This bit is the OR of all the Invalid Operation
exception bits. merfs, mitfsfi, mtfsf, mtfsbo,
and mtfsb1 cannot alter FPSCRyx explicitly.

Floating-Point Overflow Exception (OX)
See Section 4.4.3, “Overflow Exception” on
page 125.

Floating-Point Underflow Exception (UX)
See Section 4.4.4, “Underflow Exception” on
page 126.

Floating-Point Zero Divide Exception (ZX)
See Section 4.4.2, “Zero Divide Exception” on
page 124.

Floating-Point Inexact Exception (XX)
See Section 4.4.5, “Inexact Exception” on
page 126.

FPSCRyy is a sticky version of FPSCRE, (see
below). Thus the following rules completely
describe how FPSCRyy is set by a given
instruction.

m |f the instruction affects FPSCRE, the
new value of FPSCRyy is obtained by
ORing the old value of FPSCRyy with
the new value of FPSCRE,.

m If the instruction does not affect
FPSCRE,, the value of FPSCRyy is
unchanged.

Floating-Point Invalid Operation Exception
(SNaN) (VXSNAN)
See Section 4.4.1, “Invalid Operation Excep-
tion” on page 124.

Floating-Point Invalid Operation Exception
(o - o) (VXISI)
See Section 4.4.1.

41

42

43

44

45

46

47:51

47

48:51

Floating-Point Invalid Operation Exception
(0 +) (VXIDI)
See Section 4.4.1.

Floating-Point Invalid Operation Exception
(0+0) (VXZDZz)
See Section 4.4.1.

Floating-Point Invalid Operation Exception
(0 x0) (VXIMZ)
See Section 4.4.1.

Floating-Point Invalid Operation Exception
(Invalid Compare) (VXVC)
See Section 4.4.1.

Floating-Point Fraction Rounded (FR)

The last Arithmetic or Rounding and Conver-
sion instruction incremented the fraction dur-
ing rounding. See Section 4.3.6, “Rounding”
on page 121. This bit is not sticky.

Floating-Point Fraction Inexact (Fl)

The last Arithmetic or Rounding and Conver-
sion instruction either produced an inexact
result during rounding or caused a disabled
Overflow Exception. See Section 4.3.6. This
bit is not sticky.

See the definition of FPSCRyy, above,
regarding the relationship between FPSCRE,
and FPSCRXX

Floating-Point Result Flags (FPRF)
Arithmetic, rounding, and Convert From Inte-
ger instructions set this field based on the
result placed into the target register and on
the target precision, except that if any portion
of the result is undefined then the value
placed into FPRF is undefined. Floating-point
Compare instructions set this field based on
the relative values of the operands being com-
pared. For Convert To Integer instructions, the
value placed into FPRF is undefined. Addi-
tional details are given below.

—— Programming Note

A single-precision operation that produces
a denormalized result sets FPRF to indi-
cate a denormalized number. When possi-
ble, single-precision denormalized
numbers are represented in normalized
double format in the target register.

Floating-Point Result Class Descriptor (C)
Arithmetic, rounding, and Convert From Inte-
gerinstructions may set this bit with the FPCC
bits, to indicate the class of the result as
shown in Figure 52 on page 117.

Floating-Point Condition Code (FPCC)
Floating-point Compare instructions set one of

Chapter 4. Floating-Point Facility [Category: Floating-Point] 115

Version 2.07 B

48

49

50
51
52
53

54

55

56

57

58

59

60

the FPCC bits to 1 and the other three FPCC
bits to 0. Arithmetic, rounding, and Convert
From Integer instructions may set the FPCC
bits with the C bit, to indicate the class of the
result as shown in Figure 52 on page 117.
Note that in this case the high-order three bits
of the FPCC retain their relational significance
indicating that the value is less than, greater
than, or equal to zero.

Floating-Point Less Than or Negative (FL
or <)

Floating-Point Greater Than or Positive
(FG or >)

Floating-Point Equal or Zero (FE or =)
Floating-Point Unordered or NaN (FU or ?)
Reserved

Floating-Point Invalid Operation Exception
(Software-Defined Condition)

(VXSOFT)

This bit can be altered only by mcrfs, mifsfi,
mtfsf, mtfsb0, or mtfsb1. See Section 4.4.1.

—— Programming Note

FPSCRyxsorT can be used by software
to indicate the occurrence of an arbitrary,
software-defined, condition that is to be
treated as an Invalid Operation Exception.
For example, the bit could be set by a pro-
gram that computes a base 10 logarithm if
the supplied input is negative.

Floating-Point Invalid Operation Exception
(Invalid Square Root) (VXSQRT)
See Section 4.4.1.

Floating-Point Invalid Operation Exception
(Invalid Integer Convert) (VXCVI)
See Section 4.4.1.

Floating-Point Invalid Operation Exception
Enable (VE)
See Section 4.4.1.

Floating-Point Overflow Exception Enable
(CE)

See Section 4.4.3, “Overflow Exception” on
page 125.

Floating-Point Underflow Exception Enable
(UE)

See Section 4.4.4, “Underflow Exception” on
page 126.

Floating-Point
Enable (ZE)
See Section 4.4.2, “Zero Divide Exception” on
page 124.

Zero Divide Exception

Floating-Point Inexact Exception Enable
(XE)

61

62:63

See Section 4.4.5, “Inexact Exception” on
page 126.

Floating-Point Non-IEEE Mode (NI)
Floating-point non-IEEE mode is optional. If
floating-point non-IEEE mode is not imple-
mented, this bit is treated as reserved, and the
remainder of the definition of this bit does not
apply.

If floating-point non-IEEE mode is imple-
mented, this bit has the following meaning.

0 The processor is not in floating-point
non-lEEE mode (i.e., all floating-point
operations conform to the IEEE standard).

1 The processor is in floating-point
non-IEEE mode.

When the processor is in floating-point
non-IEEE mode, the remaining FPSCR bits
may have meanings different from those given
in this document, and floating-point operations
need not conform to the IEEE standard. The
effects of executing a given floating-point
instruction with FPSCRy =1, and any addi-
tional requirements for using non-IEEE mode,
are implementation-dependent. The results of
executing a given instruction in non-IEEE
mode may vary between implementations,
and between different executions on the same
implementation.

— Programming Note

When the processor is in floating-point
non-IEEE mode, the results of float-
ing-point operations may be approximate,
and performance for these operations
may be better, more predictable, or less
data-dependent than when the processor
is not in non-IEEE mode. For example, in
non-IEEE mode an implementation may
return O instead of a denormalized num-
ber, and may return a large number
instead of an infinity.

Floating-Point Rounding Control (RN) See
Section 4.3.6, “Rounding” on page 121.

00 Round to Nearest

01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

116

Power ISA™ - Book |

Version 2.07 B

mats can be specified by the parameters listed in
Figure 55.

Result
Flags Result Value Class Format
C<>=7 Single Double
10001 Quiet NaN
0100 1| - Infinity Exponent Bias +127 +1023
01000 | - Normalized Number Maximum Exponent +127 +1023
1100 0| - Denormalized Number Minimum Exponent -126 - 1022
10010]| - Zero
00010]| +Zero Widths (bits)
1010 0| + Denormalized Number Format 32 64
00100 | +Normalized Number Sign 1 1
0010 1| +Infinity Exponent 8 11
. . . Fraction 23 52
Figure 52. Floating-Point Result Flags Significand o4 53

4.3 Floating-Point Data

4.3.1 Data Format

This architecture defines the representation of a float-
ing-point value in two different binary fixed-length for-
mats. The format may be a 32-bit single format for a
single-precision value or a 64-bit double format for a
double-precision value. The single format may be used
for data in storage. The double format may be used for
data in storage and for data in floating-point registers.

The lengths of the exponent and the fraction fields dif-
fer between these two formats. The structure of the sin-
gle and double formats is shown below.

|S| EXP | FRACTION
0 1 9 31

Figure 53. Floating-point single format

\s\ EXP FRACTION

01 12 63
Figure 54. Floating-point double format

Values in floating-point format are composed of three
fields:

S sign bit
EXP exponent+bias
FRACTION fraction

Representation of numeric values in the floating-point
formats consists of a sign bit (S), a biased exponent
(EXP), and the fraction portion (FRACTION) of the sig-
nificand. The significand consists of a leading implied
bit concatenated on the right with the FRACTION. This
leading implied bit is 1 for normalized numbers and 0
for denormalized numbers and is located in the unit bit
position (i.e., the first bit to the left of the binary point).
Values representable within the two floating-point for-

Figure 55. IEEE floating-point fields

The architecture requires that the FPRs of the Float-
ing-Point Facility support the floating-point double for-
mat only.

4.3.2 Value Representation

This architecture defines numeric and non-numeric val-
ues representable within each of the two supported for-
mats. The numeric values are approximations to the
real numbers and include the normalized numbers,
denormalized numbers, and zero values. The
non-numeric values representable are the infinities and
the Not a Numbers (NaNs). The infinities are adjoined
to the real numbers, but are not numbers themselves,
and the standard rules of arithmetic do not hold when
they are used in an operation. They are related to the
real numbers by order alone. It is possible however to
define restricted operations among numbers and infini-
ties as defined below. The relative location on the real
number line for each of the defined entities is shown in
Figure 56.

-INF |-NOR |—DEN |-0 |+o|+DEN| +NOR | +INF
< »

Figure 56. Approximation to real numbers

The NaNs are not related to the numeric values or infin-
ities by order or value but are encodings used to con-
vey diagnostic information such as the representation
of uninitialized variables.

The following is a description of the different float-
ing-point values defined in the architecture:

Binary floating-point numbers

Machine representable values used as approximations
to real numbers. Three categories of numbers are sup-
ported: normalized numbers, denormalized numbers,
and zero values.

Chapter 4. Floating-Point Facility [Category: Floating-Point] 117

Version 2.07 B

Normalized numbers (+ NOR)
These are values that have a biased exponent value in
the range:

1 to 254 in single format
1 to 2046 in double format

They are values in which the implied unit bit is 1. Nor-
malized numbers are interpreted as follows:

NOR = (-1)° x 2F x (1.fraction)

where s is the sign, E is the unbiased exponent, and
1.fraction is the significand, which is composed of a
leading unit bit (implied bit) and a fraction part.

The ranges covered by the magnitude (M) of a normal-
ized floating-point number are approximately equal to:

Single Format:
1.2x10738 < M < 3.4x1038

Double Format:
2.2x107308 < M < 1.8x10%08

Zero values (+ 0)

These are values that have a biased exponent value of
zero and a fraction value of zero. Zeros can have a
positive or negative sign. The sign of zero is ignored by
comparison operations (i.e., comparison regards +0 as
equal to - 0).

Denormalized numbers (+ DEN)

These are values that have a biased exponent value of
zero and a nonzero fraction value. They are nonzero
numbers smaller in magnitude than the representable
normalized numbers. They are values in which the
implied unit bit is 0. Denormalized numbers are inter-
preted as follows:

DEN = (-1)8 x 2EMN x (0.fraction)

where Emin is the minimum representable exponent
value (- 126 for single-precision, - 1022 for double-pre-
cision).

Infinities (£)
These are values that have the maximum biased expo-
nent value:

255 in single format
2047 in double format

and a zero fraction value. They are used to approxi-
mate values greater in magnitude than the maximum
normalized value.

Infinity arithmetic is defined as the limiting case of real
arithmetic, with restricted operations defined among
numbers and infinities. Infinities and the real numbers
can be related by ordering in the affine sense:

- o < every finite number < + «

Arithmetic on infinities is always exact and does not
signal any exception, except when an exception occurs

due to the invalid operations as described in
Section 4.4.1, “Invalid Operation Exception” on
page 124.

For comparison operations, +Infinity compares equal to
+Infinity and -Infinity compares equal to -Infinity.

Not a Numbers (NaNs)

These are values that have the maximum biased expo-
nent value and a nonzero fraction value. The sign bit is
ignored (i.e., NaNs are neither positive nor negative). If
the high-order bit of the fraction field is O then the NaN
is a Signaling NaN; otherwise it is a Quiet NaN.

Signaling NaNs are used to signal exceptions when
they appear as operands of computational instructions.

Quiet NaNs are used to represent the results of certain
invalid operations, such as invalid arithmetic operations
on infinities or on NaNs, when Invalid Operation Excep-
tion is disabled (FPSCR\g=0). Quiet NaNs propagate
through all floating-point operations except ordered
comparison, Floating Round to Single-Precision, and
conversion to integer. Quiet NaNs do not signal excep-
tions, except for ordered comparison and conversion to
integer operations. Specific encodings in QNaNs can
thus be preserved through a sequence of floating-point
operations, and used to convey diagnostic information
to help identify results from invalid operations.

When a QNaN is the result of a floating-point operation
because one of the operands is a NaN or because a
QNaN was generated due to a disabled Invalid Opera-
tion Exception, then the following rule is applied to
determine the NaN with the high-order fraction bit set to
1 that is to be stored as the result.

if (FRA) is a NaN
then FRT « (FRA)
else if (FRB) is a NaN
then if instruction is frsp
then FRT « (FRB)g.34 11 2%0
else FRT « (FRB)
else if (FRC) is a NaN
then FRT « (FRC)
else if generated QNaN
then FRT « generated QNaN

If the operand specified by FRA is a NaN, then that
NaN is stored as the result. Otherwise, if the operand
specified by FRB is a NaN (if the instruction specifies
an FRB operand), then that NaN is stored as the result,
with the low-order 29 bits of the result set to O if the
instruction is frsp. Otherwise, if the operand specified
by FRC is a NaN (if the instruction specifies an FRC
operand), then that NaN is stored as the result. Other-
wise, if a QNaN was generated due to a disabled
Invalid Operation Exception, then that QNaN is stored
as the result. If a QNaN is to be generated as a result,
then the QNaN generated has a sign bit of 0, an expo-
nent field of all 1s, and a high-order fraction bit of 1 with
all other fraction bits 0. Any instruction that generates a
QNaN as the result of a disabled Invalid Operation

118 Power ISA™ - Book |

Version 2.07 B

Exception generates this
0x7FF8_0000_0000_0000).

QNaN (i.e.,

A double-precision NaN is considered to be represent-
able in single format if and only if the low-order 29 bits
of the double-precision NaN'’s fraction are zero.

4.3.3 Sign of Result

The following rules govern the sign of the result of an
arithmetic, rounding, or conversion operation, when the
operation does not yield an exception. They apply even
when the operands or results are zeros or infinities.

B The sign of the result of an add operation is the
sign of the operand having the larger absolute
value. If both operands have the same sign, the
sign of the result of an add operation is the same
as the sign of the operands. The sign of the result
of the subtract operation x-y is the same as the
sign of the result of the add operation x+(- y).

When the sum of two operands with opposite sign,
or the difference of two operands with the same
sign, is exactly zero, the sign of the result is posi-
tive in all rounding modes except Round toward
- Infinity, in which mode the sign is negative.

B The sign of the result of a multiply or divide opera-
tion is the Exclusive OR of the signs of the oper-
ands.

B The sign of the result of a Square Root or Recipro-
cal Square Root Estimate operation is always pos-
itive, except that the square root of -0 is -0 and
the reciprocal square root of - 0 is - Infinity.

B The sign of the result of a Round to Single-Preci-
sion, or Convert From Integer, or Round to Integer
operation is the sign of the operand being con-
verted.

For the Multiply-Add instructions, the rules given above
are applied first to the multiply operation and then to
the add or subtract operation (one of the inputs to the
add or subtract operation is the result of the multiply
operation).

4.3.4 Normalization and
Denormalization

The intermediate result of an arithmetic or frsp instruc-
tion may require normalization and/or denormalization
as described below. Normalization and denormalization
do not affect the sign of the result.

When an arithmetic or rounding instruction produces an
intermediate result which carries out of the significand,
or in which the significand is nonzero but has a leading
zero bit, it is not a normalized number and must be nor-
malized before it is stored. For the carry-out case, the
significand is shifted right one bit, with a one shifted into
the leading significand bit, and the exponent is incre-

mented by one. For the leading-zero case, the signifi-
cand is shifted left while decrementing its exponent by
one for each bit shifted, until the leading significand bit
becomes one. The Guard bit and the Round bit (see
Section 4.5.1, “Execution Model for IEEE Operations”
on page 127) participate in the shift with zeros shifted
into the Round bit. The exponent is regarded as if its
range were unlimited.

After normalization, or if normalization was not
required, the intermediate result may have a nonzero
significand and an exponent value that is less than the
minimum value that can be represented in the format
specified for the result. In this case, the intermediate
result is said to be “Tiny” and the stored result is deter-
mined by the rules described in Section 4.4.4, “Under-
flow Exception”. These rules may require
denormalization.

A number is denormalized by shifting its significand
right while incrementing its exponent by 1 for each bit
shifted, until the exponent is equal to the format’s mini-
mum value. If any significant bits are lost in this shifting
process then “Loss of Accuracy” has occurred (See
Section 4.4.4, “Underflow Exception” on page 126) and
Underflow Exception is signaled.

4.3.5 Data Handling and Precision

Most of the Floating-Point Facility Architecture, includ-
ing all computational, Move, and Select instructions,
use the floating-point double format to represent data in
the FPRs. Single-precision and integer-valued oper-
ands may be manipulated using double-precision oper-
ations. Instructions are provided to coerce these values
from a double format operand. Instructions are also
provided for manipulations which do not require dou-
ble-precision. In addition, instructions are provided to
access a true single-precision representation in stor-
age, and a fixed-point integer representation in GPRs.

4.3.5.1 Single-Precision Operands

For single format data, a format conversion from single
to double is performed when loading from storage into
an FPR and a format conversion from double to single
is performed when storing from an FPR to storage. No
floating-point exceptions are caused by these instruc-
tions. An instruction is provided to explicitly convert a
double format operand in an FPR to single-precision.
Floating-point single-precision is enabled with four
types of instruction.

1. Load Floating-Point Single

This form of instruction accesses a single-preci-
sion operand in single format in storage, converts it
to double format, and loads it into an FPR. No
floating-point exceptions are caused by these
instructions.

Chapter 4. Floating-Point Facility [Category: Floating-Point] 119

Version 2.07 B

2. Round to Floating-Point Single-Precision

The Floating Round to Single-Precision instruction
rounds a double-precision operand to single-preci-
sion, checking the exponent for single-precision
range and handling any exceptions according to
respective enable bits, and places that operand
into an FPR in double format. For results produced
by single-precision arithmetic instructions, sin-
gle-precision loads, and other instances of the
Floating Round to Single-Precision instruction, this
operation does not alter the value.

3. Single-Precision Arithmetic Instructions

This form of instruction takes operands from the
FPRs in double format, performs the operation as
if it produced an intermediate result having infinite
precision and unbounded exponent range, and
then coerces this intermediate result to fit in single
format. Status bits, in the FPSCR and optionally in
the Condition Register, are set to reflect the sin-
gle-precision result. The result is then converted to
double format and placed into an FPR. The result
lies in the range supported by the single format.

If any input value is not representable in single for-
mat and either OE=1 or UE=1, the result placed
into the target FPR, and the setting of status bits in
the FPSCR and in the Condition Register (if Rc=1),
are undefined.

For fres[.] or frsqrtes[.], if the input value is finite
and has an unbiased exponent greater than +127,
the input value is interpreted as an Infinity.

4. Store Floating-Point Single

This form of instruction converts a double-preci-
sion operand to single format and stores that oper-
and into storage. No floating-point exceptions are
caused by these instructions. (The value being
stored is effectively assumed to be the result of an
instruction of one of the preceding three types.)

When the result of a Load Floating-Point Single, Float-
ing Round to Single-Precision, or single-precision arith-
metic instruction is stored in an FPR, the low-order 29
FRACTION bits are zero.

—— Programming Note

The Floating Round to Single-Precision instruction
is provided to allow value conversion from dou-
ble-precision to single-precision with appropriate
exception checking and rounding. This instruction
should be used to convert double-precision float-
ing-point values (produced by double-precision
load and arithmetic instructions and by fcfid) to sin-
gle-precision values prior to storing them into single
format storage elements or using them as oper-
ands for single-precision arithmetic instructions.
Values produced by single-precision load and arith-
metic instructions are already single-precision val-
ues and can be stored directly into single format
storage elements, or used directly as operands for
single-precision arithmetic instructions, without pre-
ceding the store, or the arithmetic instruction, by a
Floating Round to Single-Precision instruction.

—— Programming Note

A single-precision value can be used in double-pre-
cision arithmetic operations. The reverse is true
only if the double-precision value is representable
in single format.

Some implementations may execute single-preci-
sion arithmetic instructions faster than double-pre-
cision arithmetic instructions. Therefore, if
double-precision accuracy is not required, sin-
gle-precision data and instructions should be used.

4.3.5.2

Instructions are provided to round floating-point oper-
ands to integer values in floating-point format. To facili-
tate exchange of data between the floating-point and
fixed-Point facilities, instructions are provided to con-
vert between floating-point double format and
fixed-point integer format in an FPR. Computation on
integer-valued operands may be performed using arith-
metic instructions of the required precision. (The results
may not be integer values.) The two groups of instruc-
tions provided specifically to support integer-valued
operands are described below.

Integer-Valued Operands

1. Floating Round to Integer

The Floating Round to Integer instructions round a
double-precision operand to an integer value in
floating-point double format. These instructions
may cause Invalid Operation (VXSNAN) excep-
tions. See Sections 4.3.6 and 4.5.1 for more infor-
mation about rounding.

2. Floating Convert To/From Integer

The Floating Convert To Integer instructions con-
vert a double-precision operand to a 32-bit or
64-bit signed fixed-point integer format. Variants
are provided both to perform rounding based on

120 Power ISA™ - Book |

Version 2.07 B

the value of FPSCRRy and to round toward zero.
These instructions may cause Invalid Operation
(VXSNaN, VXCVI) and Inexact exceptions. The
Floating Convert From Integer instruction converts
a 64-bit signed fixed-point integer to a double-pre-
cision floating-point integer. Because of the limita-
tions of the source format, only an Inexact
exception may be generated.

4.3.6 Rounding

The material in this section applies to operations that
have numeric operands (i.e., operands that are not
infinities or NaNs). Rounding the intermediate result of
such an operation may cause an Overflow Exception,
an Underflow Exception, or an Inexact Exception. The
remainder of this section assumes that the operation
causes no exceptions and that the result is numeric.
See Section4.3.2, “Value Representation” and
Section 4.4, “Floating-Point Exceptions” for the cases
not covered here.

The Arithmetic and Rounding and Conversion instruc-
tions round their intermediate results. With the excep-
tion of the Estimate instructions, these instructions
produce an intermediate result that can be regarded as
having infinite precision and unbounded exponent
range. All but two groups of these instructions normal-
ize or denormalize the intermediate result prior to
rounding and then place the final result into the target
FPR in double format. The Floating Round to Integer
and Floating Convert To Integer instructions with
biased exponents ranging from 1022 through 1074 are
prepared for rounding by repetitively shifting the signifi-
cand right one position and incrementing the biased
exponent until it reaches a value of 1075. (Intermediate
results with biased exponents 1075 or larger are
already integers, and with biased exponents 1021 or
less round to zero.) After rounding, the final result for
Floating Round to Integer is normalized and put in dou-
ble format, and for Floating Convert To Integer is con-
verted to a signed fixed-point integer.

FPSCR bits FR and Fl generally indicate the results of
rounding. Each of the instructions which rounds its
intermediate result sets these bits. If the fraction is
incremented during rounding then FR is set to 1, other-
wise FR is set to 0. If the result is inexact then Fl is set
to 1, otherwise Fl is set to zero. The Round to Integer
instructions are exceptions to this rule, setting FR and
FI to 0. The Estimate instructions set FR and Fl to
undefined values. The remaining floating-point instruc-
tions do not alter FR and FI.

Four user-selectable rounding modes are provided
through the Floating-Point Rounding Control field in the
FPSCR. See Section 4.2.2, “Floating-Point Status and
Control Register”. These are encoded as follows.

RN Rounding Mode

00 Round to Nearest

01 Round toward Zero

10 Round toward +Infinity
11 Round toward -Infinity

Let Z be the intermediate arithmetic result or the oper-
and of a convert operation. If Z can be represented
exactly in the target format, then the result in all round-
ing modes is Z as represented in the target format. If Z
cannot be represented exactly in the target format, let
Z1 and Z2 bound Z as the next larger and next smaller
numbers representable in the target format. Then Z1 or
Z2 can be used to approximate the result in the target
format.

Figure 57 shows the relation of Z, Z1, and Z2 in this
case. The following rules specify the rounding in the
four modes. “LSB” means “least significant bit”.

By Incrementing LSB of Z
Infinitely Precise Value

,7 By Truncating after LSB —I

v v

]| |]
4z'zzh 0 72 il’

Negative values 4-;-}

Figure 57. Selection of Z1 and Z2

Positive values

Round to Nearest
Choose the value that is closer to Z (Z1 or Z2).
In case of a tie, choose the one that is even
(least significant bit 0).

Round toward Zero
Choose the smaller in magnitude (Z1 or Z2).

Round toward +Infinity
Choose Z1.

Round toward - Infinity
Choose Z2.

See Section 4.5.1, “Execution Model for IEEE Opera-
tions” on page 127 for a detailed explanation of round-

ing.

Chapter 4. Floating-Point Facility [Category: Floating-Point] 121

Version 2.07 B

4.4 Floating-Point Exceptions

This architecture defines the following floating-point
exceptions:

W Invalid Operation Exception
SNaN
Infinity- Infinity
Infinity-+Infinity
Zero+Zero
InfinityxZero
Invalid Compare
Software-Defined Condition
Invalid Square Root
Invalid Integer Convert
Zero Divide Exception
Overflow Exception
Underflow Exception
B [nexact Exception

These exceptions, other than Invalid Operation Excep-
tion due to Software-Defined Condition, may occur dur-
ing execution of computational instructions. An Invalid
Operation Exception due to Software-Defined Condi-
tion occurs when a Move To FPSCR instruction sets
FPSCRVXSOFT to 1.

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in the
FPSCR. In addition, each floating-point exception has a
corresponding enable bit in the FPSCR. The exception
bit indicates occurrence of the corresponding excep-
tion. If an exception occurs, the corresponding enable
bit governs the result produced by the instruction and,
in conjunction with the FEO and FE1 bits (see
page 123), whether and how the system floating-point
enabled exception error handler is invoked. (In general,
the enabling specified by the enable bit is of invoking
the system error handler, not of permitting the excep-
tion to occur. The occurrence of an exception depends
only on the instruction and its inputs, not on the setting
of any control bits. The only deviation from this general
rule is that the occurrence of an Underflow Exception
may depend on the setting of the enable bit.)

A single instruction, other than mtfsfi or mtfsf, may set

more than one exception bit only in the following cases:

B [nexact Exception may be set with Overflow
Exception.

B [nexact Exception may be set with Underflow
Exception.

m Invalid Operation Exception (SNaN) is set with
Invalid Operation Exception (cox0) for Multiply-Add
instructions for which the values being multiplied
are infinity and zero and the value being added is
an SNaN.

m Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Compare)
for Compare Ordered instructions.

® Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Integer
Convert) for Convert To Integer instructions.

When an exception occurs the writing of a result to the
target register may be suppressed or a result may be
delivered, depending on the exception.

The writing of a result to the target register is sup-
pressed for the following kinds of exception, so that
there is no possibility that one of the operands is lost:

B Enabled Invalid Operation
B Enabled Zero Divide

For the remaining kinds of exception, a result is gener-
ated and written to the destination specified by the
instruction causing the exception. The result may be a
different value for the enabled and disabled conditions
for some of these exceptions. The kinds of exception
that deliver a result are the following:

B Disabled Invalid Operation
Disabled Zero Divide
Disabled Overflow
Disabled Underflow
Disabled Inexact

Enabled Overflow
Enabled Underflow
Enabled Inexact

Subsequent sections define each of the floating-point
exceptions and specify the action that is taken when
they are detected.

The IEEE standard specifies the handling of excep-
tional conditions in terms of “traps” and “trap handlers”.
In this architecture, an FPSCR exception enable bit of 1
causes generation of the result value specified in the
IEEE standard for the “trap enabled” case; the expecta-
tion is that the exception will be detected by software,
which will revise the result. An FPSCR exception
enable bit of 0 causes generation of the “default result”
value specified for the “trap disabled” (or “no trap
occurs” or “trap is not implemented”) case; the expecta-
tion is that the exception will not be detected by soft-
ware, which will simply use the default result. The result
to be delivered in each case for each exception is
described in the sections below.

The IEEE default behavior when an exception occurs is
to generate a default value and not to notify software. In
this architecture, if the |IEEE default behavior when an
exception occurs is desired for all exceptions, all
FPSCR exception enable bits should be set to 0 and
Ignore Exceptions Mode (see below) should be used.
In this case the system floating-point enabled exception
error handler is not invoked, even if floating-point
exceptions occur: software can inspect the FPSCR
exception bits if necessary, to determine whether
exceptions have occurred.

In this architecture, if software is to be notified that a
given kind of exception has occurred, the correspond-
ing FPSCR exception enable bit must be setto 1 and a
mode other than Ignore Exceptions Mode must be
used. In this case the system floating-point enabled
exception error handler is invoked if an enabled float-

122 Power ISA™ - Book |

Version 2.07 B

ing-point exception occurs. The system floating-point
enabled exception error handler is also invoked if a
Move To FPSCR instruction causes an exception bit
and the corresponding enable bit both to be 1; the
Move To FPSCR instruction is considered to cause the
enabled exception.

The FEO and FE1 bits control whether and how the sys-
tem floating-point enabled exception error handler is
invoked if an enabled floating-point exception occurs.
The location of these bits and the requirements for
altering them are described in Book Ill. (The system
floating-point enabled exception error handler is never
invoked because of a disabled floating-point excep-
tion.) The effects of the four possible settings of these
bits are as follows.

FEO FE1 Description

0 0 Ignore Exceptions Mode
Floating-point exceptions do not cause
the system floating-point enabled excep-

tion error handler to be invoked.

Imprecise Nonrecoverable Mode

The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. It may not be pos-
sible to identify the excepting instruction
or the data that caused the exception.
Results produced by the excepting
instruction may have been used by or may
have affected subsequent instructions
that are executed before the error handler
is invoked.

Imprecise Recoverable Mode

The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. Sufficient informa-
tion is provided to the error handler that it
can identify the excepting instruction and
the operands, and correct the result. No
results produced by the excepting instruc-
tion have been used by or have affected
subsequent instructions that are executed
before the error handler is invoked.

Precise Mode

The system floating-point enabled excep-
tion error handler is invoked precisely at
the instruction that caused the enabled
exception.

In all cases, the question of whether a floating-point
result is stored, and what value is stored, is governed
by the FPSCR exception enable bits, as described in
subsequent sections, and is not affected by the value of
the FEO and FE1 bits.

In all cases in which the system floating-point enabled
exception error handler is invoked, all instructions

before the instruction at which the system floating-point
enabled exception error handler is invoked have com-
pleted, and no instruction after the instruction at which
the system floating-point enabled exception error han-
dler is invoked has begun execution. The instruction at
which the system floating-point enabled exception error
handler is invoked has completed if it is the excepting
instruction and there is only one such instruction. Oth-
erwise it has not begun execution (or may have been
partially executed in some cases, as described in Book

).

— Programming Note

In any of the three non-Precise modes, a Float-
ing-Point Status and Control Register instruction
can be used to force any exceptions, due to
instructions initiated before the Floating-Point Sta-
tus and Control Register instruction, to be recorded
in the FPSCR. (This forcing is superfluous for Pre-
cise Mode.)

In either of the Imprecise modes, a Floating-Point
Status and Control Register instruction can be used
to force any invocations of the system floating-point
enabled exception error handler, due to instructions
initiated before the Floating-Point Status and Con-
trol Register instruction, to occur. (This forcing has
no effect in Ignore Exceptions Mode, and is super-
fluous for Precise Mode.)

The last sentence of the paragraph preceding this
Programming Note can apply only in the Imprecise
modes, or if the mode has just been changed from
Ignore Exceptions Mode to some other mode. (It
always applies in the latter case.)

In order to obtain the best performance across the wid-
est range of implementations, the programmer should
obey the following guidelines.

W If the IEEE default results are acceptable to the
application, Ignore Exceptions Mode should be
used with all FPSCR exception enable bits set to 0.

m [f the IEEE default results are not acceptable to the
application, Imprecise Nonrecoverable Mode
should be used, or Imprecise Recoverable Mode if
recoverability is needed, with FPSCR exception
enable bits set to 1 for those exceptions for which
the system floating-point enabled exception error
handler is to be invoked.

H Ignore Exceptions Mode should not, in general, be
used when any FPSCR exception enable bits are
setto 1.

B Precise Mode may degrade performance in some
implementations, perhaps substantially, and there-
fore should be used only for debugging and other
specialized applications.

Chapter 4. Floating-Point Facility [Category: Floating-Point] 123

Version 2.07 B

4.4.1 Invalid Operation Exception

4411

An Invalid Operation Exception occurs when an oper-
and is invalid for the specified operation. The invalid
operations are:
® Any floating-point operation on a Signaling NaN
(SNaN)
B For add or subtract operations, magnitude subtrac-
tion of infinities (o -)

Division of infinity by infinity (co + o)

Division of zero by zero (0 + 0)

Multiplication of infinity by zero (oo x 0)

Ordered comparison involving a NaN (Invalid Com-

pare)

W Square root or reciprocal square root of a negative
(and nonzero) number (Invalid Square Root)

m Integer convert involving a number too large in
magnitude to be represented in the target format,
or involving an infinity or a NaN (Invalid Integer
Convert)

Definition

An Invalid Operation Exception also occurs when an
mtfsfi, mtfsf, or mtfsbl instruction is executed that
sets FPSCRyxsofFT to 1 (Software-Defined Condition).

4.41.2 Action

The action to be taken depends on the setting of the
Invalid Operation Exception Enable bit of the FPSCR.

When Invalid Operation Exception is enabled
(FPSCRyg=1) and an Invalid Operation Exception
occurs, the following actions are taken:

1. One or two Invalid Operation Exceptions are set

FPSCRVXSNAN (If SNaN)
FPSCRVX|S| (If oo - OO)
FPSCRVX|D| (If o0 + OO)
FPSCRVXZDZ (If 0=+ 0)
FPSCRVX”\ﬂZ (If o0 X 0)
FPSCRyxvc (if invalid comp)
FPSCRyxsoFT (if sfw-def cond)
FPSCRyxsqrT (if invalid sqrt)
FPSCRyxcvi (if invalid int cvrt)

2. If the operation is an arithmetic, Floating Round to
Single-Precision, Floating Round to Integer, or
convert to integer operation,

the target FPR is unchanged
FPSCRER F are set to zero
FPSCREpRE is unchanged

3. If the operation is a compare,

FPSCRER F| ¢ are unchanged
FPSCREpcc is set to reflect unordered

4. If an mtfsfi, mtfsf, or mifsb1 instruction is exe-
cuted that sets FPSCRyxgoFt to 1,

The FPSCR is set as specified in the instruc-
tion description.

When Invalid Operation Exception is disabled
(FPSCRyg=0) and an Invalid Operation Exception
occurs, the following actions are taken:

1. One or two Invalid Operation Exceptions are set

FPSCRyxsNaN (if SNaN)
FPSCRyxis| (if oo - o)
FPSCRyxip (if o0 + o0)
FPSCRyxzpz (if 0 = 0)
FPSCRyximz (if 0 x 0)
FPSCRyxvc (if invalid comp)
FPSCRVXSOFT (If sfw-def COﬂd)
FPSCRVXSQRT (lf invalid sqrt)
FPSCRVXCVI (If invalid int cvrt)

2. If the operation is an arithmetic or Floating Round
to Single-Precision operation,
the target FPR is set to a Quiet NaN
FPSCREgR F are set to zero
FPSCRgpRE is set to indicate the class of the
result (Quiet NaN)
3. If the operation is a convert to 64-bit integer opera-
tion,
the target FPR is set as follows:
FRT is set to the most positive 64-bit integer
if the operand in FRB is a positive number
or + oo, and to the most negative 64-bit inte-
ger if the operand in FRB is a negative num-
ber, - o, or NaN
FPSCREgR F are set to zero
FPSCREpRE is undefined
4. If the operation is a convert to 32-bit integer opera-
tion,
the target FPR is set as follows:
FRTp.31 ¢ undefined
FRT30.63 are set to the most positive 32-bit
integer if the operand in FRB is a positive
number or +infinity, and to the most nega-
tive 32-bit integer if the operand in FRB is a
negative number, -infinity, or NaN
FPSCRgR F are set to zero
FPSCRgpRE is undefined
5. If the operation is a compare,
FPSCRER f| ¢ are unchanged
FPSCREpc is set to reflect unordered

6. If an mtifsfi mifsf, or mtfsb1 instruction is exe-
cuted that sets FPSCRyygop7 to 1,
The FPSCR is set as specified in the instruc-
tion description.

4.4.2 Zero Divide Exception

4.4.2.1

A Zero Divide Exception occurs when a Divide instruc-
tion is executed with a zero divisor value and a finite
nonzero dividend value. It also occurs when a Recipro-
cal Estimate instruction (fre[s] or frsqgrte[s]) is exe-
cuted with an operand value of zero.

Definition

124 Power ISA™ - Book |

Version 2.07 B

4.4.2.2 Action

The action to be taken depends on the setting of the
Zero Divide Exception Enable bit of the FPSCR.

When Zero Divide Exception is enabled (FPSCRzg=1)
and a Zero Divide Exception occurs, the following
actions are taken:

1. Zero Divide Exception is set
FPSCRZX <1

2. The target FPR is unchanged

3. FPSCRgR F are set to zero

4. FPSCREgpRr is unchanged

When Zero Divide Exception is disabled (FPSCRzg=0)
and a Zero Divide Exception occurs, the following
actions are taken:

1. Zero Divide Exception is set
FPSCRZX 1

2. The target FPR is set to + Infinity, where the sign is
determined by the XOR of the signs of the oper-
ands

3. FPSCREgR fy are set to zero

4. FPSCREgpRgg is set to indicate the class and sign of
the result (£ Infinity)

4.4.3 Overflow Exception

4.4.3.1

An Overflow Exception occurs when the magnitude of
what would have been the rounded result if the expo-
nent range were unbounded exceeds that of the largest
finite number of the specified result precision.

Definition

4.43.2 Action

The action to be taken depends on the setting of the
Overflow Exception Enable bit of the FPSCR.

When Overflow Exception is enabled (FPSCRpg=1)
and an Overflow Exception occurs, the following
actions are taken:

1. Overflow Exception is set
FPSCROX <1

2. For double-precision arithmetic instructions, the
exponent of the normalized intermediate result is
adjusted by subtracting 1536

3. For single-precision arithmetic instructions and the
Floating Round to Single-Precision instruction, the
exponent of the normalized intermediate result is
adjusted by subtracting 192

4. The adjusted rounded result is placed into the tar-
get FPR

5. FPSCRgpRE is set to indicate the class and sign of
the result (+ Normal Number)

When Overflow Exception is disabled (FPSCRpg=0)
and an Overflow Exception occurs, the following
actions are taken:

No oA

. Overflow Exception is set

FPSCRpx « 1
Inexact Exception is set
FPSCRXX <1
The result is determined by the rounding mode
(FPSCRRgp) and the sign of the intermediate result
as follows:
- Round to Nearest
Store = Infinity, where the sign is the sign
of the intermediate result
- Round toward Zero
Store the format’s largest finite number
with the sign of the intermediate result
- Round toward + Infinity
For negative overflow, store the format’s
most negative finite number; for positive
overflow, store +Infinity
- Round toward - Infinity
For negative overflow, store - Infinity; for
positive overflow, store the format’s larg-
est finite number
The result is placed into the target FPR
FPSCRERg is undefined
FPSCRE, is setto 1
FPSCRgpRE is set to indicate the class and sign of
the result (+ Infinity or £ Normal Number)

Chapter 4. Floating-Point Facility [Category: Floating-Point]

125

Version 2.07 B

4.4.4 Underflow Exception

4.4.41

Underflow Exception is defined separately for the
enabled and disabled states:

B Enabled:
Underflow occurs when the intermediate result is
“Tiny”.

B Disabled:
Underflow occurs when the intermediate result is
“Tiny” and there is “Loss of Accuracy”.

Definition

A “Tiny” result is detected before rounding, when a non-
zero intermediate result computed as though both the
precision and the exponent range were unbounded
would be less in magnitude than the smallest normal-
ized number.

If the intermediate result is “Tiny” and Underflow
Exception is disabled (FPSCRyg=0) then the interme-
diate result is denormalized (see Section 4.3.4, “Nor-
malization and Denormalization” on page 119) and
rounded (see Section 4.3.6, “Rounding” on page 121)
before being placed into the target FPR.

“Loss of Accuracy” is detected when the delivered
result value differs from what would have been com-
puted were both the precision and the exponent range
unbounded.

4.4.4.2 Action

The action to be taken depends on the setting of the
Underflow Exception Enable bit of the FPSCR.

When Underflow Exception is enabled (FPSCRyg=1)
and an Underflow Exception occurs, the following
actions are taken:

1. Underflow Exception is set
FPSCRUX «1

2. For double-precision arithmetic instructions, the
exponent of the normalized intermediate result is
adjusted by adding 1536

3. For single-precision arithmetic instructions and the
Floating Round to Single-Precision instruction, the
exponent of the normalized intermediate result is
adjusted by adding 192

4. The adjusted rounded result is placed into the tar-
get FPR

5. FPSCRgpgf is set to indicate the class and sign of
the result (+ Normalized Number)

—— Programming Note

The FR and FI bits are provided to allow the system
floating-point enabled exception error handler,
when invoked because of an Underflow Exception,
to simulate a “trap disabled” environment. That is,
the FR and FI bits allow the system floating-point
enabled exception error handler to unround the
result, thus allowing the result to be denormalized.

When Underflow Exception is disabled (FPSCRg=0)
and an Underflow Exception occurs, the following
actions are taken:

1. Underflow Exception is set
FPSCRUX <1
2. The rounded result is placed into the target FPR
3. FPSCRgpgf is set to indicate the class and sign of
the result (+ Normalized Number, + Denormalized
Number, or + Zero)

4.4.5 Inexact Exception

4.45.1

An Inexact Exception occurs when one of two condi-
tions occur during rounding:

Definition

1. The rounded result differs from the intermediate
result assuming both the precision and the expo-
nent range of the intermediate result to be
unbounded. In this case the result is said to be
inexact. (If the rounding causes an enabled Over-
flow Exception or an enabled Underflow Exception,
an Inexact Exception also occurs only if the signifi-
cands of the rounded result and the intermediate
result differ.)

2. The rounded result overflows and Overflow Excep-
tion is disabled.

4.45.2 Action

The action to be taken does not depend on the setting
of the Inexact Exception Enable bit of the FPSCR.

When an Inexact Exception occurs, the following
actions are taken:

1. Inexact Exception is set
FPSCRXX <1
2. The rounded or overflowed result is placed into the
target FPR
3. FPSCRgpgf is set to indicate the class and sign of
the result

Programming Note

In some implementations, enabling Inexact Excep-
tions may degrade performance more than does
enabling other types of floating-point exception.

126 Power ISA™ - Book |

Version 2.07 B

4.5 Floating-Point Execution
Models

All implementations of this architecture must provide
the equivalent of the following execution models to
ensure that identical results are obtained.

Special rules are provided in the definition of the com-
putational instructions for the infinities, denormalized
numbers and NaNs. The material in the remainder of
this section applies to instructions that have numeric
operands and a numeric result (i.e., operands and
result that are not infinities or NaNs), and that cause no
exceptions. See Section 4.3.2 and Section 4.4 for the
cases not covered here.

Although the double format specifies an 11-bit expo-
nent, exponent arithmetic makes use of two additional
bits to avoid potential transient overflow conditions.
One extra bit is required when denormalized dou-
ble-precision numbers are prenormalized. The second
bit is required to permit the computation of the adjusted
exponent value in the following cases when the corre-
sponding exception enable bit is 1:

B Underflow during multiplication using a denormal-
ized operand.

® Overflow during division using a denormalized divi-
sor.

The IEEE standard includes 32-bit and 64-bit arith-
metic. The standard requires that single-precision arith-
metic be provided for single-precision operands. The
standard permits double-precision floating-point opera-
tions to have either (or both) single-precision or dou-
ble-precision operands, but states that single-precision
floating-point operations should not accept double-pre-
cision operands. The Power ISA follows these guide-
lines; double-precision arithmetic instructions can have
operands of either or both precisions, while single-pre-
cision arithmetic instructions require all operands to be
single-precision. Double-precision arithmetic instruc-
tions and fcfid produce double-precision values, while
single-precision arithmetic instructions produce sin-
gle-precision values.

For arithmetic instructions, conversions from dou-
ble-precision to single-precision must be done explicitly
by software, while conversions from single-precision to
double-precision are done implicitly.

4.5.1 Execution Model for IEEE
Operations

The following description uses 64-bit arithmetic as an
example. 32-bit arithmetic is similar except that the
FRACTION is a 23-bit field, and the single-precision
Guard, Round, and Sticky bits (described in this sec-
tion) are logically adjacent to the 23-bit FRACTION
field.

IEEE-conforming significand arithmetic is considered to
be performed with a floating-point accumulator having
the following format, where bits 0:55 comprise the sig-
nificand of the intermediate result.

Is[c]L] FRACTION |G|R[X]
0 1 53 54 55

Figure 58. |IEEE 64-bit execution model
The S bit is the sign bit.

The C bit is the carry bit, which captures the carry out
of the significand.

The L bit is the leading unit bit of the significand, which
receives the implicit bit from the operand.

The FRACTION is a 52-bit field that accepts the frac-
tion of the operand.

The Guard (G), Round (R), and Sticky (X) bits are
extensions to the low-order bits of the accumulator. The
G and R bits are required for postnormalization of the
result. The G, R, and X bits are required during round-
ing to determine if the intermediate result is equally
near the two nearest representable values. The X bit
serves as an extension to the G and R bits by repre-
senting the logical OR of all bits that may appear to the
low-order side of the R bit, due either to shifting the
accumulator right or to other generation of low-order
result bits. The G and R bits participate in the left shifts
with zeros being shifted into the R bit. Figure 59 shows
the significance of the G, R, and X bits with respect to
the intermediate result (IR), the representable number
next lower in magnitude (NL), and the representable
number next higher in magnitude (NH).

G R X | Interpretation

000 |[IRisexact

001

010 |IRclosertoNL

011

100 |IR midway between NL and NH
101

110 IR closer to NH
111

Figure 59. Interpretation of G, R, and X bits

Figure 60 shows the positions of the Guard, Round,
and Sticky bits for double-precision and single-preci-
sion floating-point numbers relative to the accumulator
illustrated in Figure 58.

Format (Guard [Round |Sticky
Double |G bit R bit X bit
Single |24 25 OR of 26:52, G, R, X

Figure 60. Location of the Guard, Round, and
Sticky bits in the IEEE execution model

Chapter 4. Floating-Point Facility [Category: Floating-Point] 127

Version 2.07 B

The significand of the intermediate result is prepared
for rounding by shifting its contents right, if required,
until the least significant bit to be retained is in the
low-order bit position of the fraction. Four user-select-
able rounding modes are provided through FPSCRRy
as described in Section 4.3.6, “Rounding” on page 121.
Using Z1 and Z2 as defined on page 121, the rules for
rounding in each mode are as follows.

B Round to Nearest

Guard bit=0

The result is truncated. (Result exact (GRX=000)
or closest to next lower value in magnitude
(GRX=001, 010, or 011))

Guard bit =1
Depends on Round and Sticky bits:

Case a
If the Round or Sticky bit is 1 (inclusive), the
result is incremented. (Result closest to next
higher value in magnitude (GRX=101, 110,
or111))

Caseb

If the Round and Sticky bits are 0 (result
midway between closest representable val-
ues), then if the low-order bit of the result is
1 the result is incremented. Otherwise (the
low-order bit of the result is 0) the result is
truncated (this is the case of a tie rounded
to even).

B Round toward Zero
Choose the smaller in magnitude of Z1 or Z2. If the
Guard, Round, or Sticky bit is nonzero, the result is
inexact.

B Round toward + Infinity
Choose Z1.

B Round toward - Infinity
Choose Z2.

If rounding results in a carry into C, the significand is
shifted right one position and the exponent is incre-
mented by one. This yields an inexact result, and possi-
bly also exponent overflow. If any of the Guard, Round,
or Sticky bits is nonzero, then the result is also inexact.
Fraction bits are stored to the target FPR. For Floating
Round to Integer, Floating Round to Single-Precision,
and single-precision arithmetic instructions, low-order
zeros must be appended as appropriate to fill out the
double-precision fraction.

128 Power ISA™ - Book |

Version 2.07 B

4.5.2 Execution Model for
Multiply-Add Type Instructions

The Power ISA provides a special form of instruction
that performs up to three operations in one instruction
(a multiplication, an addition, and a negation). With this
added capability comes the special ability to produce a
more exact intermediate result as input to the rounder.
32-bit arithmetic is similar except that the FRACTION
field is smaller.

Multiply-add significand arithmetic is considered to be
performed with a floating-point accumulator having the
following format, where bits 0:106 comprise the signifi-
cand of the intermediate result.

[s|c]L] FRACTION [X]
0123 106

Figure 61. Multiply-add 64-bit execution model

The first part of the operation is a multiplication. The
multiplication has two 53-bit significands as inputs,
which are assumed to be prenormalized, and produces
a result conforming to the above model. If there is a
carry out of the significand (into the C bit), then the sig-
nificand is shifted right one position, shifting the L bit
(leading unit bit) into the most significant bit of the
FRACTION and shifting the C bit (carry out) into the L
bit. All 106 bits (L bit, the FRACTION) of the product
take part in the add operation. If the exponents of the
two inputs to the adder are not equal, the significand of
the operand with the smaller exponent is aligned
(shifted) to the right by an amount that is added to that
exponent to make it equal to the other input’s exponent.
Zeros are shifted into the left of the significand as it is
aligned and bits shifted out of bit 105 of the significand
are ORed into the X’ bit. The add operation also pro-
duces a result conforming to the above model with the
X’ bit taking part in the add operation.

The result of the addition is then normalized, with all
bits of the addition result, except the X’ bit, participating
in the shift. The normalized result serves as the inter-
mediate result that is input to the rounder.

For rounding, the conceptual Guard, Round, and Sticky
bits are defined in terms of accumulator bits. Figure 62
shows the positions of the Guard, Round, and Sticky
bits for double-precision and single-precision float-
ing-point numbers in the multiply-add execution model.

Format [Guard |Round
Double |53 54
Single |24 25

Sticky
OR of 55:105, X’
OR of 26:105, X’

Figure 62. Location of the Guard, Round, and
Sticky bits in the multiply-add execution
model

The rules for rounding the intermediate result are the
same as those given in Section 4.5.1.

If the instruction is Floating Negative Multiply-Add or
Floating Negative Multiply-Subtract, the final result is
negated.

Chapter 4. Floating-Point Facility [Category: Floating-Point] 129

Version 2.07 B

4.6 Floating-Point Facility Instructions

For each instruction in this section that defines the use
of an Rc bit, the behavior defined for the instruction cor-
responding to Rc=1 is considered part of the Float-
ing-Point.Record category.

130 Power ISA™ - Book |

Version 2.07 B

4.6.1 Floating-Point Storage Access Instructions

The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.10.3, “Effective Address Calcu-
lation” on page 26.

—— Programming Note

The la extended mnemonic permits computing an
effective address as a Load or Store instruction
would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address. This extended mnemonic is
described in Section E.10, “Miscellaneous Mne-
monics” on page 720.

4.6.1.1 Storage Access Exceptions

Storage accesses will cause the system data storage
error handler to be invoked if the program is not
allowed to modify the target storage (Store only), or if
the program attempts to access storage that is unavail-
able.

4.6.2 Floating-Point Load Instructions

There are three basic forms of load instruction: sin-
gle-precision, double-precision, and integer. The inte-
ger form is provided by the Load Floating-Point as
Integer Word Algebraic instruction, described on
page 134. Because the FPRs support only float-
ing-point double format, single-precision Load Float-
ing-Point instructions convert single-precision data to
double format prior to loading the operand into the tar-
get FPR. The conversion and loading steps are as fol-
lows.

Let WORDg.34 be the floating-point single-precision
operand accessed from storage.

Normalized Operand
if WORD;.g > 0 and WORD;.g < 255 then
FRTO:1 &« WORDO:1
FRT, « “WORD;
FRT3 « "“WORD;
FRT, « "WORD;
FRTs5.63 ¢ WORD,.3¢ 11 290

Denormalized Operand
if WORD-I:S =0and WORD9:31 # 0 then
sign « WORD,
exp « - 126
fra00:52 < 0boO || WORD9:31 Il 290
normalize the operand
do while fracy =0
fraco:52 €« frac1:52 [0bO

exp < exp - 1
FRTg < sign
FRT1:11 « exp + 1023
FRT263 < fracysp

Zero / Infinity / NaN
if WORD1:8 =255o0r WORD1:31 =0 then
FRTg.q4 « WORDg.4
FRT, « WORD;
FRT3 « WORD;
FRT, « WORD;
FRT5.63 « WORD,.3¢ 11290

For double-precision Load Floating-Point instructions
and for the Load Floating-Point as Integer Word Alge-
braic instruction no conversion is required, as the data
from storage are copied directly into the FPR.

Many of the Load Floating-Point instructions have an
“update” form, in which register RA is updated with the
effective address. For these forms, if RA=0, the effec-
tive address is placed into register RA and the storage
element (word or doubleword) addressed by EA is
loaded into FRT.

Note: Recall that RA and RB denote General Purpose
Registers, while FRT denotes a Floating-Point Regis-
ter.

Chapter 4. Floating-Point Facility [Category: Floating-Point] 131

Version 2.07 B

Load Floating-Point Single D-form

Ifs FRT,D(RA)

48 FRT RA D

Load Floating-Point Single Indexed
X-form

Ifsx FRT,RA,RB

0 6 11 16 31

if RA =0 thenb « 0
else b < (RA)
EA ¢« b + EXTS(D)

FRT ¢ DOUBLE (MEM(EA, 4))

Let the effective address (EA) be the sum (RA|0)+D.

The word in storage addressed by EA is interpreted as
a floating-point single-precision operand. This word is
converted to floating-point double format (see
page 131) and placed into register FRT.

Special Registers Altered:
None

Load Floating-Point Single with Update
D-form

Ifsu FRT,D(RA)

31 FRT RA RB 535 /

0 6 11 16 21 31

if RA =0 then b « 0
else b « (Ra)
EA € b + (RB)

FRT < DOUBLE (MEM(EA, 4))

Let the effective address (EA) be the sum (RA|0)+(RB).

The word in storage addressed by EA is interpreted as
a floating-point single-precision operand. This word is
converted to floating-point double format (see
page 131) and placed into register FRT.

Special Registers Altered:
None

Load Floating-Point Single with Update
Indexed X-form

[fsux FRT,RA,RB

49 FRT RA D
0 6 11 16 31

31 FRT RA RB 567 /

0 6 11 16 21 31

EA < (RA) + EXTS(D)
FRT < DOUBLE (MEM(EA, 4))
RA ¢« EA

Let the effective address (EA) be the sum (RA)+D.

The word in storage addressed by EA is interpreted as
a floating-point single-precision operand. This word is
converted to floating-point double format (see
page 131) and placed into register FRT.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA € (RA) + (RB)
FRT ¢ DOUBLE (MEM(EA, 4))
RA ¢« EA

Let the effective address (EA) be the sum (RA)+(RB).

The word in storage addressed by EA is interpreted as
a floating-point single-precision operand. This word is
converted to floating-point double format (see
page 131) and placed into register FRT.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

132 Power ISA™ - Book |

Version 2.07 B

Load Floating-Point Double D-form

Ifd FRT,D(RA)

50 FRT RA D

Load Floating-Point Double Indexed
X-form

Ifdx FRT,RA,RB

0 6 11 16 31

if RA =0 thenb « 0
else b < (RA)
EA ¢« b + EXTS(D)

FRT ¢« MEM(EA, 8)

Let the effective address (EA) be the sum (RA|0)+D.

The doubleword in storage addressed by EA is loaded
into register FRT.

Special Registers Altered:
None

Load Floating-Point Double with Update
D-form

Ifdu FRT,D(RA)

31 FRT RA RB 599 /

0 6 11 16 21 31

if RA =0 thenb « 0
else b ¢ (Ra)
EA € b + (RB)

FRT ¢« MEM(EA, 8)

Let the effective address (EA) be the sum (RA|0)+(RB).

The doubleword in storage addressed by EA is loaded
into register FRT.

Special Registers Altered:
None

Load Floating-Point Double with Update
Indexed X-form

[fdux FRT,RA,RB

51 FRT RA D
0 6 11 16 31

31 FRT RA RB 631 /
0 6 11 16 21 31

EA < (RA) + EXTS(D)
FRT ¢« MEM(EA, 8)
RA ¢« EA

Let the effective address (EA) be the sum (RA)+D.

The doubleword in storage addressed by EA is loaded
into register FRT.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA € (RA) + (RB)
FRT ¢ MEM(EA, 8)
RA ¢« EA

Let the effective address (EA) be the sum (RA)+(RB).

The doubleword in storage addressed by EA is loaded
into register FRT.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 4. Floating-Point Facility [Category: Floating-Point] 133

Version 2.07 B

Load Floating-Point as Integer Word
Algebraic Indexed X-form

Ifiwax FRT,RA,RB

31 FRT RA RB 855 /

if RA =0 thenb <« 0
else b € (RA)
EA < b + (RB)

FRT ¢« EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum (RA|0)+(RB).

The word in storage addressed by EA is loaded into
FRT32.63. FRT(.3¢ are filled with a copy of bit 0 of the
loaded word.

Special Registers Altered:
None

Load Floating-Point as Integer Word and
Zero Indexed X-form

Ifiwzx FRT,RA,RB
[Category: Floating-Point.Phased-in]

31 FRT RA RB 887 /
0 6 11 16 21 31

if RA =0 thenb « 0
else b €« (RA)
EA ¢ b + (RB)

FRT « 320 || MEM(EA, 4)

Let the effective address (EA) be the sum (RA|0)+(RB).

The word in storage addressed by EA is loaded into
FRT32:63. FRTO:31 are set to 0.

Special Registers Altered:
None

134 Power ISA™ - Book |

Version 2.07 B

4.6.3 Floating-Point Store Instructions

There are three basic forms of store instruction: sin-
gle-precision, double-precision, and integer. The inte-
ger form is provided by the Store Floating-Point as
Integer Word instruction, described on page 138.
Because the FPRs support only floating-point double
format for floating-point data, single-precision Store
Floating-Point instructions convert double-precision
data to single format prior to storing the operand into
storage. The conversion steps are as follows.

Let WORDy.31 be the word in storage written to.

No Denormalization Required (includes Zero / Infin-
ity / NaN)
if FRS1:11 > 896 or FRS1:63 =0 then

WORDy.1 « FRSy.1

WORD;.31 « FRSs5:34

Denormalization Required
if 874 < FRS4.11 <896 then
sign « FRS
exp < FRS1:11 - 1023
fra00:52 < 0b1 1l FRS12;63
denormalize operand
do while exp < - 126
fra00:52 < 0b0 Il fraco:51
exp < exp + 1
WORDy ¢ sign
WORD;.g « 0x00
WORDg.31 « frac.p3
else WORD ¢« undefined

Notice that if the value to be stored by a single-preci-
sion Store Floating-Point instruction is larger in magni-
tude than the maximum number representable in single
format, the first case above (No Denormalization
Required) applies. The result stored in WORD is then a
well-defined value, but is not numerically equal to the
value in the source register (i.e., the result of a sin-

gle-precision Load Floating-Point from WORD will not
compare equal to the contents of the original source
register).

For double-precision Store Floating-Point instructions
and for the Store Floating-Point as Integer Word
instruction no conversion is required, as the data from
the FPR are copied directly into storage.

Many of the Store Floating-Point instructions have an
“update” form, in which register RA is updated with the
effective address. For these forms, if RA#0, the effec-
tive address is placed into register RA.

Note: Recall that RA and RB denote General Purpose
Registers, while FRS denotes a Floating-Point Regis-
ter.

Chapter 4. Floating-Point Facility [Category: Floating-Point] 135

Version 2.07 B

Store Floating-Point Single D-form

stfs FRS,D(RA)

52 FRS RA D

Store Floating-Point Single Indexed
X-form

stfsx FRS,RA,RB

0 6 11 16 31

if RA =0 thenb « 0

else b < (RA)
EA ¢« b + EXTS(D)

MEM(EA, 4) ¢ SINGLE((FRS))

Let the effective address (EA) be the sum (RA|0)+D.

The contents of register FRS are converted to single
format (see page 135) and stored into the word in stor-
age addressed by EA.

Special Registers Altered:
None

Store Floating-Point Single with Update
D-form

stfsu FRS,D(RA)

31 FRS RA RB 663 /

0 6 11 16 21 31

if RA =0 then b « 0

else b « (Ra)
EA € b + (RB)

MEM(EA, 4) ¢« SINGLE((FRS))

Let the effective address (EA) be the sum (RA|0)+(RB).

The contents of register FRS are converted to single
format (see page 135) and stored into the word in stor-
age addressed by EA.

Special Registers Altered:
None

Store Floating-Point Single with Update
Indexed X-form

stfsux FRS,RA,RB

53 FRS RA D

0 6 11 16 31

31 FRS RA RB 695 /

0 6 11 16 21 31

EA < (RA) + EXTS(D)
MEM (EA, 4) ¢ SINGLE((FRS))
RA ¢« EA

Let the effective address (EA) be the sum (RA)+D.

The contents of register FRS are converted to single
format (see page 135) and stored into the word in stor-
age addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA € (RA) + (RB)
MEM(EA, 4) ¢ SINGLE((FRS))
RA ¢« EA

Let the effective address (EA) be the sum (RA)+(RB).

The contents of register FRS are converted to single
format (see page 135) and stored into the word in stor-
age addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

136 Power ISA™ - Book |

Version 2.07 B

Store Floating-Point Double D-form

stfd FRS,D(RA)

54 FRS RA D
0 6 11 16 31

if RA =0 thenb « 0
else b < (RA)
EA ¢« b + EXTS(D)
MEM(EA, 8) ¢« (FRS)

Let the effective address (EA) be the sum (RA|0)+D.

The contents of register FRS are stored into the dou-
bleword in storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Double with Update
D-form

stfdu FRS,D(RA)

Store Floating-Point Double Indexed
X-form

stfdx FRS,RA,RB

31 FRS RA RB 727 /

0 6 11 16 21 31

if RA =0 thenb « 0
else b ¢ (Ra)
EA € b + (RB)

MEM(EA, 8) €« (FRS)

Let the effective address (EA) be the sum (RA|0)+(RB).

The contents of register FRS are stored into the dou-
bleword in storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Double with Update
Indexed X-form

stfdux FRS,RA,RB

55 FRS RA D
0 6 11 16 31

31 FRS RA RB 759 /
0 6 11 16 21 31

EA < (RA) + EXTS(D)
MEM (EA, 8) < (FRS)
RA ¢« EA

Let the effective address (EA) be the sum (RA)+D.

The contents of register FRS are stored into the dou-
bleword in storage addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA € (RA) + (RB)
MEM(EA, 8) €« (FRS)
RA ¢« EA

Let the effective address (EA) be the sum (RA)+(RB).

The contents of register FRS are stored into the dou-
bleword in storage addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 4. Floating-Point Facility [Category: Floating-Point] 137

Version 2.07 B

Store Floating-Point as Integer Word
Indexed X-form

stfiwx FRS,RA,RB

31 FRS RA RB 983 /
0 6 11 16 21 31

if RA =0 thenb « 0
else b « (RA)
EA € b + (RB)

MEM(EA, 4) € (FRS)35.43

Let the effective address (EA) be the sum (RA|0)+(RB).

(FRS)32.63 are stored, without conversion, into the word
in storage addressed by EA.

If the contents of register FRS were produced, either
directly or indirectly, by a Load Floating-Point Single
instruction, a single-precision Arithmetic instruction, or
frsp, then the value stored is undefined. (The contents
of register FRS are produced directly by such an
instruction if FRS is the target register for the instruc-
tion. The contents of register FRS are produced indi-
rectly by such an instruction if FRS is the final target
register of a sequence of one or more Floating-Point
Move instructions, with the input to the sequence hav-
ing been produced directly by such an instruction.)

Special Registers Altered:
None

138 Power ISA™ - Book |

Version 2.07 B

4.6.4 Floating-Point Load and Store Double Pair Instructions [Category:

Floating-Point.Phased-Out]

For Ifdp[x], the doubleword-pair in storage addressed
by EA is loaded into an even-odd pair of FPRs with the
even-numbered FPR being loaded with the leftmost
doubleword from storage and the odd-numbered FPR
being loaded with the rightmost doubleword.

For stfdp[x], the content of an even-odd pair of FPRs
is stored into the doubleword-pair in storage
addressed by EA, with the even-numbered FPR being
stored into the leftmost doubleword in storage and the

odd-numbered FPR being stored into the rightmost
doubleword.

Programming Note

The instructions described in this section should
not be used to access an operand in DFP
Extended format when the processor is in Lit-
tle-Endian mode.

Chapter 4. Floating-Point Facility [Category: Floating-Point] 139

Version 2.07 B

Load Floating-Point Double Pair DS-form

lfdp FRTp,DS(RA)

Store Floating-Point Double Pair DS-form

stfdp FRSp,DS(RA)

57 FRTp RA DS 00

0 6 11 16 30 31

61 FRSp RA DS 00

0 6 11 16 3031

if RA =0 thenb « 0
else b «(RAa)
EA € b + EXTS(DS||0b00)
FRTPoyen € MEM(EA,8)
FRTp,qq ¢ MEM(EA+8, 8)

Let the effective address (EA) be the sum (RA|0) +
(DS]|0b00).

The doubleword in storage addressed by EA is placed
into the even-numbered register of FRTp.

The doubleword in storage addressed by EA+8 is
placed into the odd-numbered register of FRTp.

If FRTp is odd, the instruction form is invalid.

Special Registers Altered:
None

Load Floating-Point Double Pair Indexed
X-form

Ifdpx FRTp,RA,RB

31 FRTp RA RB 791 /

0 6 11 16 21 31

if RA =0 thenb « 0
else b < (RA)
EA ¢« b + (RB)

FRTDgyen € MEM(EA,8)
FRTDoqq € MEM(EA+8, 8)

Let the effective address (EA) be the sum (RA|0) +
(RB).

The doubleword in storage addressed by EA is placed
into the even-numbered register of FRTp.

The doubleword in storage addressed by EA+8 is
placed into the odd-numbered register of FRTp.

If FRTp is odd, the instruction form is invalid.

Special Registers Altered:
None

if RA =0 thenb « 0

else b ¢« (RA)
EA € b + EXTS(DS||0b00)
MEM(EA, 8) € FRSDayen

MEM(EA+8, 8) ¢ FRSpogq

Let the effective address (EA) be the sum (RA|0) +
(DS]|0b00).

The contents of the even-numbered register of FRSp
are stored into the doubleword in storage addressed by
EA.

The contents of the odd-numbered register of FRSp are
stored into the doubleword in storage addressed by
EA+8.

If FRSp is odd, the instruction form is invalid.

Special Registers Altered:
None

Store Floating-Point Double Pair Indexed
X-form

stfdpx FRSp,RA,RB

31 FRSp RA RB 919 /

0 6 11 16 21 31

if RA =0 then b « 0

else b < (Ra)
EA < b + (RB)
MEM(EA, 8) ¢ FRSPeyen

MEM(EA+8, 8) € FRSpPogq

Let the effective address (EA) be the sum (RA|0) +
(DS||0b00).

The contents of the even-numbered register of FRSp
are stored into the doubleword in storage addressed by
EA.

The contents of the odd-numbered register of FRSp are
stored into the doubleword in storage addressed by
EA+8.

If FRSp is odd, the instruction form is invalid.

Special Registers Altered:
None

140 Power ISA™ - Book |

Version 2.07 B

4.6.5 Floating-Point Move Instructions

These instructions copy data from one floating-point
register to another, altering the sign bit (bit 0) as
described below for fneg, fabs, fnabs, and fcpsgn.
These instructions treat NaNs just like any other kind of

value (e.g., the sign bit of a NaN may be altered by
fneg, fabs, fnabs, and fcpsgn). These instructions do
not alter the FPSCR.

Floating Move Register X-form Floating Negate X-form

fmr FRT,FRB (Re=0) fneg FRT,FRB (Rc=0)

frr. FRT,FRB (Re=1) fneg. FRT,FRB (Re=1)
63 FRT i FRB 72 Rc 63 FRT i FRB 40 Rc

0 6 11 16 21 31 0 6 11 16 21 31

The contents of register FRB are placed into register
FRT.

Special Registers Altered:
CR1 (if Re=1)

Floating Absolute Value X-form

The contents of register FRB with bit O inverted are
placed into register FRT.

Special Registers Altered:
CR1 (if Re=1)

Floating Copy Sign X-form

fabs FRT,FRB (Rc=0) fcpsgn FRT, FRA, FRB (Rc=0)
fabs. FRT,FRB (Re=1) fcpsgn. FRT, FRA, FRB (Re=1)

63 FRT " FRB 264 Rc 63 FRT FRA | FRB 8 Rc
0 6 11 16 21 31 0 6 1 16 21 31

The contents of register FRB with bit O set to zero are
placed into register FRT.

Special Registers Altered:
CR1 (if Re=1)

Floating Negative Absolute Value X-form

fnabs FRT,FRB (Rc=0)

fnabs. FRT,FRB (Re=1)
63 FRT " FRB 136 Rc

0 6 11 16 21 31

The contents of register FRB with bit O set to one are
placed into register FRT.

Special Registers Altered:
CR1 (if Re=1)

The contents of register FRB with bit O set to the value
of bit 0 of register FRA are placed into register FRT.

Special Registers Altered:
CR1 (if Re=1)

Chapter 4. Floating-Point Facility [Category: Floating-Point] 141

Version 2.07 B

Floating Merge Even Word X-form
[Category: Vector-Scalar]

fmrgew FRT,FRA,FRB

Floating Merge Odd Word X-form
[Category: Vector-Scalar]

fmrgow FRT,FRA,FRB

63 FRT FRA FRB 966 /
0 6 1 16 21 31

63 FRT FRA FRB 838 /
0 6 1 16 21 31

if MSR.FP=0 then FP_Unavailable()
FPR[FRT].word[0] « FPR[FRA].word[0]
FPR[FRT].word[1] « FPR[FRB].word[0]

The contents of word element 0 of FPR[FRA] are placed
into word element O of FPR[FRT].

The contents of word element 0 of FPR[FRB] are placed
into word element 1 of FPR[FRT].

fmrgew is treated as a Floating-Point instruction in
terms of resource availability.

Special Registers Altered
None

if MSR.FP=0 then FP_Unavailable()
FPR[FRT].word[0] « FPR[FRA].word[1]
FPR[FRT].word[1] « FPR[FRB].word[1]

The contents of word element 1 of FPR[FRA] are placed
into word element O of FPR[FRT].

The contents of word element 1 of FPR[FRB] are placed
into word element 1 of FPR[FRT].

fmrgow is treated as a Floating-Point instruction in
terms of resource availability.

Special Registers Altered
None

142 Power ISA™ - Book |

Version 2.07 B

4.6.6 Floating-Point Arithmetic Instructions

4.6.6.1 Floating-Point Elementary Arithmetic Instructions

Floating Add [Single] A-form

fadd FRT,FRA,FRB
fadd. FRT,FRA,FRB

(Rc=0)
(Re=1)

Floating Subtract [Single] A-form

fsub FRT,FRA,FRB
fsub. FRT,FRA,FRB

(Rc=0)
(Re=1)

63 FRT | FRA | FRB " 21 |Rc

63 FRT | FRA | FRB i 20 |Rc

(] 6 11 16 21 26 31 0 6 11 16 21 26 31
fadds FRT,FRA,FRB (Rc=0) fsubs FRT,FRA,FRB (Rc=0)
fadds. FRT,FRA,FRB (Re=1) fsubs. FRT,FRA,FRB (Re=1)

59 FRT | FRA | FRB " 21 |Rc
0 6 11 16 21 26 31

59 FRT | FRA | FRB i 20 |Rc

0 6 11 16 21 26 31

The floating-point operand in register FRA is added to
the floating-point operand in register FRB.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

Floating-point addition is based on exponent compari-
son and addition of the two significands. The exponents
of the two operands are compared, and the significand
accompanying the smaller exponent is shifted right,
with its exponent increased by one for each bit shifted,
until the two exponents are equal. The two significands
are then added or subtracted as appropriate, depend-
ing on the signs of the operands, to form an intermedi-
ate sum. All 53 bits of the significand as well as all three
guard bits (G, R, and X) enter into the computation.

If a carry occurs, the sum’s significand is shifted right
one bit position and the exponent is increased by one.

FPSCRepRE is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Re=1)

The floating-point operand in register FRB is subtracted
from the floating-point operand in register FRA.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

The execution of the Floating Subtract instruction is
identical to that of Floating Add, except that the con-
tents of FRB participate in the operation with the sign
bit (bit 0) inverted.

FPSCRgpRr is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Re=1)

Chapter 4. Floating-Point Facility [Category: Floating-Point] 143

Version 2.07 B

Floating Multiply [Single] A-form

fmul FRT,FRA,FRC
fmul. FRT,FRA,FRC

(Rc=0)
(Re=1)

Floating Divide [Single] A-form

fdiv FRT,FRA,FRB
fdiv. FRT,FRA,FRB

(Rc=0)
(Re=1)

63 FRT | FRA " FRC 25 |Rc

63 FRT | FRA | FRB i 18 |Rc

(] 6 11 16 21 26 31 0 6 11 16 21 26 31
fmuls FRT,FRA,FRC (Rc=0) fdivs FRT,FRA,FRB (Rc=0)
fmuls. FRT,FRA,FRC (Re=1) fdivs. FRT,FRA,FRB (Re=1)

59 FRT | FRA i FRC 25 |Rc
0 6 11 16 21 26 31

59 FRT | FRA | FRB i 18 |Rc
0 6 11 16 21 26 31

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

Floating-point multiplication is based on exponent addi-
tion and multiplication of the significands.

FPSCRgpRf is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXIMZ
CR1 (if Re=1)

The floating-point operand in register FRA is divided by
the floating-point operand in register FRB. The remain-
der is not supplied as a result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

Floating-point division is based on exponent subtrac-
tion and division of the significands.

FPSCRgpgf is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1 and Zero Divide Exceptions when
FPSCRZE=1.

Special Registers Altered:
FPRF FR FI
FX OX UX ZX XX
VXSNAN VXIDI VXZDz
CR1 (if Re=1)

144 Power ISA™ - Book |

Version 2.07 B

Floating Square Root [Single] A-form

fsqrt FRT,FRB (Rc=0)
fsqrt. FRT,FRB (Re=1)
63 FRT " FRB " 22 |Rc
o 6 11 16 21 26 31
fsqrts FRT,FRB (Rc=0)
fsqrts. FRT,FRB (Re=1)

59 FRT " FRB " 22 |Rc
0 6 11 16 21 26 31

The square root of the floating-point operand in register
FRB is placed into register FRT.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

Operation with various special values of the operand is
summarized below.

Operand Result Exception
- QNaN’ VXSQRT
<0 QNaN' VXSQRT
-0 -0 None

+00 +00 None
SNaN QNaN' VXSNAN
QNaN QNaN None

' No result if FPSCRyg = 1

FPSCRgpRe is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1.

Special Registers Altered:
FPRF FR FI FX OX UX XX
VXSNAN VXSQRT
CR1 (if Re=1)

Floating Reciprocal Estimate [Single]
A-form

fre FRT,FRB
fre. FRT,FRB

(Rc=0)
(Rc=1)

63 FRT i FRB i 24 |Rc

0 6 11 16 21 26 31
fres FRT,FRB (Rc=0)
fres. FRT,FRB (Re=1)

59 FRT i FRB i 24 |Rc
0 6 11 16 21 26 31

An estimate of the reciprocal of the floating-point
operand in register FRB is placed into register FRT.
Unless the reciprocal would be a zero, an infinity, the
result of a trap-disabled Overflow exception, or a
QNaN, the estimate is correct to a precision of one
part in 256 of the reciprocal of (FRB), i.e.,

estimate — 1/x 1
Al Lo L L R A A I
ABS(1/x)< 256
where x is the initial value in FRB.

Operation with various special values of the operand is
summarized below.

Operand Result Exception
-0 -0 None

-0 - ool ZX

+0 +oo! zX

+00 +0 None
SNaN QNaN? VXSNAN
QNaN QNaN None

1" No result if FPSCRzg = 1.
2 No result if FPSCRyg = 1.

FPSCRgpRr is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1 and Zero Divide Exceptions when
FPSCRzg=1.

The results of executing this instruction may vary
between implementations, and between different exe-
cutions on the same implementation.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
FX OX UX ZX XX (undefined)
VXSNAN
CR1 (if Re=1)

Chapter 4. Floating-Point Facility [Category: Floating-Point] 145

Version 2.07 B

—— Programming Note

For the Floating-Point Estimate instructions, some
implementations might implement a precision
higher than the minimum architected precision.
Thus, a program may take advantage of the higher
precision instructions to increase performance by
decreasing the iterations needed for software emu-
lation of floating-point instructions. However, there
is no guarantee given about the precision which
may vary (up or down) between implementations.
Only programs targeted at a specific implementa-
tion (i.e., the program will not be migrated to
another implementation) should take advantage of
the higher precision of the instructions. All other
programs should rely on the minimum architected
precision, which will guarantee the program to run
properly across different implementations.

Floating Reciprocal Square Root Estimate
[Single] A-form

frsqrte FRT,FRB (Rc=0)
frsqrte. FRT,FRB (Rc=1)
63 FRT i FRB i 26 |[Rc
0 6 11 16 21 26 31
frsqrtes FRT,FRB (Rc=0)
frsqrtes. FRT,FRB (Re=1)

59 FRT i FRB i 26 |[Rc
0 6 11 16 21 26 31

A estimate of the reciprocal of the square root of the
floating-point operand in register FRB is placed into
register FRT. The estimate placed into register FRT is
correct to a precision of one part in 32 of the reciprocal
of the square root of (FRB), i.e.,

ABS(estimate -1/ J;(g) < §15

1/(&}{
where x is the initial value in FRB.

Operation with various special values of the operand is
summarized below.

Operand Result Exception
- QNaN?2 VXSQRT
<0 QNaN?2 VXSQRT
-0 - ool ZX

+0 +oo! ZX

+00 +0 None
SNaN QNaN? VXSNAN
QNaN QNaN None

T No result if FPSCRzg = 1.
2 No result if FPSCRyg = 1.

FPSCRgpRf is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1 and Zero Divide Exceptions when
FPSCRZE=1.

The results of executing this instruction may vary
between implementations, and between different exe-
cutions on the same implementation.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
FX OX UX ZX XX (undefined)
VXSNAN VXSQRT
CR1 (if Re=1)

Note
’zee the Notes that appear with fre[s].

146 Power ISA™ - Book |

Version 2.07 B

Floating Test for software Divide X-form

[Category: Floating Point.Phased-In]

ftdiv BF,FRA,FRB
63 BF |//| FRA FRB 128
0 6 |9 |t 18 o1 31

Let e_a be the unbiased exponent of the double-preci-
sion floating-point operand in register FRA.

Let e_b be the unbiased exponent of the double-preci-
sion floating-point operand in register FRB.

fe_flag is set to 1 if any of the following conditions
occurs.

B The double-precision floating-point operand in reg-
ister FRA is a NaN or an Infinity.

B The double-precision floating-point operand in reg-
ister FRB is a Zero, a NaN, or an Infinity.

B e_bis less than or equal to -1022.
B e_b is greater than or equal to 1021.

B The double-precision floating-point operand in reg-
ister FRA is not a zero and the difference,
e_a - e_b,is greater than or equal to 1023.

B The double-precision floating-point operand in reg-
ister FRA is not a zero and the difference,
e_a - e_Db,islessthan or equal to -1021.

B The double-precision floating-point operand in reg-
ister FRA is not a zero and e_a is less than or
equal to -970

Otherwise f e_f | ag is set to 0.

fg_fl agis setto 1 if either of the following conditions
occurs.

B The double-precision floating-point operand in reg-
ister FRA is an Infinity.

B The double-precision floating-point operand in reg-
ister FRB is a Zero, an Infinity, or a denormalized
value.

Otherwise f g_f | ag is set to 0.

If the implementation guarantees a relative error of
fre[s][.] of less than or equal to 2714 then f1 _flagis
setto 1. Otherwise f| _f | ag is set to 0.

CR field BF is set to the value
fl _flag||fg_flag]| fe_flag]|| 0bO.

Special Registers Altered:
CR field BF

Floating Test for software Square Root
X-form

[Category: Floating Point.Phased-In]
ftsqrt BF,FRB

63 BF | /1| 111 FRB 160
0 6 |9 | 16 o1 31

Let e_b be the unbiased exponent of the double-preci-
sion floating-point operand in register FRB.

fe_fl ag is set to 1 if either of the following conditions
occurs.

B The double-precision floating-point operand in reg-
ister FRB is a zero, a NaN, or an infinity, or a nega-
tive value.

B e_b isless than or equal to -970.
Otherwise fe_f | ag is setto 0.
fg_fl agis set to 1 if the following condition occurs.

B The double-precision floating-point operand in reg-
ister FRB is a Zero, an Infinity, or a denormalized
value.

Otherwise f g_f | ag is setto 0.

If the implementation guarantees a relative error of
frsqrte[s][.] of less than or equal to 2714 thenfl _flag
is set to 1. Otherwise f1 _f | ag is set to 0.

CR field BF is set to the value
fl _flag]||fg_flag]|fe_flag]||0bO.

Special Registers Altered:
CR field BF

— Programming Note

ftdiv and ftsqrt are provided to accelerate software
emulation of divide and square root operations, by
performing the requisite special case checking.
Software needs only a single branch, on FE=1 (in
CRI[BF]), to a special case handler. FG and FL may
provide further acceleration opportunities.

Chapter 4. Floating-Point Facility [Category: Floating-Point] 147

Version 2.07 B

4.6.6.2 Floating-Point Multiply-Add Instructions

These instructions combine a multiply and an add oper-
ation without an intermediate rounding operation. The
fraction part of the intermediate product is 106 bits wide
(L bit, FRACTION), and all 106 bits take part in the add/
subtract portion of the instruction.

Status bits are set as follows.

m Overflow, Underflow, and Inexact Exception bits,
the FR and FI bits, and the FPRF field are set

based on the final result of the operation, and not
on the result of the multiplication.

® Invalid Operation Exception bits are set as if the
multiplication and the addition were performed
using two separate instructions (fmul[s], followed
by fadd[s] or fsub[s]). That is, multiplication of
infinity by 0 or of anything by an SNaN, and/or
addition of an SNaN, cause the corresponding
exception bits to be set.

Floating Multiply-Add [Single] A-form

Floating Multiply-Subtract [Single] A-form

fmadd FRT,FRA,FRC,FRB (Rec=0) fmsub FRT,FRA,FRC,FRB (Rc=0)
fmadd. FRT,FRA,FRC,FRB (Re=1) fmsub. FRT,FRA,FRC,FRB (Re=1)

63 FRT | FRA | FRB | FRC 29 |Rc 63 FRT | FRA | FRB | FRC 28 |Rc
0 6 11 16 21 26 31 0 6 11 16 21 26 31
fmadds FRT,FRA,FRC,FRB (Rc=0) fmsubs FRT,FRA,FRC,FRB (Rc=0)
fmadds. FRT,FRA,FRC,FRB (Re=1) fmsubs. FRT,FRA,FRC,FRB (Re=1)

59 FRT | FRA | FRB | FRC 29 |Rc
0 6 11 16 21 26 31

59 FRT | FRA | FRB | FRC 28 |Rc
0 6 11 16 21 26 31

The operation
FRT « [(FRA)x(FRC)] + (FRB)
is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The float-
ing-point operand in register FRB is added to this inter-
mediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

FPSCRepRr is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Re=1)

The operation
FRT « [(FRA)x(FRC)] - (FRB)
is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The float-
ing-point operand in register FRB is subtracted from
this intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

FPSCRgpRr is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Re=1)

148 Power ISA™ - Book |

Version 2.07 B

Floating Negative Multiply-Add [Single]
A-form

Floating Negative Multiply-Subtract
[Single] A-form

fnmadd FRT,FRA,FRC,FRB (Rc=0) fnmsub FRT,FRA,FRC,FRB (Rc=0)
fnmadd. FRT,FRA,FRC,FRB (Re=1) fnmsub. FRT,FRA,FRC,FRB (Re=1)
63 FRT | FRA | FRB | FRC 31 |Rc 63 FRT | FRA | FRB | FRC 30 |Rc
0 6 11 16 21 26 31 0 6 11 16 21 26 31
fnmadds FRT,FRA,FRC,FRB (Rc=0) fnmsubs FRT,FRA,FRC,FRB (Rc=0)
fnrmadds. FRT,FRA,FRC,FRB (Re=1) fnmsubs. FRT,FRA,FRC,FRB (Re=1)

59 FRT | FRA | FRB | FRC 31 |Rc
0 6 11 16 21 26 31

59 FRT | FRA | FRB | FRC 30 |Rc
0 6 11 16 21 26 31

The operation
FRT « - ([(FRA)x(FRC)] + (FRB))
is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The float-
ing-point operand in register FRB is added to this inter-
mediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR, then negated
and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Add instruction
and then negating the result, with the following excep-
tions.

B QNaNs propagate with no effect on their “sign” bit.

B QNaNs that are generated as the result of a dis-
abled Invalid Operation Exception have a “sign” bit
of 0.

B SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain the
“sign” bit of the SNaN.

FPSCRepRE is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Re=1)

The operation
FRT « - ([(FRA)x(FRC)] - (FRB))
is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The float-
ing-point operand in register FRB is subtracted from
this intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR, then negated
and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Subtract
instruction and then negating the result, with the follow-
ing exceptions.

B QNaNs propagate with no effect on their “sign” bit.

B QNaNs that are generated as the result of a dis-
abled Invalid Operation Exception have a “sign” bit
of 0.

B SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain the
“sign” bit of the SNaN.

FPSCRgpRf is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Re=1)

Chapter 4. Floating-Point Facility [Category: Floating-Point] 149

Version 2.07 B

4.6.7 Floating-Point Rounding and Conversion Instructions

Programming Note

Examples of uses of these instructions to perform
various conversions can be found in Section F.2,
“Floating-Point Conversions [Category: Float-
ing-Point]” on page 726.

4.6.7.1 Floating-Point Rounding
Instruction

Floating Round to Single-Precision
X-form

4.6.7.2 Floating-Point Convert To/From
Integer Instructions

Floating Convert To Integer Doubleword
X-form

frsp FRT,FRB (Rc=0) fctid FRT,FRB (Rc=0)

frsp. FRT,FRB (Re=1) fetid. FRT,FRB (Re=1)
63 FRT " FRB 12 Rc 63 FRT " FRB 814 Rc

0 6 11 16 21 31 0 6 11 16 21 31

The floating-point operand in register FRB is rounded to
single-precision, using the rounding mode specified by
RN, and placed into register FRT.

The rounding is described fully in Section A.1, “Float-
ing-Point Round to Single-Precision Model” on
page 685.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR FI
FX 0X UX XX VXSNAN
CR1 (if Re=1)

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is
0x8000_0000_0000_0000, VXCVI is set to 1, and, if src is
an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode specified by RN.

If the rounded value is greater than 2%-1, then the
result is OX7FFF_FFFF_FFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than -2%3, then
the result is 0x8000_0000_0000_0000 and VXCVI is set to
1.

Otherwise, the result is the rounded value converted to
64-bit signed-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 689.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. Fl is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Re=1)

150 Power ISA™ - Book |

Version 2.07 B

Floating Convert To Integer Doubleword
with round toward Zero X-form

fctidz FRT,FRB (Rc=0)

fctidz. FRT,FRB (Re=1)
63 FRT | // | FRB 815 Rc

(] 6 11 16 21 31

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is
0x8000_0000_0000_0000, VXCVI is set to 1, and, if src is
an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round toward Zero.

If the rounded value is greater than 2%-1, then the
result is Ox7FFF_FFFF_FFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than -2%, then
the result is 0x8000_0000_0000_0000 and VXCVI is set to
1.

Otherwise, the result is the rounded value converted to
64-bit signed-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 689.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. Fl is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Rc=1)

Floating Convert To Integer Doubleword
Unsigned X-form

[Category: Floating-Point.Phased-In]

fetidu FRT,FRB (Rc=0)

fetidu. FRT,FRB (Re=1)
63 FRT | // | FRB 942 Rc

0 6 11 16 21 31

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is
0x0000_0000_0000_0000, VXCVI is set to 1, and, if src is
an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode specified by RN.

If the rounded value is greater than 2%4-1, then the
result is OXFFFF_FFFF_FFFF_FFFF, and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0, then the
result is 0x0000_0000_0000_0000, and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
64-bit unsigned-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 689.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. Fl is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Re=1)

Chapter 4. Floating-Point Facility [Category: Floating-Point] 151

Version 2.07 B

Floating Convert To Integer Doubleword
Unsigned with round toward Zero X-form

[Category: Floating-Point.Phased-In]

fctiduz FRT,FRB (Rc=0)

fctiduz. FRT,FRB (Re=1)
63 FRT | // | FRB 943 Rc

(] 6 11 16 21 31

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is
0x0000_0000_0000_0000, VXCVI is set to 1, and, if src is
an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round toward Zero.

If the rounded value is greater than 254-1, then the
result is OXFFFF_FFFF_FFFF_FFFF, and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0, then the
result is 0x0000_0000_0000_0000, and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
64-bit unsigned-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 689.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. Fl is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Rc=1)

Floating Convert To Integer Word X-form

fctiw FRT,FRB (Rc=0)

fetiw. FRT,FRB (Re=1)
63 FRT | // | FRB 14 Rc

0 6 11 16 21 31

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is 0x8000_0000, VXCVI is
set to 1, and, if src is an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode specified by RN.

If the rounded value is greater than 2%1-1, then the
result is OX7FFF_FFFF, and VXCVI is set to 1.

Otherwise, if the rounded value is less than -231, then
the result is 0x8000_0000, and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
32-bit signed-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT3,.63 and FRT.31
is undefined,

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 689.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. Fl is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Re=1)

152 Power ISA™ - Book |

Version 2.07 B

Floating Convert To Integer Word
with round toward Zero X-form

fctiwz FRT,FRB (Rc=0)

fctiwz. FRT,FRB (Re=1)
63 FRT | // | FRB 15 Rc

(] 6 11 16 21 31

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is 0x8000_0000, VXCVI is
set to 1, and, if src is an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round toward Zero.

If the rounded value is greater than 2%!-1, then the
result is Ox7FFF_FFFF, and VXCVI is set to 1.

Otherwise, if the rounded value is less than -231, then
the result is 0x8000_0000, and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
32-bit signed-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT3,.63 and FRTj-3;
is undefined,

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 689.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. Fl is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN ~ VXCVI
CR1 (if Rc=1)

Floating Convert To Integer Word
Unsigned X-form

[Category: Floating-Point.Phased-In]

fctiwu FRT,FRB (Rc=0)

fetiwu. FRT,FRB (Re=1)
63 FRT | // | FRB 142 Rc

0 6 11 16 21 31

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is 0x0000_0000, VXCVI is
set to 1, and, if src is an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode specified by RN.

If the rounded value is greater than 2%-1, then the
result is OXFFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0, then the
result is 0x0000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
32-bit unsigned-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT3,-63 and FRTy-3;
is undefined,

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 689.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. Fl is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN ~ VXCVI
CR1 (if Re=1)

Chapter 4. Floating-Point Facility [Category: Floating-Point] 153

Version 2.07 B

Floating Convert To Integer Word
Unsigned with round toward Zero X-form

[Category: Floating-Point.Phased-In]

Floating Convert From Integer
Doubleword X-form

fctiwuz FRT,FRB (Rc=0) fcfid FRT,FRB (Rc=0)
fctiwuz. FRT,FRB (Re=1) fefid. FRT,FRB (Re=1)

63 FRT | // | FRB 143 Rc 63 FRT | // | FRB 846 Rc
(] 6 11 16 21 31 0 6 1 16 21 31

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is 0x0000_0000, VXCVI is
set to 1, and, if src is an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round toward Zero.

If the rounded value is greater than 2%-1, then the
result is OXFFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0.0, then
the result is 0x0000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
32-bit unsigned-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT3;,.63 and FRTj-3;
is undefined,

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 689.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. Fl is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Rc=1)

The 64-bit signed fixed-point operand in register FRB is
converted to an infinitely precise floating-point integer.
The result of the conversion is rounded to double-preci-
sion, using the rounding mode specified by RN, and
placed into register FRT.

The conversion is described fully in Section A.3, “Float-
ing-Point Convert from Integer Model”.

FPRF is set to the class and sign of the result. FR is set if
the result is incremented when rounded. Fl is set if the
result is inexact.

Special Registers Altered:
FPRF FR FI FX XX
CR1 (if Re=1)

Programming Note

Converting a signed integer word to double-preci-
sion floating-point can be accomplished by loading
the word from storage using Load Float Word Alge-
braic Indexed and then using fcfid.

154 Power ISA™ - Book |

Version 2.07 B

Floating Convert From Integer
Doubleword Unsigned X-form

[Category: Floating-Point.Phased-In]

Floating Convert From Integer
Doubleword Single X-form

[Category: Floating-Point.Phased-In]

fcfidu FRT,FRB (Rc=0) fcfids FRT,FRB (Rc=0)
fcfidu. FRT,FRB (Re=1) fcfids. FRT,FRB (Re=1)

63 FRT | // | FRB 974 Rc 59 FRT | // | FRB 846 Rc
(] 6 11 16 21 31 0 6 1 16 21 31

The 64-bit unsigned fixed-point operand in register
FRB is converted to an infinitely precise floating-point
integer. The result of the conversion is rounded to dou-
ble-precision, using the rounding mode specified by
FPSCRRN, and placed into register FRT.

The conversion is described fully in Section A.3, “Float-
ing-Point Convert from Integer Model”.

FPSCRgpRE is set to the class and sign of the result. FR
is set if the result is incremented when rounded.
FPSCRE, is set if the result is inexact.

Special Registers Altered:
FPRF FR FI
FX XX
CR1 (if Re=1)

Programming Note
Converting an unsigned integer word to dou-
ble-precision floating-point can be accomplished by
loading the word from storage using Load Float

Word and Zero Indexed and then using fcfidu.

The 64-bit signed fixed-point operand in register FRB is
converted to an infinitely precise floating-point integer.
The result of the conversion is rounded to single-preci-
sion, using the rounding mode specified by FPSCRRgy;,
and placed into register FRT.

The conversion is described fully in Section A.3, “Float-
ing-Point Convert from Integer Model”.

FPSCRgpRE is set to the class and sign of the result. FR
is set if the result is incremented when rounded.
FPSCRgE, is set if the result is inexact.

Special Registers Altered:
FPRF FR FI
FX XX
CR1 (if Re=1)

Programming Note

Converting a signed integer word to single-preci-
sion floating-point can be accomplished by loading
the word from storage using Load Float Word Alge-
braic Indexed and then using fcfids.

Chapter 4. Floating-Point Facility [Category: Floating-Point] 155

Version 2.07 B

Floating Convert From Integer
Doubleword Unsigned Single X-form

[Category: Floating-Point.Phased-In]

fcfidus FRT,FRB (Rc=0)

fcfidus. FRT,FRB (Re=1)
59 FRT | // | FRB 974 Rc

(] 6 11 16 21 31

The 64-bit unsigned fixed-point operand in register
FRB is converted to an infinitely precise floating-point
integer. The result of the conversion is rounded to sin-
gle-precision, using the rounding mode specified by
FPSCRRgy, and placed into register FRT.

The conversion is described fully in Section A.3, “Float-
ing-Point Convert from Integer Model”.

FPSCRgpRE is set to the class and sign of the result. FR
is set if the result is incremented when rounded.
FPSCRE, is set if the result is inexact.

Special Registers Altered:
FPRF FR FI
FX XX
CR1 (if Re=1)

Programming Note

Converting a unsigned integer word to single-preci-
sion floating-point can be accomplished by loading
the word from storage using Load Float Word and
Zero Indexed and then using fcfidus.

4.6.7.3 Floating Round to Integer
Instructions

The Floating Round to Integer instructions provide
direct support for rounding functions found in high level
languages. For example, frin, friz, frip, and frim imple-
ment C++ round(), trunc(), ceil(), and floor(), respec-
tively. Note that frin does not implement the IEEE
Round to Nearest function, which is often further
described as “ties to even.” The rounding performed by
these instructions is described fully in Section A.4,
“Floating-Point Round to Integer Model” on page 694.

— Programming Note

These instructions set FPSCRgRg f to 0b00 regard-
less of whether the result is inexact or rounded
because there is a desire to preserve the value of
FPSCRyx. Furthermore, it is believed that most
programs do not need to know whether these
rounding operations produce inexact or rounded
results. If it is necessary to determine whether the
result is inexact or rounded, software must com-
pare the result with the original source operand.

156 Power ISA™ - Book |

Version 2.07 B

Floating Round to Integer Nearest X-form

Floating Round to Integer Plus X-form

frin FRT,FRB (Rc=0) frip FRT,FRB (Rc=0)
frin. FRT,FRB (Re=1) frip. FRT,FRB (Re=1)

63 FRT | // | FRB 392 Rc 63 FRT | // | FRB 456 Rc
(] 6 11 16 21 31 0 6 11 16 21 31

The floating-point operand in register FRB is rounded
to an integral value as follows, with the result placed
into register FRT. If the sign of the operand is positive,
(FRB) + 0.5 is truncated to an integral value, otherwise
(FRB) - 0.5 is truncated to an integral value.

FPSCRgpRE is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE =1.

Special Registers Altered:
FPRF FR (set to 0) Fl (set to 0)
FX
VXSNAN
CR1 (if Rc=1)

Floating Round to Integer Toward Zero
X-form

friz FRT,FRB (Rc=0)

friz. FRT,FRB (Re=1)
63 FRT | // | FRB 424 Rc

(] 6 11 16 21 31

The floating-point operand in register FRB is rounded
to an integral value using the rounding mode round
toward zero, and the result is placed into register FRT.

FPSCRgpRE is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE =1.

Special Registers Altered:
FPRF FR (set to 0) Fl (set to 0)
FX
VXSNAN
CR1 (if Rc=1)

The floating-point operand in register FRB is rounded
to an integral value using the rounding mode round
toward +infinity, and the result is placed into register
FRT.

FPSCRgpgr is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE =1.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)
FX
VXSNAN
CR1 (if Rc=1)

Floating Round to Integer Minus X-form

frim FRT,FRB (Rc=0)

frim. FRT,FRB (Re=1)
63 FRT n FRB 488 Rc

0 6 11 16 21 31

The floating-point operand in register FRB is rounded
to an integral value using the rounding mode round
toward -infinity, and the result is placed into register
FRT.

FPSCRepRr is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg = 1.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)
FX
VXSNAN
CR1 (if Re=1)

Chapter 4. Floating-Point Facility [Category: Floating-Point] 157

Version 2.07 B

4.6.8 Floating-Point Compare Instructions

The floating-point Compare instructions compare the
contents of two floating-point registers. Comparison
ignores the sign of zero (i.e., regards +0 as equal to
- 0). The comparison can be ordered or unordered.

The comparison sets one bit in the designated CR field
to 1 and the other three to 0. The FPCC is set in the
same way.

The CR field and the FPCC are set as follows.

Bit Name Description

0 FL (FRA) < (FRB)

1 FG (FRA) > (FRB)

2 FE (FRA) = (FRB)

3 FU (FRA) ? (FRB) (unordered)

Floating Compare Unordered X-form

Floating Compare Ordered X-form

fcmpu BF,FRA,FRB fcmpo BF,FRA,FRB
63 BF |//| FRA | FRB 0 / 63 BF |//| FRA FRB 32 /
0 6 9 |11 16 21 31 0 6 9 |11 16 21 31

if (FRA) is a NaN or

(FRB) 1s a NaN then c¢ < 0b0001
else 1f (FRA) < (FRB) then c¢ ¢« 0b1000
else if (FRA) > (FRB) then ¢ ¢« 0b0100
else c € 0b0010
FPCC € ¢

CRyxpr:axpr+3 € C
if (FRA) is an SNaN or

(FRB) is an SNaN then
VXSNAN < 1

The floating-point operand in register FRA is compared
to the floating-point operand in register FRB. The result
of the compare is placed into CR field BF and the
FPCC.

If either of the operands is a NaN, either quiet or signal-
ing, then CR field BF and the FPCC are set to reflect
unordered. If either of the operands is a Signaling NaN,
then VXSNAN is set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN

if (FRA) is a NaN or

(FRB) 1s a NaN then ¢ ¢ 0b0001
else 1f (FRA) < (FRB) then c¢ ¢« 0b1000
else if (FRA) > (FRB) then ¢ ¢ 0b0100
else c € 0b0010
FPCC ¢« ¢

CRyxpr:4xpr+3 € C
if (FRA) 1is an SNaN or

(FRB) 1s an SNaN then
VXSNAN ¢« 1
if VE = 0 then VXVC ¢« 1
else if (FRA) is a QNaN or
(FRB) 1is a QNaN then VXVC < 1

The floating-point operand in register FRA is compared
to the floating-point operand in register FRB. The result
of the compare is placed into CR field BF and the
FPCC.

If either of the operands is a NaN, either quiet or signal-
ing, then CR field BF and the FPCC are set to reflect
unordered. If either of the operands is a Signaling NaN,
then VXSNAN is set and, if Invalid Operation is dis-
abled (VE=0), VXVC is set. If neither operand is a Sig-
naling NaN but at least one operand is a Quiet NaN,
then VXVC is set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN VXVC

158 Power ISA™ - Book |

Version 2.07 B

4.6.9 Floating-Point Select Instruction

Floating Select A-form
fsel FRT,FRA,FRC,FRB (Re=0)
fsel. FRT,FRA,FRC,FRB (Re=1)

63 FRT | FRA | FRB | FRC 23 |Rc
0 6 11 16 21 26 31

if (FRA) 2 0.0 then FRT ¢ (FRC)
else FRT ¢« (FRB)

The floating-point operand in register FRA is compared
to the value zero. If the operand is greater than or equal
to zero, register FRT is set to the contents of register
FRC. If the operand is less than zero or is a NaN, regis-
ter FRT is set to the contents of register FRB. The com-
parison ignores the sign of zero (i.e., regards +0 as
equal to - 0).

Special Registers Altered:
CR1 (if Re=1)

—— Programming Note

Examples of uses of this instruction can be found in
Sections F.2, “Floating-Point Conversions [Cate-
gory: Floating-Point]” on page 726 and F.3, “Float-
ing-Point Selection [Category: Floating-Point]” on
page 730.

Warning: Care must be taken in using fsel if IEEE
compatibility is required, or if the values being
tested can be NaNs or infinities; see Section F.3.4,
“Notes” on page 730.

Chapter 4. Floating-Point Facility [Category: Floating-Point] 159

Version 2.07 B

4.6.10 Floating-Point Status and Control Register Instructions

Every Floating-Point Status and Control Register
instruction synchronizes the effects of all floating-point
instructions executed by a given processor. Executing
a Floating-Point Status and Control Register instruction
ensures that all floating-point instructions previously ini-
tiated by the given processor have completed before
the Floating-Point Status and Control Register instruc-
tion is initiated, and that no subsequent floating-point
instructions are initiated by the given processor until
the Floating-Point Status and Control Register instruc-
tion has completed. In particular:

B All exceptions that will be caused by the previously
initiated instructions are recorded in the FPSCR
before the Floating-Point Status and Control Reg-
ister instruction is initiated.

B All invocations of the system floating-point enabled
exception error handler that will be caused by the
previously initiated instructions have occurred
before the Floating-Point Status and Control Reg-
ister instruction is initiated.

B No subsequent floating-point instruction that
depends on or alters the settings of any FPSCR
bits is initiated until the Floating-Point Status and
Control Register instruction has completed.

(Floating-point Storage Access instructions are not
affected.)

The instruction descriptions in this section refer to
“FPSCR fields,” where FPSCR field k is FPSCR bits
4xk:4xk+3.

Move From FPSCR X-form

mffs FRT (Rc=0)

mffs. FRT (Re=1)
63 FRT /1 ! 583 Rc

0 6 11 16 21 31

The contents of the FPSCR are placed into register
FRT.

Special Registers Altered:
CR1 (if Re=1)

Move to Condition Register from FPSCR
X-form

mcrfs BF,BFA
63 BF |//| BFA |/ " 64 /
0 6 9 [11 1416 21 31

The contents of FPSCR3,.43 field BFA are copied to
Condition Register field BF. All exception bits copied
are set to 0 in the FPSCR. If the FX bit is copied, it is
set to 0 in the FPSCR.

Special Registers Altered:

CR field BF

FX OX (if BFA=0)
UX ZX XX VXSNAN (if BFA=1)
VXISI VXIDI VXZDZ VXIMZ (if BFA=2)
VXVC (if BFA=3)
VXSOFT VXSQRT VXCVI (if BFA=5)

160 Power ISA™ - Book |

Version 2.07 B

Move To FPSCR Field Immediate X-form

Move To FPSCR Fields XFL-form

mitfsfi BF,U,W (Rc=0) mtfsf FLM,FRB,L,W (Rc=0)
mtfsfi. BF,U,W (Re=1) mtfsf. FLM,FRB,L,W (Re=1)

63 | BF /] /T W[U [/ 134 Rc 63 L FLM |W|] FRB 711 |Rc
(] 6 9 |11 15|16 2021 31 0 6|7 15(16 21 31

The value of the U field is placed into FPSCR field
BF+8x(1-W).

FPSCREy is altered only if BF = 0 and W = 0.

Special Registers Altered:
FPSCR field BF + 8x(1-W)
CR1 (if Re=1)

— Programming Note

mtfsfi serves as both a basic and an extended
mnemonic. The Assembler will recognize a mtfsfi
mnemonic with three operands as the basic form,
and a mtfsfi mnemonic with two operands as the
extended form. In the extended form the W oper-
and is omitted and assumed to be 0.

—— Programming Note

When FPSCR35.35 is specified, bits 32 (FX) and 35
(OX) are set to the values of Uy and Uj (i.e., even if
this instruction causes OX to change from 0 to 1,
FXis set from Uy and not by the usual rule that FX
is set to 1 when an exception bit changes from 0 to
1). Bits 33 and 34 (FEX and VX) are set according
to the usual rule, given on page 115, and not from
Us:a.

The FPSCR is modified as specified by the FLM, L, and
W fields.

L=0

The contents of register FRB are placed into the
FPSCR under control of the W field and the field
mask specified by FLM. W and the field mask iden-
tify the 4-bit fields affected. Let i be an integer in
the range 0-7. If FLM;=1 then FPSCR field k is set
to the contents of the corresponding field of regis-
ter FRB, where k = i+8x(1-W).

L=1

The contents of register FRB are placed into the
FPSCR.

FPSCREy is not altered implicitly by this instruction.

Special Registers Altered:
FPSCR fields selected by mask, L, and W
CR1 (if Re=1)

— Programming Note

mtfsf serves as both a basic and an extended
mnemonic. The Assembler will recognize a mtfsf
mnemonic with four operands as the basic form,
and a mtfsf mnemonic with two operands as the
extended form. In the extended form the W and L
operands are omitted and both are assumed to be
0.

— Programming Note

Updating fewer than eight fields of the FPSCR may
have substantially poorer performance on some
implementations than updating eight fields or all of
the fields.

— Programming Note

If L=1 or if L=0 and FPSCR3».35 is specified, bits 32
(FX) and 35 (OX) are set to the values of (FRB)3,
and (FRB)35 (i.e., even if this instruction causes OX
to change from 0 to 1, FX is set from (FRB)3, and
not by the usual rule that FX is set to 1 when an
exception bit changes from 0 to 1). Bits 33 and 34
(FEX and VX) are set according to the usual rule,

given on page 115, and not from (FRB)33.34.

Chapter 4. Floating-Point Facility [Category: Floating-Point] 161

Version 2.07 B

Move To FPSCR Bit 0 X-form

Move To FPSCR Bit 1 X-form

mtfsb0 BT (Rc=0) mtfsb1 BT (Rc=0)
mtfsbO. BT (Re=1) mtfsb1. BT (Re=1)
63 BT I " 70 Rc 63 BT Vi " 38 Rc
0 6 11 16 21 31 0 6 11 16 21 31
Bit BT+32 of the FPSCR is set to 0. Bit BT+32 of the FPSCR is set to 1.
Special Registers Altered: Special Registers Altered:
FPSCR bit BT+32 FPSCR bits BT+32 and FX
CR1 (if Re=1) CR1 (if Re=1)

Programming Note

Bits 33 and 34 (FEX and VX) cannot be explicitly
reset.

Programming Note

Bits 33 and 34 (FEX and VX) cannot be explicitly
set.

162 Power ISA™ - Book |

Version 2.07 B

Chapter 5. Decimal Floating-Point [Category: Decimal

Floating-Point]

5.1 Decimal Floating-Point (DFP)
Facility Overview

This chapter describes the behavior of the decimal
floating-point facility, the supported data types, formats,
and classes, and the usage of registers. Also included
are the execution model, exceptions, and instructions
supported by the decimal floating-point facility.

The decimal floating-point (DFP) facility shares the 32
floating-point registers (FPRs) and the Floating-Point
Status and Control Register (FPSCR) with the float-
ing-point (BFP) facility. However, the interpretation of
data formats in the FPRs, and the meaning of some
control and status bits in the FPSCR are different
between the BFP and DFP facilities.

The DFP facility also shares the Condition Register
(CR) with the fixed-Point facility, the BFP faciltiy, and
the vector facility.

The DFP facility supports three DFP data formats: DFP
Short (single precision), DFP Long (double precision),
and DFP Extended (quad precision). Most operations
are performed on DFP Long or DFP Extended format
directly. Support for DFP Short is limited to conversion
to and from DFP Long. Some DFP instructions operate
on other data types, including signed or unsigned
binary fixed-point data, and signed or unsigned decimal
data.

DFP instructions are provided to perform arithmetic,
compare, test, quantum-adjustment, conversion, and
format operations on operands held in FPRs or FPR
pairs.

B Arithmetic instructions

These instructions perform addition, subtraction,
multiplication, and division operations.

B Compare instructions

These instructions perform a comparison opera-
tion on the numerical value of two DFP operands.

B Test instructions

These instructions test the data class, the data
group, the exponent, or the number of significant
digits of a DFP operand.

B Quantum-adjustment instructions

These instructions convert a DFP number to a
result in the form that has the designated expo-
nent, which may be explicitly or implicitly specified.

B Conversion instructions

These instructions perform conversion between
different data formats or data types.

B Format instructions

These instructions facilitate composing or decom-
posing a DFP operand.

These instructions are described in Section 5.6 “DFP
Instruction Descriptions” on page 182.

The three DFP data formats allow finite numbers to be
represented with different precision and ranges. Spe-
cial codes are also provided to represent +Infinity,
-Infinity, Quiet NaN (Not-a-Number), and Signaling
NaN. Operations involving infinities produce results
obeying traditional mathematical conventions. NaNs
have no mathematical interpretation. The encoding of
NaNs provides a diagnostic information field. This diag-
nostic field may be used to indicate such things as the
source of an uninitialized variable or the reason an
invalid result was produced.

The DFP processor recognizes a set of DFP excep-
tions which are indicated via bits set in the FPSCR.
Additionally, the DFP exception actions depend on the
setting of the various exception enable bits in the
FPSCR.

The following DFP exceptions are detected by the DFP
processor. The exception status bits in the FPSCR are
indicated in parentheses.

B Invalid Operation Exception (VX)
SNaN (VXSNAN)
0 - 0 (VXISI)
00 + 00 (VXIDI)
0+0 (VXZDZz)

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 163

Version 2.07 B

o x 0 (VXIMZ)
Invalid Compare (VXVC)
Invalid conversion (VXCVI)
B Zero Divide Exception (ZX)
® Overflow Exception (OX)
B Underflow Exception (UX)
B Inexact Exception (XX)

Each DFP exception and each category of Invalid
Operation Exception has an exception status bit in the
FPSCR. In addition, each of the five DFP exceptions
has a corresponding enable bit in the FPSCR. These
enable bits enable or disable the invocation of the sys-
tem floating-point enabled exception error handler, and
may affect the setting of some exception status bits in
the FPSCR.

The usage of these bits by the DFP facility differs from
the usage by the BFP facility. Section 5.5.10 “DFP
Exceptions” on page 174 provides a detailed discus-
sion of DFP exceptions, including the effects of the
enable bits.

5.2 DFP Register Handling

The following sections describe first how the float-
ing-point registers are utilized by the DFP facility. The
subsequent section covers the DFP usage of CR and
FPSCR.

5.2.1 DFP Usage of Floating-Point
Registers

The DFP facility shares the same 32 64-bit FPRs with
the BFP facility. Like the FP instructions, DFP instruc-
tions also use 5-bit fields for designating the FPRs to
hold the source or target operands.

When data in DFP Short format is held in a FPR, it
occupies the rightmost 32 bits of the FPR. The Load
Floating-Point as Integer Word Algebraic instruction is
provided to load the rightmost 32 bits of a FPR with a
single-word data from storage. The Store Floating-Point
as Integer Word instruction is available to store the
rightmost 32 bits of a FPR to a storage location.

Data in DFP Long format, 64-bit binary fixed-point val-
ues, or 64-bit BCD values is held in a FPR using all 64
bits. Data of 64 bits may be loaded from storage via any
of the Load Floating-Point Double instructions and
stored via any of the Store Floating-Point Double
instructions.

Data in DFP Extended format or 128-bit BCD values is
held in an even-odd FPR pair using all 128 bits. Data of
128 bits must be loaded into the desired even-odd pair
of floating-point registers using an appropriate
sequence of the Load Floating-Point Double instruc-
tions and stored using an appropriate sequence of the
Store Floating-Point Double instructions.

Data used as a source operand by any Decimal Float-
ing-Point instruction that was produced, either directly
or indirectly, by a Load Floating-Point Single instruction,
a Floating Round to Single-Precision instruction, or a
binary floating-point single-precision arithmetic instruc-
tion is boundedly undefined.

When an even-odd FPR pair is used to hold a 128-bit
operand, the even-numbered FPR is used to hold the
leftmost doubleword of the operand and the next
higher-numbered FPR is used to hold the rightmost
doubleword. A DFP instruction designating an
odd-numbered FPR for a 128-bit operand is an invalid
instruction form.

Programming Note

The Floating-Point Move instructions can be used
to move operands between FPRs.

The bit definitions for the FPSCR are as follows.

Bit(s) Description
0:28 Reserved

29:31 DFP Rounding Control (DRN)
See Section 5.5.2, “Rounding Mode Specifi-
cation” on page 171.

000Round to Nearest, Ties to Even
001Round toward Zero

010Round toward +Infinity

011Round toward -Infinity

100Round to Nearest, Ties away from 0
101 Round to Nearest, Ties toward O
110Round to away from Zero

111 Round to Prepare for Shorter Precision

Programming Note
FPSCRog is reserved for extension of the
DRN field, therefore DRN may be set
using the mifsfi instruction to set the
rounding mode.

32 Floating-Point Exception Summary (FX)
Every floating-point instruction, except mifsfi
and mitfsf, implicitly sets FPSCRgy to 1 if that
instruction causes any of the floating-point
exception bits in the FPSCR to change from 0
to 1. mcrfs, mifsfi, mifsf, mitfsb0, and
mtfsb1 can alter FPSCRgy explicitly.

33 Floating-Point Enabled Exception Sum-
mary (FEX)
This bit is the OR of all the floating-point
exception bits masked by their respective
enable bits. mecrfs, mifsfi, mifsf, mifsbo,
and mtfsb1 cannot alter FPSCRggx explicitly.

34 Floating-Point Invalid Operation Exception
Summary (VX)
This bit is the OR of all the Invalid Operation

164 Power ISA™ - Book |

Version 2.07 B

35

36

37

38

39

40

41

142

43

44

45

46

exception bits. merfs, mtfsfi, mitfsf, mtfsbo,
and mtfsb1 cannot alter FPSCRyy explicitly.

Floating-Point Overflow Exception (OX)See
Section 5.5.10.3, “Overflow Exception” on
page 177.

Floating-Point Underflow Exception (UX)
See Section 5.5.10.4, “Underflow Exception”
on page 178.

Floating-Point Zero Divide Exception (ZX)
See Section 5.5.10.2, “Zero Divide Exception”
on page 177.

Floating-Point Inexact Exception (XX)
See Section 5.5.10.5, “Inexact Exception” on
page 179.

FPSCRyx is a sticky version of FPSCRg, (see
below). Thus the following rules completely
describe how FPSCRyy is set by a given
instruction.

m If the instruction affects FPSCRE, the
new value of FPSCRyx is obtained by
ORing the old value of FPSCRyyx with
the new value of FPSCRg;.

® |f the instruction does not affect
FPSCRE,, the value of FPSCRyy is
unchanged.

Floating-Point Invalid Operation Exception
(SNaN) (VXSNAN)

See Section 5.5.10.1,
Exception” on page 176.

“Invalid Operation

Floating-Point Invalid Operation Exception
(co- 00) (VXISI)
See Section 5.5.10.1.

Floating-Point Invalid Operation Exception
(o0 = o) (VXIDI)
See Section 5.5.10.1.

Floating-Point Invalid Operation Exception
(0=0) (VXZD2Z)
See Section 5.5.10.1.

Floating-Point Invalid Operation Exception
(00 x 0) (VXIMZ)
See Section 5.5.10.1.

Floating-Point Invalid Operation Exception
(Invalid Compare) (VXVC)
See Section 5.5.10.1.

Floating-Point Fraction Rounded (FR)

The last Arithmetic or Rounding and Conver-
sion instruction incremented the fraction dur-
ing rounding. See Section 5.5.1, “Rounding”
on page 170. This bit is not sticky.

Floating-Point Fraction Inexact (FI)

The last Arithmetic or Rounding and Conver-
sion instruction either produced an inexact
result during rounding or caused a disabled

47:51

47

48:51

48

49

50
51
52
53

54

55

Overflow Exception. See Section 5.5.1. This
bit is not sticky.

See the definition of FPSCRyy, above,
regarding the relationship between FPSCRE,
and FPSCRXX

Floating-Point Result Flags (FPRF)

This field is set as described below. For arith-
metic, rounding, and conversion instructions,
the field is set based on the result placed into
the target register, except that if any portion of
the result is undefined then the value placed
into FPRF is undefined.

Floating-Point Result Class Descriptor (C)
Arithmetic, rounding, and conversion instruc-
tions may set this bit with the FPCC bits, to
indicate the class of the result as shown in
Figure 63 on page 166.

Floating-Point Condition Code (FPCC)
Floating-point Compare and DFP Test instruc-
tions set one of the FPCC bits to 1 and the
other three FPCC bits to 0. Arithmetic, round-
ing, and conversion instructions may set the
FPCC bits with the C bit, to indicate the class
of the result as shown in Figure 63 on
page 166. Note that in this case the high-order
three bits of the FPCC retain their relational
significance indicating that the value is less
than, greater than, or equal to zero.

Floating-Point Less Than or Negative (FL
or <)

Floating-Point Greater Than or Positive
(FG or >)

Floating-Point Equal or Zero (FE or =)
Floating-Point Unordered or NaN (FU or ?)
Reserved

Floating-Point Invalid Operation Exception
(Software Request) (VXSOFT)

This bit can be altered only by merfs, mifsfi,
mtfsf, mifsb0, or mifsb1. See
Section 5.5.10.1, “Invalid Operation Excep-
tion” on page 176.

Neither used nor changed by DFP.

— Programming Note

Although the architecture does not pro-
vide a DFP square root instruction, if soft-
ware simulates such an instruction, it
should set bit 54 whenever the source
operand of the square root function is
invalid.

Floating-Point Invalid Operation Exception
(Invalid Conversion) (VXCVI)
See Section 5.5.10.1.

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point]

165

Version 2.07 B

56 Floating-Point Invalid Operation Exception sign, which is followed by the numeric field. Positive
Enable (VE) numbers are represented in true binary notation with
See Section 5.5.10.1. the sign bit set to zero. When the value is zero, all bits
57 Floating-Point Overflow Exception Enable are zeros, |n9|ud|n9 the sign bit. Nggatlve numbers_ are
(OE) reprgsenteq in tV\(os cgmplement binary notation with a
See Section 5.5.10.3, “Overflow Exception” on one in the sign-bit position.
page 177. For decimal data, each byte contains a pair of four-bit
58 Floating-Point Underflow Exception Enable nibbles; each four-bit nibble contains a
binary-coded-decimal (BCD) code. There are two kinds
(UE) e , .
See Section 5.5.10.4, “Underflow Exception” of BCD codes: dlglt. code and sign coqle.. For unsigned
decimal data, all nibbles contain a digit code (D) as
on page 178. e
shown in Figure 64
59 Floating-Point Zero Divide Exception
Enable (ZE) N _ Ip|p|bp|p]...]p][D]|[D]|D|
See Section 5.5.10.2, “Zero Divide Exception”
on page 177. Figure 64. Format for Unsigned Decimal Data
60 Floating-Point Inexact Exception Enable For signed decimal data, the rightmost nibble contains
(XE) a sign code (S) and all other nibbles contain a digit
See Section 5.5.10.5, “Inexact Exception” on code as shown in Figure 65.
page 179
61 Reserved (not used by DFP) | D | D | D | D || D | D | D | S |
62:63 Binary Floating-Point Rounding Control Figure 65. Format for Signed Decimal Data
(RN)

The decimal digits 0-9 have the binary encoding

See Section 5.5.1, “Rounding” on page 170. 0000-1001. The preferred plus-sign codes are 1100

00 Round to Nearest and 1111. The preferred minus sign code is 1101.
01 Round toward Zero These are the sign codes generated for the results of
10 Round toward +Infinity the Decode DPD To BCD instruction. A selection is pro-
11 Round toward -Infinity vided by this instruction to specify which of the two pre-
ferred plus sign codes is to be generated. Alternate
Result sign codes are also recognized as valid in the sign
Flags Result Value Class position: 1010 and 1110 are alternate sign codes for
C<>=7 plus, and 1011 is an alternate sign code for minus.
0000 1 Signaling NaN (DFP only) Alternate sign codes are accepted for any source oper-
1000 1 Quiet NaN and, but are not generated as a result by the instruc-
01001 - Infinity tion. When an invalid digit.or sign_ code i§ detlected by
01000 | - Normal Number the Encode BCD To DPD instruction, an invalid-opera-
1100 0| - Subnormal Number
10010 - Zero
00010 | +Zero
1010 0| + Subnormal Number
00100 | +Normal Number
0010 1] +Infinity

Figure 63. Floating-Point Result Flags

5.3 DFP Support for Non-DFP
Data Types

In addition to the DFP data types, the DFP processor
provides limited support for the following non-DFP data
types: signed or unsigned binary fixed-point data, and
signed or unsigned decimal data.

In unsigned binary fixed-point data, all bits are used to
express the absolute value of the number. For signed
binary fixed-point data, the leftmost bit represents the

166 Power ISA™ - Book |

Version 2.07 B

tion exception occurs. A summary of digit and sign
codes are provided in Figure 66.

Binary Recognized As
Code Digit Sign
0000 0 Invalid
0001 1 Invalid
0010 2 Invalid
0011 3 Invalid
0100 4 Invalid
0101 5 Invalid
0110 6 Invalid
0111 7 Invalid
1000 8 Invalid
1001 9 Invalid
1010 Invalid Plus
1011 Invalid Minus
1100 Invalid Plus (preferred; option 1)
1101 Invalid Minus (preferred)
1110 Invalid Plus
1111 Invalid Plus (preferred; option 2)

Figure 66. Summary of BCD Digit and Sign Codes

5.4 DFP Number Representation

A DFP finite number consists of three components: a
sign bit, a signed exponent, and a significand. The
signed exponent is a signed binary integer. The signifi-
cand consists of a number of decimal digits, which are
to the left of the implied decimal point. The rightmost
digit of the significand is called the units digit. The
numerical value of a DFP finite number is represented
as (-1)%9" X significand X 108*P°"eM gnd the unit value
of this number is (7 X 10%XP°"e™) “which is called the
quantum.

DFP finite numbers are not normalized. This allows
leading zeros and trailing zeros to exist in the signifi-
cand. This unnormalized DFP number representation
allows some values to have redundant forms; each
form represents the DFP number with a different com-
bination of the significand value and the exponent
value. For example, 1000000 X 10% and 10 X 100 are
two different forms of the same numerical value. A form
of this number representation carries information about
both the numerical value and the quantum of a DFP
finite number.

The significant digits of a DFP finite number are the dig-
its in the significand beginning with the leftmost non-
zero digit and ending with the units digit.

5.4.1 DFP Data Format

DFP numbers and NaNs may be represented in FPRs
in any of the three data formats: DFP Short, DFP Long,
or DFP Extended. The contents of each data format
represent encoded information. Special codes are
assigned to NaNs and infinities. Different formats sup-
port different sizes in both significand and exponent.
Arithmetic, compare, test, quantum-adjustment, and
format instructions are provided for DFP Long and DFP
Extended formats only.

The sign is encoded as a one bit binary value. Signifi-
cand is encoded as an unsigned decimal integer in two
distinct parts. The leftmost digit (LMD) of the signifi-
cand is encoded as part of the combination field; the
remaining digits of the significand are encoded in the
trailing significand field. The exponent is contained in
the combination field in two parts. However, prior to
encoding, the exponent is converted to an unsigned
binary value called the biased exponent by adding a
bias value which is a constant for each format. The two
leftmost bits of the biased exponent are encoded with
the leftmost digit of the significand in the leftmost bits of
the combination field. The rest of the biased exponent
occupies the remaining portion of the combination field.

5.4.1.1 Fields Within the Data Format

The DFP data representation comprises three fields, as
diagrammed below for each of the three formats:

sLe [7
01 12 31
Figure 67. DFP Short format

o e | T |
01 14 63
Figure 68. DFP Long format

S e | T |
01 18 63

| T (continued) ‘
64 127
Figure 69. DFP Extended format

The fields are defined as follows:

Sign bit (S)
The sign bit is in bit 0 of each format, and is zero for
plus and one for minus.

Combination field (G)

As the name implies, this field provides a combination
of the exponent and the left-most digit (LMD) of the sig-
nificand, for finite numbers, or provides a special code

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 167

Version 2.07 B

for denoting the value as either a Not-a-Number or an
Infinity.

The first 5 bits of the combination field contain the
encoding of NaN or infinity, or the two leftmost bits of
the biased exponent and the leftmost digit (LMD) of the
significand. The following tables show the encoding:

Go-4 Description
11111 NaN
11110 | Infinity
All others | Finite Number (see Figure 71)
Figure 70. Encoding of the G field for Special
Symbols
Leftmost 2-bits of biased exponent
LMD
00 01 10
0 00000 01000 10000
1 00001 01001 10001
2 00010 01010 10010
3 00011 01011 10011
4 00100 01100 10100
5 00101 01101 10101
6 00110 01110 10110
7 00111 01111 10111
8 11000 11010 11100
9 11001 11011 11101

Figure 71. Encoding of bits 0:4 of the G field for

Finite Numbers

For DFP finite numbers, the rightmost N-5 bits of the
N-bit combination field contain the remaining bits of the
biased exponent. For NaNs, bit 5 of the combination
field is used to distinguish a Quiet NaN from a Signal-
ing NaN; the remaining bits in a source operand are
ignored and they are set to zeros in a target operand by
most operations. For infinities, the rightmost N-5 bits of
the N-bit combination field of a source operand are
ignored and they are set to zeros in a target operand by
most operations.

Trailing Significand field (T)

For DFP finite numbers, this field contains the remain-
ing significand digits. For NaNs, this field may be used
to contain diagnostic information. For infinities, con-
tents in this field of a source operand are ignored and
they are set to zeros in a target operand by most opera-
tions. The trailing significand field is a multiple of 10-bit
blocks. The multiple depends on the format. Each
10-bit block is called a declet and represents three dec-
imal digits, using the Densely Packed Decimal (DPD)
encoding defined in Appendix B.

5.4.1.2 Summary of DFP Data Formats

The properties of the three DFP formats are summa-
rized in the following table:.

Format
DFP Short DFP Long DFP Extended

Widths (bits):

Format 32 64 128

Sign (S) 1 1 1

Combination (G) 11 13 17

Trailing Significand (T) 20 50 110
Exponent:

Maximum biased 191 767 12,287

Maximum (Xnax) 90 369 6111

Minimum (Xmin) -101 -398 -6176

Bias 101 398 6176
Precision (p) (digits) 7 16 34
Magnitude:

Maximum normal number (Npzy) (107- 1) x 10% (1016 - 1) x 10%69 (10%% - 1) x 1081

Minimum normal number (Nyin) 1x10% 1x 107383 1x10°6143

168 Power ISA™ - Book |

Version 2.07 B

Format
DFP Short DFP Long DFP Extended
‘ Minimum subnormal number (Dppi,) 1x 107101 1x103%8 1x 106176

Figure 72. Summary of DFP Formats

5.4.1.3 Preferred DPD Encoding

Execution of DFP instructions decodes source oper-
ands from DFP data formats to an internal format for
processing, and encodes the operation result before
the final result is returned as the target operand.

As part of the decoding process, declets in the trailing
significand field of source operands are decoded to
their corresponding BCD digit codes using the
DPD-to-BCD decoding algorithm. As part of the encod-
ing process, BCD digit codes to be stored into the trail-
ing significand field of the target operand are encoded
into declets using the BCD-to-DPD encoding algorithm.
Both the decoding and encoding algorithms are defined
in Appendix B.

As explained in Appendix B, there are eight 3-digit dec-
imal values that have redundant DPD codes and one
preferred DPD code. All redundant DPD codes are rec-
ognized in source operands for the associated 3-digit
decimal number. DFP operations will always generate
the preferred DPD codes for the trailing significand field
of the target operand.

5.4.2 Classes of DFP Data

There are six classes of DFP data, which include
numerical and nonnumeric entities. The numerical enti-
ties include zero, subnormal number, normal number,
and infinity data classes. The nonnumeric entities
include quiet and signaling NaNs data classes. The
value of a DFP finite number, including zero, subnormal
number, and normal number, is a quantization of the
real number based on the data format. The Test Data
Class instruction may be used to determine the class of
a DFP operand. In general, an operation that returns a
DFP result sets the FPSCRgpgf field to indicate the
data class of the result.

The following tables show the value ranges for
finite-number data classes, and the codes for NaNs
and infinities.

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point]

169

Version 2.07 B

Data Class Sign Magnitude
Zero + 0"
Subnormal * Dmin < IXI' < Npin
Normal + Nmin < Yl < Npax

* The significand is zero and the exponent is any rep-
resentable value

Figure 73. Value Ranges for Finite Number Data

Classes
Data Class S G T
+Infinity 0] 11110XXX . . . XXX | XXX ... XXX
—Infinity 1] 11110xXXX . . . XXX | XXX ... XXX
Quiet NaN X [T11110xx . . . XXX | XXX ... XXX
Signaling NaN X | 1T1111IXX . . L XXX | XXX . . . XXX

x Don’t care

Figure 74. Encoding of NaN and Infinity Data
Classes

Zeros

Zeros have a zero significand and any representable
value in the exponent. A +0 is distinct from -0, and
zeros with different exponents are distinct, except that
comparison treats them as equal.

Subnormal Numbers
Subnormal numbers have values that are smaller than
Nmin @nd greater than zero in magnitude.

Normal Numbers
Normal numbers are nonzero finite numbers whose
magnitude is between Np,i, and N4 inclusively.

Infinities

Infinities are represented by 0b11110 in the leftmost 5
bits of the combination field. When an operation is
defined to generate an infinity as the result, a default
infinity is sometimes supplied. A default infinity has all
remaining bits in the combination field and trailing sig-
nificand field set to zeros.

When infinities are used as source operands, only the
leftmost 5 bits of the combination field are interpreted
(i.e., Ob11110 indicates the value is an infinity). The
trailing significand field of infinities is usually ignored.
For generated infinities, the leftmost 5 bits of the combi-
nation field are set to Ob11110 and all remaining combi-
nation bits are set to zero.

Infinities can participate in most arithmetic operations
and give a consistent result. In comparisons, any
+Infinity compares greater than any finite number, and
any -Infinity compares less than any finite number. All
+Infinity are compared equal and all -Infinity are com-
pared equal.

Signaling and Quiet NaNs
There are two types of Not-a-Numbers (NaNs), Signal-
ing (SNaN) and Quiet (QNaN).

0b111110 in the leftmost 6 bits of the combination field
indicates a Quiet NaN, whereas Ob111111 indicates a
Signaling NaN.

A special QNaN is sometimes supplied as the default
QNaN for a disabled invalid-operation exception; it has
a plus sign, the leftmost 6 bits of the combination field
set to Ob111110 and remaining bits in the combination
field and the trailing significand field set to zero.

Normally, source QNaNs are propagated during opera-
tions so that they will remain visible at the end. When a
QNaN is propagated, the sign is preserved, the decimal
value of the trailing significand field is preserved but
reencoded using the preferred DPD codes, and the
contents in the rightmost N-6 bits of the combination
field set to zero, where N is the width of the combina-
tion field for the format.

A source SNaN generally causes an invalid-operation
exception. If the exception is disabled, the SNaN is
converted to the corresponding QNaN and propagated.
The primary encoding difference between an SNaN
and a QNaN is that bit 5 of an SNaN is 1 and bit 5 of a
QNaN is 0. When an SNaN is propagated as a QNaN,
bit 5 is set to 0, and, just as with QNaN proagation, the
sign is preserved, the decimal value of the trailing sig-
nificand field is preserved but reencoded using the pre-
ferred DPD codes, and the contents in the rightmost
N-6 bits of the combination field set to zero, where N is
the width of the combination field for the format. For
some format-conversion instructions, a source SNaN
does not cause an invalid-operation exception, and an
SNaN is returned as the target operand.

For instructions with two source NaNs and a NaN is to
be propagated as the result, do the following.
m |If there is a QNaN in FRA and an SNaN in FRB,
the SNaN in FRB is propagated.
B Otherwise, propagate the NaN is FRA.

5.5 DFP Execution Model

DFP operations are performed as if they first produce
an intermediate result correct to infinite precision and
with unbounded range. The intermediate result is then
rounded to the destination’s precision according to one
of the eight DFP rounding modes. If the rounded result
has only one form, it is delivered as the final result; if
the rounded result has redundant forms, then an ideal
exponent is used to select the form of the final result.
The ideal exponent determines the form, not the value,
of the final result. (See Section 5.5.3 “Formation of
Final Result” on page 172.)

5.5.1 Rounding

Rounding takes a number regarded as infinitely precise
and, if necessary, modifies it to fit the destination’s pre-
cision. The destination’s precision of an operation
defines the set of permissible resultant values. For

170 Power ISA™ - Book |

Version 2.07 B

most operations, the destination’s precision is the tar-
get-format precision and the permissible resultant val-
ues are those values representable in the target format.
For some special operations, the destination precision
is constrained by both the target format and some addi-
tional restrictions, and the permissible resultant values
are a subset of the values representable in the target
format.

Rounding sets FPSCR bits FR and FI. When an inex-
act exception occurs, Fl is set to one; otherwise, Fl is
set to zero. When an inexact exception occurs and if
the rounded result is greater in magnitude than the
intermediate result, then FR is set to one; otherwise,
FR is set to zero. The exception is the Round to FP
Integer Without Inexact instruction, which always sets
FR and Fl to zero. Rounding may cause an overflow
exception or underflow exception; it may also cause an
inexact exception.

Refer to Figure 75 below for rounding. Let Z be the
intermediate result of a DFP operation. Z may or may
not fit in the destination’s precision. If Z is exactly one of
the permissible representable resultant values, then the
final result in all rounding modes is Z. Otherwise, either
Z1 or Z2 is chosen to approximate the result, where Z1
and Z2 are the next larger and smaller permissible
resultant values, respectively.

By increasing IZI

li Infinitely precise value

r By decreasing 1Z| ﬁ

[] | |
| I I
22| 2 0
z

Negative values «——F— Positive Values

i
<

»
»

| | |
| | I
z2 | 71
z

Figure 75. Rounding

Round to Nearest, Ties to Even

Choose the value that is closer to Z (Z1 or Z2). In case
of a tie, choose the one whose units digit would have
been even in the form with the largest common quan-
tum of the two permissible resultant values. However,
an infinitely precise result with magnitude at least (Ny,ax
+ 0.5Q(Npay)) is rounded to infinity with no change in
sign; where Q(Np,ax) is the quantum of N4y

Round toward 0
Choose the smaller in magnitude (Z1 or Z2).

Round toward +c
Choose Z1.

Round toward -
Choose Z2.

Round to Nearest, Ties away from 0
Choose the value that is closer to Z (Z1 or Z2). In case

of a tie, choose the larger in magnitude (Z1 or Z2).
However, an infinitely precise result with magnitude at
least (Npmax + 0.5Q(Npax)) is rounded to infinity with no
change in sign; where Q(Np,ay) is the quantum of Ny 4.

Round to Nearest, Ties toward 0

Choose the value that is closer to Z (Z1 or Z2). In case
of a tie, choose the smaller in magnitude (Z1 or Z2).
However, an infinitely precise result with magnitude
greater than (Npax + 0.5Q(Nmay)) is rounded to infinity
with no change in sign; where Q(N,5x) is the quantum
of Nrax-

Round away from 0
Choose the larger in magnitude (Z1 or Z2).

Round to prepare for shorter precision

Choose the smaller in magnitude (Z1 or Z2). If the
selected value is inexact and the units digit of the
selected value is either 0 or 5, then the digit is incre-
mented by one and the incremented result is delivered.
In all other cases, the selected value is delivered.
When a value has redundant forms, the units digit is
determined by using the form that has the smallest
exponent.

5.5.2 Rounding Mode Specifica-
tion

Unless otherwise specified in the instruction definition,
the rounding mode used by an operation is specified in
the DFP rounding control (DRN) field of the FPSCR.
The eight DFP rounding modes are encoded in the
DRN field as specified in the table below.

DRN Rounding Mode

000 Round to Nearest, Ties to Even

001 Round toward 0

010 Round toward +Infinity

011 Round toward -Infinity

100 Round to Nearest, Ties away from O
101 Round to Nearest, Ties toward O

110 Round away from 0

111 Round to Prepare for Shorter Precision

Figure 76. Encoding of
Control (DRN)

DFP Rounding-Mode

For the quantum-adjustment, a 2-bit immediate field,
called RMC (Rounding Mode Control), in the instruction
specifies the rounding mode used. The RMC field may
contain a primary encoding or a secondary encoding.
For Quantize, Quantize Immediate, and Reround, the
RMC field contains the primary encoding. For Round
to FP Integer the field contains either encoding,
depending on the setting of a RMC-encoding-selection

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 171

Version 2.07 B

bit. The following tables define the primary encoding
and the secondary encoding.

P::m?:ry Rounding Mode
00 Round to nearest, ties to even
01 Round toward 0
10 Round to nearest, ties away from 0

11 Round according to FPSCRpRryn
Figure 77. Primary Encoding of Rounding-Mode

Control
Secl::“:gary Rounding Mode
00 Round to + ©
01 Round to - «
10 Round away from 0
11 Round to nearest, ties toward O

Figure 78. Secondary Encoding of Rounding-Mode
Control

5.5.3 Formation of Final Result

An ideal exponent is defined for each DFP instruction
that returns a DFP data operand.

5.5.3.1 Use of Ideal Exponent

For all DFP operations,

m if the rounded intermediate result has only one
form, then that form is delivered as the final result.

B if the rounded intermediate result has redundant.
forms and is exact, then the form with the exponent
closest to the ideal exponent is delivered.

B if the rounded intermediate result has redundant
forms and is inexact, then the form with the small-
est exponent is delivered.

The following table specifies the ideal exponent for

each instruction.

Quantize-Immediate
Quantize
Reround
Round to FP Integer
Convert to DFP Long

Convert to DFP
Extended

Round to DFP Short
Round to DFP Long
Convert from Fixed
Encode BCD to DPD
Insert Biased Expo-

Operations Ideal Exponent

Add min(E(FRA), E(FRB))
Subtract min(E(FRA), E(FRB))
Multiply E(FRA) + E(FRB)
Divide E(FRA) - E(FRB)

See Instruction Description
E(FRA)

See Instruction Description
max(0, E(FRA))

E(FRA)

E(FRA)

E(FRA)
E(FRA)
0
0
E(FRA)

nent

Notes:

E(x) - exponent of the DFP operand in register x.

Figure 79. Summary of Ideal Exponents

5.5.4 Arithmetic Operations

Four arithmetic operations are provided: Add, Subtract,
Multiply, and Divide.

5.5.4.1 Sign of Arithmetic Result

The following rules govern the sign of an arithmetic
operation when the operation does not yield an excep-
tion. They apply even when the operands or results are
zeros or infinities.

B The sign of the result of an add operation is the
sign of the source operand having the larger abso-
lute value. If both source operands have the same
sign, the sign of the result of an add operation is
the same as the sign of the source operands.
When the sum of two operands with opposite signs
is exactly zero, the sign of the result is positive in
all rounding modes except Round toward -w, in
which case the sign is negative.

B The sign of the result of the subtract operation x - y
is the same as the sign of the result of the add
operation x + (-y).

B The sign of the result of a multiply or divide opera-
tion is the exclusive-OR of the signs of the source
operands.

172 Power ISA™ - Book |

Version 2.07 B

5.5.5 Compare Operations

Two sets of instructions are provided for comparing
numerical values: Compare Ordered and Compare
Unordered. In the absence of NaNs, these instructions
work the same. These instructions work differently
when either of the followings is true:

1. Atleast one source operand of the instruction is an
SNaN and the invalid-operation exception is dis-
abled.

2. When there is no SNaN in any source operand, at
least one source operand of the instruction is a
QNaN

In case 1, Compare Unordered recognizes an
invalid-operation exception and sets the FPSCRyxsnaN
flag, but Compare Ordered recognizes the exception
and sets both the FPSCRyxsnan @and FPSCRyxyc
flags. In case 2, Compare Unordered does not recog-
nize an exception, but Compare Ordered recognizes an
invalid-operation exception and sets the FPSCRyxyc
flag.

For finite numbers, comparisons are performed on val-
ues, that is, all redundant forms of a DFP number are
treated equal.

Comparisons are always exact and cannot cause an
inexact exception.

Comparison ignores the sign of zero, that is, +0 equals
-0.

Infinities with like sign compare equal, that is, +x
equals +o, and - equals -oo.

A NaN compares as unordered with any other operand,
whether a finite number, an infinity, or another NaN,
including itself.

Execution of a compare instruction always completes,
regardless of whether any DFP exception occurs or
not, and whether the exception is enabled or not.

5.5.6 Test Operations

Four kinds of test operations are provided: Test Data
Class, Test Data Group, Test Exponent, and Test Signif-
icance.

The Test Data Class instruction examines the contents
of a source operand and determines if the operand is
one of the specified data classes. The test result and
the sign of the source operand are indicated in the
FPSCREpcc field and CR field BF.

The Test Data Group instruction examines the contents
of a source operand and determines if the operand is
one of the specified data groups. The test result and
the sign of the source operand are indicated in the
FPSCREpc(field and CR field BF.

The Test Exponent instruction compares the exponent
of the two source operands. The test operation ignores

the sign and significand of operands. Infinities compare
equal, and NaNs compare equal. The test result is indi-
cated in the FPSCRgpc(field and CR field BF.

The Test Significance instruction compares the number
of significant digits of one source operand with the ref-
erenced number of significant digits in another source
operand. The test result is indicated in the FPSCRgpcc
field and CR field BF.

Execution of a test instruction does not cause any DFP
exception.

5.5.7 Quantum Adjustment Opera-
tions

Four kinds of quantum-adjustment operations are pro-
vided: Quantize, Quantize Immediate, Reround, and
Round To FP Integer. Each of them has an immediate
field which specifies whether the rounding mode in
FPSCR or a different one is to be used.

The Quantize instruction is used to adjust a DFP num-
ber to the form that has the specified target exponent.
The Quantize Immediate instruction is similar to the
Quantize instruction, except that the target exponent is
specified in a 5-bit immediate field as a signed binary
integer and has a limited range.

The Reround instruction is used to simulate a DFP
operation of a precision other than that of DFP Long or
DFP Extended. For the Reround instruction to produce
a result which accurately reflects that which would have
resulted from a DFP operation of the desired precision
d in the range {1: 33} inclusively, the following condi-
tions must be met:

B The precision of the preceding DFP operation
must be at least one digit larger than d.

B The rounding mode used by the preceding DFP
operation must be round-to-pre-
pare-for-shorter-precision.

The Round To FP Integer instruction is used to round a
DFP number to an integer value of the same format.
The target exponent is implicitly specified, and is
greater than or equal to zero.

5.5.8 Conversion Operations

There are two kinds of conversion operations: data-for-
mat conversion and data-type conversion.

5.5.8.1 Data-Format Conversion

The instructions Convert To DFP Long and Convert To
DFP Extended convert DFP operands to wider formats;
the instructions Round To DFP Short and Round To
DFP Long convert DFP operands to narrower formats.

When converting a finite number to a wider format, the
result is exact. When converting a finite number to a

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 173

Version 2.07 B

narrower format, the source operand is rounded to the
target-format precision, which is specified by the
instruction, not by the target register size.

When converting a finite number, the ideal exponent of
the result is the source exponent.

Conversion of an infinity or NaN to a different format
does not preserve the source combination field. Let N
be the width of the target format’s combination field.

B When the result is an infinity or a QNaN, the con-
tents of the rightmost N-5 bits of the N-bit target
combination field are set to zero.

B When the result is an SNaN, bit 5 of the target for-
mat’s combination field is set to one and the right-
most N-6 bits of the N-bit target combination field
are set to zero.

When converting a NaN to a wider format or when con-
verting an infinity from DFP Short to DFP Long, digits in
the source trailing significand field are reencoded using
the preferred DPD codes with sufficient zeros
appended on the left to form the target trailing signifi-
cand field. When converting a NaN to a narrower for-
mat or when converting an infinity from DFP Long to
DFP Short, the appropriate number of leftmost digits of
the source trailing significand field are removed and the
remaining digits of the field are reencoded using the
preferred DPD codes to form the target trailing signifi-
cand field.

When converting an infinity between DFP Long and
DFP Extended, a default infinity with the same sign is
produced.

When converting an SNaN between DFP Short and
DFP Long, it is converted to an SNaN without causing
an invalid-operation exception. When converting an
SNaN between DFP Long and DFP Extended, the
invalid-operation exception occurs; if the invalid-opera-
tion exception is disabled, the result is converted to the
corresponding QNaN.

5.5.8.2 Data-Type Conversion

The instructions Convert From Fixed and Convert To
Fixed are provided to convert a number between the
DFP data type and the signed 64-bit binary-integer
data type.

Conversion of a signed 64-bit binary integer to a DFP
Extended number is always exact.

Conversion of a DFP number to a signed 64-bit binary
integer results in an invalid-operation exception when
the converted value does not fit into the target format,
or when the source operand is an infinity or NaN. When
the exception is disabled, the most positive integer is
returned if the source operand is a positive number or
+o0, and the most negative integer is returned if the
source operand is a negative number, -0, or NaN.

5.5.9 Format Operations

The format instructions are provided to facilitate com-
posing or decomposing a DFP number, and consist of
Encode BCD To DPD, Decode DPD To BCD, Extract
Biased Exponent, Insert Biased Exponent, Shift Signifi-
cand Left Immediate, and Shift Significand Right Imme-
diate. A source operand of SNaN does not cause an
invalid-operation exception, and an SNaN may be pro-
duced as the target operand.

5.5.10 DFP Exceptions

This architecture defines the following DFP exceptions:

B Invalid Operation Exception

SNaN

o0 = 00

o0 + 00

0+0

0 X0

Invalid Compare

Invalid Conversion
Zero Divide Exception
Overflow Exception
Underflow Exception
B Inexact Exception

These exceptions may occur during execution of a DFP
instruction.

Each DFP exception, and each category of the Invalid
Operation Exception, has an exception status bit in the
FPSCR. In addition, each DFP exception has a corre-
sponding enable bit in the FPSCR. The exception sta-
tus bit indicates occurrence of the corresponding
exception. If an exception occurs, the corresponding
enable bit governs the result produced by the instruc-
tion and, in conjunction with the FEO and FE1 bits (see
the discussion of FEO and FE1 below), whether and
how the system floating-point enabled exception error
handler is invoked. (In general, the enabling specified
by the enable bit is of invoking the system error handler,
not of permitting the exception to occur. The occur-
rence of an exception depends only on the instruction
and its source operands, not on the setting of any con-
trol bits. The only deviation from this general rule is that
the occurrence of an Underflow Exception may depend
on the setting of the enable bit.)

A single instruction, other than mifsfi or mitfsf, may set
more than one exception bit only in the following cases:

B Inexact Exception may be set with Overflow
Exception.

B Inexact Exception may be set with Underflow
Exception.

B Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Compare)
for Compare Ordered instructions

174 Power ISA™ - Book |

Version 2.07 B

B [nvalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Conver-
sion) for Convert To Fixed instructions.

When an exception occurs the instruction execution
may be completed or partially completed, depending on
the exception and the operation.

For all instructions, except for the Compare and Test
instructions, the following exceptions cause the instruc-
tion execution to be partially completed. That is, setting
of CR field 1(when Rc=1) and exception status flags is
performed, but no result is stored into the target FPR or
FPR pair. For Compare and Test instructions, instruc-
tion execution is always completed, regardless of
whether any DFP exception occurs or not, and whether
the exception is enabled or not.

B Enabled Invalid Operation
B Enabled Zero Divide

For the remaining kinds of exceptions, instruction exe-
cution is completed, a result, if specified by the instruc-
tion, is generated and stored into the target FPR or
FPR pair, and appropriate status flags are set. The
result may be a different value for the enabled and dis-
abled conditions for some of these exceptions. The
kinds of exceptions that deliver a result in target FPR
are the following:

B Disabled Invalid Operation
Disabled Zero Divide
Disabled Overflow
Disabled Underflow
Disabled Inexact

Enabled Overflow
Enabled Underflow

B Enabled Inexact

Subsequent sections define each of the DFP excep-
tions and specify the action that is taken when they are
detected.

The IEEE standard specifies the handling of excep-
tional conditions in terms of “traps” and “trap handlers”.
In this architecture, a FPSCR exception enable bit of 1
causes generation of the result value specified in the
IEEE standard for the “trap enabled” case: the expecta-
tion is that the exception will be detected by software,
which will revise the result. A FPSCR exception enable
bit of 0 causes generation of the “default result” value
specified for the “trap disabled” (or “no trap occurs” or
“trap is not implemented”) case: the expectation is that
the exception will not be detected by software, which
will simply use the default result. The result to be deliv-
ered in each case for each exception is described in the
sections below.

The IEEE default behavior when an exception occurs is
to generate a default value and not to notify software.
In this architecture, if the IEEE default behavior when
an exception occurs is desired for all exceptions, all
FPSCR exception enable bits should be set to zero and
Ignore Exceptions Mode (see below) should be used.

In this case the system floating-point enabled exception
error handler is not invoked, even if DFP exceptions
occur: software can inspect the FPSCR exception bits if
necessary, to determine whether exceptions have
occurred.

In this architecture, if software is to be notified that a
given kind of exception has occurred, the correspond-
ing FPSCR exception enable bit must be set to one and
a mode other than Ignore Exceptions Mode must be
used. In this case the system floating-point enabled
exception error handler is invoked if an enabled DFP
exception occurs. The system floating-point enabled
exception error handler is also invoked if a Move To
FPSCR instruction causes an exception bit and the cor-
responding enable bit both to be 1; the Move To
FPSCR instruction is considered to cause the enabled
exception.

The FEO and FE1 bits control whether and how the sys-
tem floating-point enabled exception error handler is
invoked if an enabled DFP exception occurs. The loca-
tion of these bits and the requirements for altering them
are described in Book Ill, Power AS Operating Environ-
ment Architecture. (The system floating-point enabled
exception error handler is never invoked because of a
disabled DFP exception.) The effects of the four possi-
ble settings of these bits are as follows.

FEO FE1 Description

0 0 Ignore Exceptions Mode
DFP exceptions do not cause the system
floating-point enabled exception error

handler to be invoked.

Imprecise Nonrecoverable Mode

The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. It may not be pos-
sible to identify the excepting instruction
or the data that caused the exception.
Results produced by the excepting
instruction may have been used by or may
have affected subsequent instructions that
are executed before the error handler is
invoked.

Imprecise Recoverable Mode

The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. Sufficient informa-
tion is provided to the error handler that it
can identify the excepting instruction and
the operands, and correct the result. No
results produced by the excepting instruc-
tion have been used by or have affected
subsequent instructions that are exe-
cuted before the error handler is invoked.

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 175

Version 2.07 B

FEO FE1 Description

1 1 Precise Mode
The system floating-point enabled excep-
tion error handler is invoked precisely at
the instruction that caused the enabled
exception.

In all cases, the question of whether a DFP result is
stored, and what value is stored, is governed by the
FPSCR exception enable bits, as described in subse-
quent sections, and is not affected by the value of the
FEO and FE1 bits.

In all cases in which the system floating-point enabled
exception error handler is invoked, all instructions
before the instruction at which the system floating-point
enabled exception error handler is invoked have com-
pleted, and no instruction after the instruction at which
the system floating-point enabled exception error han-
dler is invoked has begun execution. (Recall that, for
the two Imprecise modes, the instruction at which the
system floating-point enabled exception error handler is
invoked need not be the instruction that caused the
exception.) The instruction at which the system float-
ing-point enabled exception error handler is invoked
has not been executed unless it is the excepting
instruction, in which case it has been executed if the
exception is not among those listed on page 174 as
suppressed.

—— Programming Note

In the ignore and both imprecise modes, a Float-
ing-Point Status and Control Register instruction
can be used to force any exceptions, due to instruc-
tions initiated before the Floating-Point Status and
Control Register instruction, to be recorded in the
FPSCR. (This forcing is superfluous for Precise
Mode.)

In either of the Imprecise modes, a Floating-Point
Status and Control Register instruction can be
used to force any invocations of the system float-
ing-point enabled exception error handler, due to
instructions initiated before the Floating-Point Sta-
tus and Control Register instruction, to occur. (This
forcing has no effect in Ignore Exceptions Mode,
and is superfluous for Precise Mode.)

In order to obtain the best performance across the wid-
est range of implementations, the programmer should
obey the following guidelines.

B [f the IEEE default results are acceptable to the
application, Ignore Exceptions Mode should be
used with all FPSCR exception enable bits set to
zero.

B [f the IEEE default results are not acceptable to the
application, Imprecise Nonrecoverable Mode
should be used, or Imprecise Recoverable Mode if
recoverability is needed, with FPSCR exception

enable bits set to one for those exceptions for
which the system floating-point enabled exception
error handler is to be invoked.

B |gnore Exceptions Mode should not, in general, be
used when any FPSCR exception enable bits are
set to one.

B Precise Mode may degrade performance in some
implementations, perhaps substantially, and there-
fore should be used only for debugging and other
specialized applications.

5.5.10.1 Invalid Operation Exception

Definition

An Invalid Operation Exception occurs when an oper-
and is invalid for the specified DFP operation. The
invalid DFP operations are:

B Any DFP operation on a signaling NaN (SNaN),

except for Test, Round To DFP Short, Convert To

DFP Long, Decode DPD To BCD, Extract Biased

Exponent, Insert Biased Exponent, Shift Signifi-

cand Left Immediate, and Shift Significand Right

Immediate

For add or subtract operations, magnitude subtrac-

tion of infinities (+o0) + (-o0)

Division of infinity by infinity (co + o)

Division of zero by zero (0 + 0)

Multiplication of infinity by zero (e X 0)

Ordered comparison involving a NaN (Invalid Com-

pare)

The Quantize operation detects that the significand

associated with the specified target exponent

would have more significant digits than the tar-

get-format precision

B For the Quantize operation, when one source
operand specifies an infinity and the other speci-
fies a finite number

B The Reround operation detects that the target
exponent associated with the specified target sig-
nificance would be greater than X«

B The Encode BCD To DPD operation detects an
invalid BCD digit or sign code

B The Convert To Fixed operation involving a number
too large in magnitude to be represented in the tar-
get format, or involving a NaN.

176 Power ISA™ - Book |

Version 2.07 B

—— Programming Note

In addition, an Invalid Operation Exception occurs if
software explicitly requests this by executing an
mtfsfi, mitfsf, or mifsb1 instruction that sets
FPSCRyxsort to 1 (Software Request). The pur-
pose of FPSCRyxgort is to allow software to
cause an Invalid Operation Exception for a condi-
tion that is not necessarily associated with the exe-
cution of a DFP instruction. For example, it might
be set by a program that computes a square root, if
the source operand is negative.

Action

The action to be taken depends on the setting of the
Invalid Operation Exception Enable bit of the FPSCR.

When Invalid Operation Exception is enabled
(FPSCRyg=1) and Invalid Operation occurs, the follow-
ing actions are taken:

1. One or two Invalid Operation Exceptions are set:

FPSCRVXSNAN (If SNaN)
FPSCRVX|S| (If 0 - OO)
FPSCRVX|D| (If 0 + OO)
FPSCRVXZDZ (lf 0+ 0)
FPSCRVX|MZ (If o X 0)
FPSCRyxvc (if invalid comp)
FPSCRyxcvi (if invalid conversion)

2. If the operation is an arithmetic, quantum-adjust-
ment, conversion, or format,
the target FPR is unchanged,
FPSCRER F are set to zero, and
FPSCREpRE is unchanged.
3. If the operation is a compare,
FPSCRER F| ¢ are unchanged, and
FPSCRgpcc is set to reflect unordered.

When Invalid Operation Exception is disabled
(FPSCRyg=0) and Invalid Operation occurs, the follow-
ing actions are taken:

1. One or two Invalid Operation Exceptions are set:

FPSCRVXSNAN (If SNaN)
FPSCRVX|S| (If o0 - OO)
FPSCRVX|D| (If o0 + OO)
FPSCRVXZDZ (If 0=+ 0)
FPSCRVX”VIZ (If 0 X 0)
FPSCRyxvc (if invalid comp)
FPSCRyxcvi (if invalid conversion)

2. If the operation is an arithmetic, quantum-adjust-
ment, Round to DFP Long, Convert to DFP
Extended, or format

the target FPR is set to a Quiet NaN

FPSCRER [are set to zero

FPSCREgpRE is set to indicate the class of the
result (Quiet NaN)

3. If the operation is a Convert To Fixed

the target FPR is set as follows:
FRT is set to the most positive 64-bit binary
integer if the operand in FRB is a positive or

+o, and to the most negative 64-bit binary
integer if the operand in FRB is a negative
number, - , or NaN.

FPSCRgR F are set to zero

FPSCRgpRr is unchanged

4. If the operation is a compare,
FPSCRER F| ¢ are unchanged
FPSCREpcc is set to reflect unordered

5.5.10.2 Zero Divide Exception

Definition

A Zero Divide Exception occurs when a Divide instruc-
tion is executed with a zero divisor value and a finite
nonzero dividend value.

Action

The action to be taken depends on the setting of the
Zero Divide Exception Enable bit of the FPSCR.

When Zero Divide Exception is enabled (FPSCRzg=1)
and Zero Divide occurs, the following actions are taken:

1. Zero Divide Exception is set
FPSCRZX « 1

2. The target FPR is unchanged

3. FPSCRgR) are set to zero

4. FPSCRgpR is unchanged

When Zero Divide Exception is disabled (FPSCRzg=0)
and Zero Divide occurs, the following actions are taken:

1. Zero Divide Exception is set
FPSCRzx < 1

2. The target FPR is set to +w, where the sign is
determined by the XOR of the signs of the oper-
ands

3. FPSCRgR) are set to zero

4. FPSCRgpgf is set to indicate the class and sign of
the result (+o0)

5.5.10.3 Overflow Exception

Definition

An overflow exception occurs whenever the target for-
mat’s largest finite number is exceeded in magnitude by
what would have been the rounded result if the expo-
nent range were unbounded.

Action

Except for Reround, the following describes the han-
dling of the IEEE overflow exception condition. The
Reround operation does not recognize an overflow
exception condition.

The action to be taken depends on the setting of the
Overflow Exception Enable bit of the FPSCR.

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 177

Version 2.07 B

When Overflow Exception is enabled (FPSCRpg=1)
and overflow occurs, the following actions are taken:

1. Overflow Exception is set
FPSCROX « 1

2. The infinitely precise result is divided by 10%. That
is, the exponent adjustment o is subtracted from
the exponent. This is called the wrapped result.
The exponent adjustment for all operations, except
for Round To DFP Short and Round To DFP Long,
is 576 for DFP Long and 9216 for DFP Extended.
For Round To DFP Short and Round To DFP Long,
the exponent adjustment is 192 for the source for-
mat of DFP Long and 3072 for the source format of
DFP Extended.

3. The wrapped result is rounded to the target-format
precision. This is called the wrapped rounded
result.

4. If the wrapped rounded result has only one form, it
is the delivered result. If the wrapped rounded
result has redundant forms and is exact, the result
of the form that has the exponent closest to the
wrapped ideal exponent is returned. If the wrapped
rounded result has redundant forms and is inexact,
the result of the form that has the smallest expo-
nent is returned. The wrapped ideal exponent is
the result of subtracting the exponent adjustment
from the ideal exponent.

5. FPSCREgpgf is set to indicate the class and sign of
the result (= Normal Number)

When Overflow Exception is disabled (FPSCRpg=0)
and overflow occurs, the following actions are taken:

1. Overflow Exception is set
FPSCRox < 1
2. Inexact Exception is set
FPSCRXX <1
3. The result is determined by the rounding mode
and the sign of the intermediate result as follows.

Sign of inter-
mediate result
Rounding Mode Plus | Minus
Round to Nearest, Ties to Even +00 -0
Round toward 0 +Nmax | “Nmax
Round toward +o0 + 00 -Nmax
Round toward - o« +Nmax -0
Round to Nearest, Ties away +00 -00
from O
Round to Nearest, Ties toward 0 +00 -00
Round away from 0 +00 -00
Round to prepare for shorter pre- | +Nmax | -Nmax
cision

Figure 80. Overflow Results When Exception Is
Disabled

4. The result is placed into the target FPR

5. FPSCRgR is set to one if the returned result is + o,
and is set to zero if the returned result is N5

6. FPSCRg, is set to one

7. FPSCRgpRe is set to indicate the class and sign of
the result (+ o« or + Normal number)

5.5.10.4 Underflow Exception

Definition

Except for Reround, the following describes the han-
dling of the IEEE underflow exception condition. The
Reround operation does not recognize an underflow
exception condition.

The Underflow Exception is defined differently for the
enabled and disabled states. However, a tininess condi-
tion is recognized in both states when a result com-
puted as though both the precision and exponent range
were unbounded would be nonzero and less than the
target format’s smallest normal number, Ny, in magni-
tude.

Unless otherwise defined in the instruction description,
an underflow exception occurs as follows:

B Enabled:
When the tininess condition is recognized.

B Disabled:
When the tininess condition is recognized and
when the delivered result value differs from what
would have been computed were both the preci-
sion and the exponent range unbounded.

Action

The action to be taken depends on the setting of the
Underflow Exception Enable bit of the FPSCR.

When Underflow Exception is enabled (FPSCRyg=1)
and underflow occurs, the following actions are taken:

1. Underflow Exception is set
FPSCRUX «1

2. The infinitely precise result is multiplied by 10%.
That is, the exponent adjustment o is added to the
exponent. This is called the wrapped result. The
exponent adjustment for all operations, except for
Round To DFP Short and Round To DFP Long, is
576 for DFP Long and 9216 for DFP Extended. For
Round To DFP Short and Round To DFP Long, the
exponent adjustment is 192 for the source format
of DFP Long and 3072 for the source format of
DFP Extended.

3. The wrapped result is rounded to the target-format
precision. This is called the wrapped rounded
result.

4. If the wrapped rounded result has only one form, it
is the delivered result. If the wrapped rounded
result has redundant forms and is exact, the result
of the form that has the exponent closest to the

178 Power ISA™ - Book |

Version 2.07 B

wrapped ideal exponent is returned. If the wrapped
rounded result has redundant forms and is inexact,
the result of the form that has the smallest expo-
nent is returned. The wrapped ideal exponent is
the result of adding the exponent adjustment to the
ideal exponent.

5. FPSCRgpRE is set to indicate the class and sign of
the result (+ Normal number)

When Underflow Exception is disabled (FPSCRg=0)
and underflow occurs, the following actions are taken:

1. Underflow Exception is set
FPSCRUX « 1

2. The infinitely precise result is rounded to the tar-
get-format precision.

3. The rounded result is returned. If this result has
redundant forms, the result of the form that is clos-
est to the ideal exponent is returned.

4. FPSCRgpRf is set to indicate the class and sign of
the result (+ Normal number, + Subnormal Num-
ber, or + Zero)

5.5.10.5 Inexact Exception

Definition

Except for Round to FP Integer Without Inexact, the fol-
lowing describes the handling of the IEEE inexact
exception condition. The Round to FP Integer Without
Inexact does not recognize an inexact exception condi-
tion.

An Inexact Exception occurs when either of two condi-
tions occur during rounding:

1. The delivered result differs from what would have
been computed were both the precision and expo-
nent range unbounded.

2. The rounded result overflows and Overflow Excep-
tion is disabled.

Action

The action to be taken does not depend on the setting
of the Inexact Exception Enable bit of the FPSCR.

When Inexact Exception occurs, the following actions
are taken:

1. Inexact Exception is set
FPSCRXX «1
2. The rounded or overflowed result is placed into the
target FPR
3. FPSCRgpgf is set to indicate the class and sign of
the result

Programming Note

In some implementations, enabling Inexact Excep-
tions may degrade performance more than does
enabling other types of floating-point exception.

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 179

Version 2.07 B

5.5.11 Summary of Normal Rounding And Range Actions

Figure 81 and Figure 82 summarize rounding and

range actions, with the following exceptions:

B The Reround operation recognizes neither an
underflow nor an overflow exception.

B The Round to FP Integer Without Inexact opera-
tion does not recognize the inexact operation

exception.
Result (r)
when Rounding Mode Is
Range of v Case RNE RNTZ RNAZ RAFZ RTMI RFSP RTPI RTZ
v < -Nmax, q < -Nmax Overflow -oo! -0t -0t 0! 0! -Nmax | -Nmax | -Nmax
v < -Nmax, q = -Nmax Normal -Nmax | -Nmax | -Nmax — — -Nmax | -Nmax | -Nmax
-Nmax < v <-Nmin Normal b b b b b b b b
-Nmin < v <-Dmin Tiny b* b* b* b* b* b* b b
-Dmin < v < -Dmin/2 Tiny -Dmin -Dmin -Dmin -Dmin -Dmin -Dmin -0 -0
v = -Dmin/2 Tiny -0 -0 -Dmin -Dmin -Dmin -Dmin -0 -0
-Dmin/2<v <0 Tiny -0 -0 -0 -Dmin -Dmin -Dmin -0 -0
v=0 EZD +0 +0 +0 +0 -0 +0 +0 +0
0 <V < +Dmin/2 Tiny +0 +0 +0 +Dmin +0 +Dmin | +Dmin +0
v = +Dmin/2 Tiny +0 +0 +Dmin | +Dmin +0 +Dmin | +Dmin +0
+Dmin/2 < v < +Dmin Tiny +Dmin | +Dmin | +Dmin | +Dmin +0 +Dmin | +Dmin +0
+Dmin < v < +Nmin Tiny b* b* b* b* b b* b* b
+Nmin < v < +Nmax Normal b b b b b b b b
+Nmax < v, q = +Nmax Normal +Nmax | +Nmax | +Nmax — +Nmax | +Nmax — +Nmax
+Nmax < v, g > +Nmax Overflow +oo! +oo! +oo! +oo! +Nmax | +Nmax | +oo! +Nmax
Explanation:

1

*

Dmin
EZD

Nmax
Nmin
RAFZ
RFSP
RNAZ
RNE
RNTZ
RTPI
RTMI
RTZ

This situation cannot occur.

The normal result r is considered to have been incremented.

The rounded value, in the extreme case, may be Nmin. In this case, the exception conditions are underflow,
inexact, and incremented.

The value derived when the precise result v is rounded to the destination’s precision, including both bounded
precision and bounded exponent range.

The value derived when the precise result v is rounded to the destination’s precision, but assuming an
unbounded exponent range.

This is the returned value when neither overflow nor underflow is enabled.

Precise result before rounding, assuming unbounded precision and an unbounded exponent range. For
data-format conversion operations, v is the source value.

Smallest (in magnitude) representable subnormal number in the target format.

The result r of the exact-zero-difference case applies only to ADD and SUBTRACT with both source operands
having opposite signs. (For ADD and SUBTRACT, when both source operands have the same sign, the sign of
the zero result is the same sign as the sign of the source operands.)

Largest (in magnitude) representable finite number in the target format.

Smallest (in magnitude) representable normalized number in the target format.

Round away from 0.

Round to Prepare for Shorter Precision.

Round to Nearest, Ties away from 0.

Round to Nearest, Ties to even.

Round to Nearest, Ties toward 0.

Round toward +o.

Round toward -c.

Round toward 0.

Figure 81. Rounding and Range Actions (Part 1)

180 Power ISA™ - Book |

Version 2.07 B

Isr Isrincre-| Isq |IsqlIncre-
inexact mented | inexact | mented
Case (r#v) |OE=1[UE=1|XE=1| (Irl>lvl) (g=v) | (Igl>Ivl) Returned Results and Status Setting*
Overflow | Yes' No — No No — — T(r), OX<- 1, Fl~ 1, FR«< 0, XX « 1
Overflow | Yes' No — No Yes — — T(r), OX<~ 1, Fl«~ 1, FR« 1, XX « 1
Overflow | Yes' No — Yes No — — T(r), OX«~ 1, Fl«~ 1, FR« 0, XX < 1, TX
Overflow | Yes' No — Yes Yes — — T(r), OX«~ 1, Fl«~ 1, FR< 1, XX < 1, TX
Overflow | Yes' | Yes | — | — — No No' |Tw(qsB), OX<« 1, Fl« 0, FR« 0, TO
Overflow | Yes' Yes | — — — Yes No Tw(g+B), OX« 1, Fl«- 1, FR« 0, XX« 1,TO
Overflow | Yes' Yes — — — Yes Yes Tw(g+B), OX« 1, Fl« 1, FR« 1, XX« 1,TO
Normal No — — — — — — T(r), Fl«<~ 0, FR< 0
Normal Yes — — No No — — T(r), Fl 1, FR« 0, XX « 1
Normal Yes — — No Yes — — T(r), Fl~1, FR< 1, XX < 1
Normal Yes — — | Yes No — — T(r), Fl«~1, FR< 0, XX « 1, TX
Normal Yes — — Yes Yes — — T(r), Fl~1, FR< 1, XX « 1, TX

Tiny No — No — — — — T(r), FI«<- 0, FR< 0

Tiny No — | Yes | — — No' No' |Tw(geB), UX« 1, Fl«<- 0, FR« 0, TU

Tiny Yes — No No No — — T(r), UX« 1, Fl«~ 1, FR« 0, XX « 1

Tiny Yes — No No Yes — — T(r), UX<~ 1, Fl«~ 1, FR« 1, XX « 1

Tiny Yes — No | Yes No — — T(r), UX<~ 1, Fl«~ 1, FR« 0, XX « 1, TX

Tiny Yes — No | Yes Yes — — T(r), UX< 1, Fl«~ 1, FR< 1, XX < 1, TX

Tiny Yes — Yes — — No No' Tw(gep), UX« 1, Fl«- 0, FR« 0, TU

Tiny Yes — Yes — — Yes No Tw(gep), UX« 1, Fl« 1, FR« 0, XX «< 1,TU

Tiny Yes — Yes — — Yes Yes Tw(qgep), UX« 1, Fl« 1, FR« 1, XX « 1,TU

Explanation:
— The results do not depend on this condition.

1 This condition is true by virtue of the state of some condition to the left of this column.

- Rounding sets only the Fl and FR status flags. Setting of the OX, XX, or UX flag is part of the exception actions. They
are listed here for reference.

B Wrap adjust, which depends on the type of operation and operand format. For all operations except Round to DFP
Short and Round to DFP Long, the wrap adjust depends on the target format: § = 10%, where a is 576 for DFP Long,
and 9216 for DFP Extended. For Round to DFP Short and Round to DFP Long, the wrap adjust depends on the source
format: B = 10" where « is 192 for DFP Long and 3072 for DFP Extended.

q The value derived when the precise result v is rounded to destination’s precision, but assuming an unbounded exponent
range.

r The result as defined in Part 1 of this figure.

\Y Precise result before rounding, assuming unbounded precision and unbounded exponent range.

Fl Floating-Point-Fraction-Inexact status flag, FPSCRE,. This status flag is non-sticky.

FR Floating-Point-Fraction-Rounded status flag, FPSCRgg.

OX Floating-Point Overflow Exception status flag, FPSCRy.

TO The system floating-point enabled exception error handler is invoked for the overflow exception if the FEO and FE1 bits
in the machine-state register are set to any mode other than the ignore-exception mode.

TU The system floating-point enabled exception error handler is invoked for the underflow exception if the FEO and FE1 bits
in the machine-state register are set to any mode other than the ignore-exception mode.

TX The system floating-point enabled exception error handler is invoked for the inexact exception if the FEO and FE1 bits in
the machine-state register are set to any mode other than the ignore-exception mode.

T(x) The value x is placed at the target operand location.

Tw(x) The wrapped rounded result x is placed at the target operand location. For all operations except data format
conversions, the wrapped rounded result is in the same format and length as normal results at the target location. For
data format conversions, the wrapped rounded result is in the same format and length as the source, but rounded to the
target-format precision.

UX Floating-Point-Underflow-Exception status flag, FPSCRyx
XX Float-Point-Inexact-Exception Status flag, FPSCRxx. The flag is a sticky version of FPSCRg|. When FPSCRE, is set to a

new value, the new value of FPSCRyy is set to the result of ORing the old value of FPSCRyx with the new value of
FPSCRE.

Figure 82. Rounding and Range Actions (Part 2)

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 181

Version 2.07 B

5.6 DFP Instruction Descriptions

The following sections describe the DFP instructions.
When a 128-bit operand is used, it is held in a FPR pair
and the instruction mnemonic uses a letter “q” to mean
the quad-precision operation. Note that in the following
descriptions, FPXp denotes a FPR pair and must
address an even-odd pair. If the FPXp field specifies
an odd-numbered register, then the instruction form is
invalid. The notation FPX[p] means either a FPR, FPX,

or a FPR pair, FPXp.

For DFP instructions, if a DFP operand is returned, the
trailing significand field of the target operand is
encoded using preferred DPD codes.

182 Power ISA™ - Book |

Version 2.07 B

5.6.1 DFP Arithmetic Instructions

All DFP arithmetic instructions are X-form instructions.
They all set the Fl and FR status flags, and also set the
FPSCRgpRe field. Furthermore, they all have an ideal
exponent assigned and employ the record bit (Rc).

The arithmetic instructions consist of Add, Divide, Multi-
ply, and Subtract.

DFP Add [Quad] X-form DFP Subtract [Quad] X-form
dadd FRT,FRA,FRB (Rc=0) dsub FRT,FRA,FRB (Rc=0)
dadd. FRT,FRA,FRB (Re=1) dsub. FRT,FRA,FRB (Rc=1)

59 FRT | FRA | FRB 2 Rc 59 FRT | FRA | FRB 514 Rc
0 6 11 16 21 31 0 6 11 16 21 31
daddq FRTp,FRAp,FRBp (Rc=0) dsubq FRTp,FRAp,FRBp (Rc=0)
daddgq. FRTp,FRAp,FRBp (Re=1) dsubq. FRTp,FRAp,FRBp (Re=1)

63 FRTp | FRAp | FRBp 2 Rc 63 FRTp | FRAp | FRBp 514 Rc
0 6 11 16 21 31 0 6 11 16 21 31

The DFP operand in FRA[p] is added to the DFP oper-
and in FRBI[p].

The result is rounded to the target-format precision
under control of the DRN (bits 29:31) of the FPSCR.
An appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the smaller exponent of the two
source operands.

Figure 83 summarizes the actions for Add. Figure 83
does not include the setting of the FPSCRgpRg field.
The FPSCRgpgr field is always set to the class and
sign of the result, except for an enabled invalid-opera-
tion exception, in which case the field remains
unchanged.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Re=1)

The DFP operand in FRB[p] is subtracted from the DFP
operand in FRA[p].

The result is rounded to the target-format precision
under control of the DRN (bits 29:31) of the FPSCR.
An appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the smaller exponent of the two
source operands.

The execution of Subtract is identical to that of Add,
except that the operand in FRB participates in the oper-
ation with its sign bit inverted. See Figure 83. The table
does not include the setting of the FPSCRgpgRf field.
The FPSCRepgr field is always set to the class and
sign of the result, except for an enabled invalid-opera-
tion exception, in which case the field remains
unchanged.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Re=1)

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 183

Version 2.07 B

Operand a Actions for Add (a + b) when operand b in FRB[p] is

in FRA[p] is -0 F +00 QNaN SNaN
-0 T(-dINF) T(-dINF) Vyisi: T(dNaN) P(b) Vysnan: U(b)
F T(-dINF) S(a +b) T(+dINF) P(b) Vysnan: U(b)

+00 Vysi: T(dNaN) T(+dINF) T(+dINF) P(b) Vysnan: U(b)

QNaN P(a) P(a) P(a) P(a) Vxsnan: U(b)

SNaN Vxsnan: U(a) Vxsnan: U(a) Vxsnan: U(a) Vxsnan: U(a) Vxsnan: U(a)

Explanation:

a+b The value a added to b, rounded to the target-format precision and returned in the appropriate
form. (See Section 5.5.11 on page 180)

+dINF Default plus infinity.

- dINF Default minus infinity.

dNaN Default quiet NaN.

F All finite numbers, including zeros.

P(x) The QNaN of operand x is propagated and placed in FRT[p].

S(x) The value x is placed in FRT[p] with the sign set by the rules of algebra. When the source oper-
ands have the same sign, the sign of the result is the same as the sign of the operands, includ-
ing the case when the result is zero. When the operands have opposite signs, the sign of a zero
result is positive in all rounding modes, except round toward -, in which case, the sign is minus.

T(x) The value x is placed in FRT[p].

U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].

Vs The Invalid-Operation Exception (VXISI) occurs. The result is produced only when the exception is
disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 176 for the exception
actions.)

VxSNAN The Invalid-Operation Exception (VXSNAN) occurs. The result is produced only when the excep-

tion is disabled. (See Section 5.5.10.1
exception actions.)

“Invalid Operation Exception” on page 176 for the

Figure 83. Actions: Add

184

Power ISA™ - Book |

Version 2.07 B

DFP Multiply [Quad] X-form invalid-operation exception, in which case the field
remains unchanged.
dmul FRT,FRA,FRB (Rc=0) . .
_ Special Registers Altered:
dmul. FRT,FRA,FRB (Re=1) FPRF FR FI
FX OX UX XX VXSNAN VXIMZ
59 FRT | FRA | FRB 34 Rc CR1 (if Re=1)
0 6 11 16 21 31
dmulq FRTp,FRAp,FRBp (Rc=0)
dmulq. FRTp,FRAp,FRBp (Rc=1)
63 FRTp | FRAp | FRBp 34 Rc
0 6 11 16 21 31
The DFP operand in FRA[p] is multiplied by the DFP
operand in FRB[p].
The result is rounded to the target-format precision
under control of the DRN (bits 29:31) of the FPSCR.
An appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the sum of the two exponents of
the source operands.
Figure 84 summarizes the actions for Multiply.
Figure 84 does not include the setting of the FPSCRE.
pre field. The FPSCRgpgRe field is always set to the
class and sign of the result, except for an enabled
Operand a Actions for Multiply (a*b) when operand b in FRB[p] is
in FRA[p] is 0 Fn S QNaN SNaN
0 S(a*b) S(a*b) Vximz: T(dNaN) P(b) Vxsnan: U(b)
Fn S(a * b) S(a * b) S(dINF) P(b) Vysnan: U(b)
0 Vyivz: T(dNaN) S(dINF) S(dINF) P(b) Vysnan: U(b)
QNaN P(a) P(a) P(a) P(a) Vxsnan: U(b)
SNaN Vxsnan: U(a) Vxsnan: U(a) Vxsnan: U(a) Vxsnan: U(a) Vxsnan: U(a)
Explanation:
a*b The value a multiplied by b, rounded to the target-format precision and returned in the appropriate

dINF
dNaN
Fn
P(x)
S(x)
T(x)
U(x)
Vximz:

VXSNAN:

form. (See Section 5.5.11 on page 180)
Default infinity.
Default quiet NaN.
Finite nonzero number (includes both normal and subnormal numbers).
The QNaN of operand x is propagated and placed in FRT[p].
The value x is placed in FRT[p] with the sign set to the exclusive-OR of the source-operand signs.
The value x is placed in FRT[p].
The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].

The Invalid-Operation Exception (VXIMZ) occurs. The result is produced only when the exception is
disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 176 for the exception
actions.)

The Invalid-Operation Exception (VXSNAN) occurs. The result is produced only when the exception
is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 176 for the exception
actions.)

Figure 84. Actions: Multiply

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point]

185

Version 2.07 B

DFP Divide [Quad] X-form Figure 85 summarizes the actions for Divide. Figure 85
does not include the setting of the FPSCRgpgg field.
ddiv FRT,FRA,FRB (Rc=0) The FPSCRgpgf field is always set to the class and
ddiv. FRT,FRA,FRB (Re=1) sign of the result, except for an enabled invalid-opera-
tion and enabled zero-divide exceptions, in which
59 FRT | FRA | FRB 546 Rc cases the field remains unchanged.
0 6 " 16 21 il Special Registers Altered:
ddivq FRTp,FRAp,FRBp (Rc=0) E)P(RFOXFRUXH ZX XX
ddivq. FRTp,FRAp,FRBp (Rc=1) VXSNAN VXIDI VXZDZ
CR1 (if Re=1)
63 FRTp | FRAp | FRBp 546 Rc
0 6 11 16 21 31
The DFP operand in FRA[p] is divided by the DFP
operand in FRB[p].
The result is rounded to the target-format precision
under control of the DRN (bits 29:31) of the FPSCR.
An appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the difference of subtracting the
exponent of the divisor from the exponent of the divi-
dend.
Operand a Actions for Divide (a +~ b) when operand b in FRB[p] is
in FRA[p] is 0 Fn w QNaN SNaN
0 VXZDZ: T(dNaN) S(a - b) S(Zt) P(b) VXSNAN: U(b)
Fn Zx: S(dINF) S(a+b) S(zt) P(b) Vysnan: U(b)
© S(dINF) S(dINF) Vxpi: T(dNaN) P(b) Vysnan: U(b)
QNaN P(a) P(a) P(a) P(a) Vysnan: U(b)
SNaN Vxsnan: U(a) Vxsnan: U(a) Vxsnan: U(a) Vxsnan: U(a) Vxsnan: U(a)
Explanation:

a+b The value a divided by b, rounded to the target-format precision and returned in the appropriate
form. (See Section 5.5.11 on page 180.)

dINF Default infinity.

dNaN Default quiet NaN.

Fn Finite nonzero number (includes both normal and subnormal numbers).

P(x) The QNaN of operand x is propagated and placed in FRT[p].

S(x) The value x is placed in FRT[p] with the sign set to the exclusive-OR of the source-operand signs.
T(x) The value x is placed in FRT[p].

U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].

Vyipr: The Invalid-Operation Exception (VXIDI) occurs. The result is produced only when the exception is
disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 176 for the exception
actions.)

VxSNAN: The Invalid-Operation Exception (VXSNAN) occurs. The result is produced only when the exception
is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 176 for the exception
actions.)

Vxzpz: The Invalid-Operation Exception (VXZDZ) occurs. The result is produced only when the exception
is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 176 for the exception
actions.)

zt True zero (zero significand and most negative exponent).
ZX The Zero-Divide Exception occurs. The result is produced only when the exception is disabled (See
Section 5.5.10.2 “Zero Divide Exception” on page 177 for the exception actions.)

Figure 85. Actions: Divide

186

Power ISA™ - Book |

Version 2.07 B

5.6.2 DFP Compare Instructions

The DFP compare instructions consist of the Compare
Ordered and Compare Unordered instructions. The
compare instructions do not provide the record bit.

The comparison sets the designated CR field to indi-
cate the result. The FPSCRgpcc is set in the same
way.

The codes in the CR field BF and FPSCRgpcc are
defined for the DFP compare operations as follows.

Bit Name Description

0 FL
1 FG
2 FE
3 FU

(FRA[p]) < (FRBI[p])
(FRA[p]) > (FRBI[p])
(FRA[p]) = (FRBI[p])
(FRA[p]) ? (FRB[p])

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 187

Version 2.07 B

DFP Compare Unordered [Quad] X-form

dcmpu BF,FRA,FRB

59 BF | /| FRA FRB 642 /
0 6 |9 |11 16 21 31
dempug BF,FRAp,FRBp

63 |BF|//| FRAp | FRBp 642 /
0 6 |9 |11 16 21 31

The DFP operand in FRA[p] is compared to the DFP
operand in FRB[p]. The result of the compare is placed
into CR field BF and the FPSCRgpcc.

Special Registers Altered:
CR field BF
FPCC
FX VXSNAN

Operand a in Actions for Compare Unordered (a:b) when operand b in FRB[p] is
FRA[p] is -0 F +00 QNaN SNaN
-0 AeqgB AltB AltB AuoB Fu, Vxsnan
F AgtB C(a:b) AltB AuoB Fu, Vxsnan
+00 AgtB AgtB AeqB AuoB Fu, Vxsnan
QNaN AuoB AuoB AuoB AuoB Fu, Vxsnan
SNaN Fu, Vxsnan Fu, Vxsnan Fu, Vxsnan Fu, Vxsnan Fu, Vxsnan
Explanation:
C(a:b) Algebraic comparison. See the table below.
F All finite numbers, including zeros.
AeqB CR field BF and FPSCRgpc are set to 0b0010.
AgtB CR field BF and FPSCRgp¢ are set to 0b0100.
AliB CR field BF and FPSCRgpc are set to 0b1000.
AuoB CR field BF and FPSCRgpc are set to 0b0001.
VxSNAN The invalid-operation exception (VXSNAN) occurs. See Section 5.5.10.1 for actions.

Relation of Value a to Value b

Action for C(a:b)

a=>b AeqgB
a<b AltB
a>b AgtB

Figure 86. Actions: Compare Unordered

188 Power ISA™ - Book |

Version 2.07 B

DFP Compare Ordered [Quad] X-form
dcmpo BF,FRA,FRB

59 |BF|//| FRA | FRB 130 /
0 6 9 (11 16 21 31
dcmpoq BF,FRAp,FRBp

63 |BF|//| FRAp | FRBp 130 /
0 6 9 (11 16 21 31

The DFP operand in FRA[p] is compared to the DFP
operand in FRB[p]. The result of the compare is placed
into CR field BF and the FPSCRgpcc.

Special Registers Altered:

CR field BF
FPCC

FX VXSNAN VXVC

Operand a in Actions for Compare ordered (a:b) when operand b in FRB[p] is
FRA[p] is 00 F +00 QNaN SNaN
-0 AeqgB AltB AltB AuoB, Vyyc AuoB, Vygy
F AgtB C(a:b) AltB AuoB, Vyyc AuoB, Vyxgy
+00 AgtB AgtB AeqB AuoB, Vyyc AuoB, Vygy
QNaN AuoB, VXVC AuoB, VXVC AuoB, VXVC AuoB, VXVC AuoB, VXSV
SNaN AuoB, Vygy AuoB, Vygy AuoB, Vygy AuoB, Vygy AuoB, Vygy
Explanation:
C(a:b) Algebraic comparison. See the table below
F All finite numbers, including zeros
AeqB CR field BF and FPSCRgpc are set to 0b0010.
AgtB CR field BF and FPSCRgp¢ are set to 0b0100.
AlB CR field BF and FPSCRgpc are set to 0b1000.
AuoB CR field BF and FPSCRgpc are set to 0b0001.
Vxsv The invalid-operation exception (VXSNAN) occurs. Additionally, if the exception is disabled
(FPSCRyg=0), then FPSCRyxy is also set to one. See Section 5.5.10.1 for actions.
Vyve The invalid-operation exception (VXVC) occurs. See Section 5.5.10.1 for actions.
Relation of Value a to Value b Action for C(a:b)
a=>b AeqB
a<b AltB
a>b AgtB

Figure 87. Actions: Compare Ordered

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point]

189

Version 2.07 B

5.6.3 DFP Test Instructions

The DFP test instructions consist of the Test Data
Class, Test Data Group, Test Exponent, and Test Signif-
icance instructions, and they do not provide the record
bit.

The test instructions set the designated CR field to indi-
cate the result. The FPSCRgpc is set in the same
way.

DFP Test Data Class [Quad] Z22-form DFP Test Data Group [Quad] Z22-form
dtstdc BF,FRA,DCM dtstdg BF,FRA,DGM

59 |BF|/| FRA | DCM 194 / 59 |BF|//| FRA | DGM 226 /
0 6 9 (11 16 22 31 0 6 9 (11 16 22 31
dtstdcq BF,FRAp,DCM dtstdgq BF,FRAp,DGM

63 |BF|/|FRAp| DCM 194 / 63 |BF|//| FRAp | DGM 226 /
0 6 9 M 16 22 31 0 6 9 |11 16 22 31

Let the DCM (Data Class Mask) field specify one or
more of the 6 possible data classes, where each bit
corresponds to a specific data class.

DCM Bit Data Class
Zero
Subnormal
Normal
Infinity

Quiet NaN
Signaling NaN

CR field BF and FPSCRgpcc are set to indicate the
sign of the DFP operand in FRA[p] and whether the
data class of the DFP operand in FRA[p] matches any
of the data classes specified by DCM.

a b~ wWwNM-=20O

Field Meaning
0000 Operand positive with no match
0010 Operand positive with match
1000 Operand negative with no match
1010 Operand negative with match
Special Registers Altered:

CR field BF

FPCC

Let the DGM (Data Group Mask) field specify one or
more of the 6 possible data groups, where each bit cor-
responds to a specific data group.

The term extreme exponent means either the maximum
exponent, Xhax, Or the minimum exponent, Xin.

DGM Bit Data Group

0 Zero with non-extreme exponent

1 Zero with extreme exponent

2 Subnormal or (Normal with extreme expo-
nent)

3 Normal with non-extreme exponent and
leftmost zero digit in significand

4 Normal with non-extreme exponent and
leftmost nonzero digit in significand

5 Special symbol (Infinity, QNaN, or SNaN)

CR field BF and FPSCRgpcc are set to indicate the
sign of the DFP operand in FRA[p] and whether the
data group of the DFP operand in FRA[p] matches any
of the data groups specified by DGM.

Field Meaning

0000 Operand positive with no match
0010 Operand positive with match
1000 Operand negative with no match
1010 Operand negative with match

Special Registers Altered:
CR field BF
FPCC

190 Power ISA™ - Book |

Version 2.07 B

DFP Test Exponent [Quad] X-form
dtstex BFFRA,FRB

59 |BF|//| FRA | FRB 162 /
0 6 9 (11 16 21 31

distexq BF,FRAp,FRBp

63 |BF|//| FRAp | FRBp 162 /
0 6 9 |11 16 21 31

The exponent value (Ea) of the DFP operand in FRA[p]
is compared to the exponent value (Eb) of the DFP
operand in FRB [p]. The result of the compare is
placed into CR field BF and the FPSCRgpcc.

The codes in the CR field BF and FPSCRgpcc are
defined for the DFP Test Exponent operations as fol-
lows.

Bit Description

0 Ea<Eb
1 Ea > Eb
2 Ea=Eb
3 Ea ? Eb
Special Registers Altered:
CR field BF
FPCC
Operand a in Actions for Test Exponent (Ea:Eb) when operand b in FRB[p] is
FRA[p] is F 00 QNaN SNaN
F C(Ea:Eb) AuoB AuoB AuoB
) AuoB AeqB AuoB AuoB
QNaN AuoB AuoB AeqB AeqB
SNaN AuoB AuoB AegB AegB
Explanation:
C(Ea:Eb) Algebraic comparison. See the table below.
F All finite numbers, including zeros
AegB CR field BF and FPSCRgpcc are set to 0b0010.
AgtB CR field BF and FPSCRgpc are set to 0b0100.
AltB CR field BF and FPSCRgp¢ are set to 0b1000.
AuoB CR field BF and FPSCRgpc are set to 0b0001.
Relation of Value Ea to Value Eb Action for C(Ea:EDb)
Ea = Eb AegB
Ea < Eb AltB
Ea > Eb AgtB

Figure 88. Actions: Test Exponent

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 191

Version 2.07 B

DFP Test Significance [Quad] X-form
dtstsf BFFRA,FRB

59 |BF|//| FRA | FRB 674 /
0 6 9 (11 16 21 31
dtstsfq BF,FRA,FRBp

63 |BF|//| FRA | FRBp 674 /
0 6 9 (11 16 21 31

Let k be the contents of bits 58:63 of FRA that specifies
the reference significance.

The number of significant digits of the DFP operand in
FRB[p], NSDb, is compared to the reference signifi-
cance, k. For this instruction, the number of significant
digits of the value 0 is considered to be zero. The result
of the compare is placed into CR field BF and the
FPSCREpcc as follows.

Bit Description

0 k+0and k< NSDb
1 k+0and k > NSDb,ork=0
2 k+0andk = NSDb
3 k ? NSDb
Special Registers Altered:
CR field BF
FPCC

Actions for Test Significance when the operand in

FRBI[p] is
F © QNaN SNaN
C(k: NSDb) AuoB AuoB AuoB
Explanation:
C(k: NSDb) Algebraic comparison. See the
table below.
F All finite numbers, including zeros.
AeqB CR field BF and FPSCRgpc are
set to Ob0010.
AgtB CR field BF and FPSCRgp¢c are
set to 0b0100.
AltB CR field BF and FPSCRgpcc are
set to 0b1000.
AuoB CR field BF and FPSCRgpcc are
set to 0b0001.
Relation of Value NSDb to Action for
Value k C(k:NSDb)
k + 0 and k = NSDb AeqgB
k+ 0 and k < NSDb AltB
k#=0and k> NSDb, ork=0 AgtB

Programming Note

The reference significance can be loaded into a
FPR using a Load Float as Integer Word Algebraic
instruction

Figure 89. Actions: Test Significance

192 Power ISA™ - Book |

Version 2.07 B

5.6.4 DFP Quantum Adjustment Instructions

The Quantum Adjustment operations consist of the
Quantize, Quantize Immediate, Reround, and Round
To FP Integer operations.

The Quantum Adjustment instructions are Z23-form
instructions and have an immediate RMC (Round-
ing-Mode-Control) field, which specifies the rounding
mode used. For Quantize, Quantize Immediate, and
Reround, the RMC field contains the primary encoding.
For Round to FP Integer, the field contains either pri-

mary or secondary encoding, depending on the setting
of a RMC-encoding-selection bit. See Section 5.5.2
“Rounding Mode Specification” on page 171 for the
definition of RMC encoding.

All Quantum Adjustment instructions set the Fl and FR
status flags, and also set the FPSCRgpRf field. The
record bit is provided to each of these instructions.
They return the target operand in a form with the ideal
exponent.

DFP Quantize Immediate [Quad] Z23-form

dquai TE,FRT,FRB,RMC (Rc=0)
dquai. TE,FRT,FRB,RMC (Rc=1)
59 FRT | TE | FRB |RMC 67 Rc
0 6 11 16 21 |23 31
dquaiq TE,FRTp,FRBp,RMC (Rc=0)
dquaig. TE,FRTp,FRBp,RMC (Re=1)

63 |FRTp| TE |FRBp|[RMC 67 Rc
0 6 11 16 21 23 31

The DFP operand in FRB[p] is converted and rounded
to the form with the exponent specified by TE based on
the rounding mode specified in the RMC field. TE is a
5-bit signed binary integer. The result of that form is
placed in FRT[p]. The sign of the result is the same as
the sign of the operand in FRB[p]. The ideal exponent
is the exponent specified by TE.

When the value of the operand in FRBIp] is greater
than (10P-1) X 10"E, where p is the format precision, an
invalid operation exception is recognized.

When the delivered result differs in value from the oper-
and in FRB[p], an inexact exception is recognized. No
underflow exception is recognized by this operation,
regardless of the value of the operand in FRBI[p].

The FPSCRgpgr field is always set to the class and
sign of the result, except for an enabled invalid-opera-
tion exception, in which case the field remains
unchanged.

Special Registers Altered:

FPRF FR FI
FX XX

VXSNAN VXCVI

CR1 (if Re=1)

—— Programming Note

DFP Quantize Immediate can be used to adjust
values to a form having the specified exponent in
the range -16 to 15. If the adjustment requires the
significand to be shifted left, then:

m f the result would cause overflow from the
most significant digit, the result is a default
QNaN.;

B otherwise the result is the adjusted value (left
shifted with matching exponent).

If the adjustment requires the significand to be
shifted right, the result is rounded based on the
value of the RMC field.

DFP Quantize Immediate can round a value to a
specific number of fractional digits. Consider the
computation of sales tax. Values expressed in U.S.
dollars have 2 fractional digits, and sales tax rates
typically have 3 fractional digits. The product of
value and rate will yield 5 fractional digits. For
example:

39.95 * 0.075 = 2.99625

This result needs to be rounded to the penny to
compute the correct tax of $3.00.

The following sequence computes the sales tax
assuming the pre-tax total is in FRA and the tax
rate is in FRB. The DFP Quantize Immediate
instruction rounds the product (FRA * FRB) to 2
fractional digits (TE field = -2) using Round to near-
est, ties away from 0 (RMC field = 2). The quan-
tized and rounded result is placed in FRT.

dmul f0,FRA,FRB
dquai -2,FRT,f0,2

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 193

Version 2.07 B

DFP Quantize [Quad] Z23-form
dqua FRT,FRA,FRB,RMC (Rc=0)
dqua. FRT,FRA,FRB,RMC (Rc=1)
59 FRT | FRA | FRB |RMC 3 Rc
0 6 11 16 21 23 31
dquaq FRTp,FRAp,FRBp,RMC (Rc=0)
dquag. FRTp,FRAp,FRBp,RMC (Rc=1)
63 | FRTp|FRAp|FRBp|RMC 3 Rc
0 6 11 16 21 23 31

The DFP operand in register FRB[p] is converted and
rounded to the form with the same exponent as that of
the DFP operand in FRA[p] based on the rounding
mode specified in the RMC field. The result of that form
is placed in FRT[p]. The sign of the result is the same
as the sign of the operand in FRB[p]. The ideal expo-
nent is the exponent specified in FRA[p].

When the value of the operand in FRB[p] is greater
than (10P-1) X 1082, where p is the format precision
and Ea is the exponent of the operand in FRA[p], an
invalid operation exception is recognized.

When the delivered result differs in value from the oper-
and in FRB[p], an inexact exception is recognized. No

underflow exception is recognized by this operation,
regardless of the value of the operand in FRB[p].

Figure 91 and Figure 92 summarize the actions. The
tables do not include the setting of the FPSCRgpre
field. The FPSCRgpRr field is always set to the class
and sign of the result, except for an enabled
invalid-operation exception, in which case the field
remains unchanged.

Special Register Altered:

FPRF FR Fl
FX XX

VXSNAN VXCVI

CR1 (if Re=1)

— Programming Note

DFP Quantize can be used to adjust one DFP
value (FRB[p]) to a form having the same exponent
as a second DFP value (FRA[p]). If the adjustment
requires the significand to be shifted left, then:

W if the result would cause overflow from the
most significant digit, the result is a default
QNaN.;

B otherwise the result is the adjusted value (left
shifted with matching exponent).

If the adjustment requires the significand to be
shifted right, the result is rounded based on the
value of the RMC field. Figure 90 shows examples
of these adjustments.

FRA FRB

FRT when RMC=1

FRT when RMC=2

1(1x 109 9.(9x 109

9 (9 x 109

9 (9 x 100

1.00 (100 x 102) 9.(9x 109

9.00 (900 x 102)

9.00 (900 x 1072

1(1x 109 49.1234 (491234 x 104

49 (49 x 10°)

49 (49 x 109

1.00 (100 x 102) 49.1234 (491234 x 104

49.12 (4912 x 102)

49.12 (4912 x 109

1(1x 109 49.9876 (499876 x 104

49 (49 x 10°)

50 (50 x 10°)

1.00 (100 x 102) 49.9876 (499876 x 104

49.98 (4998 x 102)

49.99 (4999 x 102

0.01 (1 x1072) 49.9876 (499876 x 104

49.98 (4998 x 102)

49.99 (4999 x 102

9999999999999999

0
1(1x10°%) (9999999999999999 x 10°)

9999999999999999

(9999999999999999 x 10°)

9999999999999999

(9999999999999999 x 10°)

9999999999999999

-1
1.0(10x107) (9999999999999999 x 10°)

QNaN

QNaN

Figure 90. DFP Quantize examples

194 Power ISA™ - Book |

Version 2.07 B

Operand a Actions for Quantize when operand b in FRB[p] is
in FRA[p] is 0 Fn 0 QNaN SNaN
0 ¥ ¥ Vxcvi: T(dNaN) P(b) Vysnan: U(b)
Fn * * VXCVl: T(dNaN) P(b) VXSNAN: U(b)
° VXCVl: T(dNaN) VXCVl: T(dNaN) T(leF) P(b) VXSNAN: U(b)
QNaN P(a) P(a) P(a) P(a) VXSNAN: U(b)
SNaN Vxsnan: U(a) Vxsnan: U(a) Vxsnan: U(a) Vxsnan: U(a) Vxsnan: U(a)
Explanation:

*

dINF
dNaN
Fn
P(x)
T(x)
U(x)
Vxcvi

VxsNAN

See next table.

Default infinity

Default quiet NaN

Finite nonzero numbers (includes both subnormal and normal numbers)

The QNaN of operand x is propagated and placed in FRT[p]

The value x is placed in FRT[p]

The SNaN of operand x is converted to the corresponding QNaN and placed in FRTI[p].

The Invalid-Operation Exception (VXCVI) occurs. The result is produced only when the exception is
disabled. (See Section 5.5.10.1 for actions)

The Invalid-Operation Exception (VXSNAN) occurs. The result is produced only when the exception
is disabled. (See Section 5.5.10.1 for actions)

Figure 91. Actions (part 1) Quantize

Actions for Quantize when operand b in FRBI[p] is
0 Fn
Te < Se V, > (10P-1) x 10'® E(0) Vxcvi: T(dNaN)
Vp < (10P- 1) x 10™® E(0) L(b)
Te = Se E(0) W(b)
Te > Se E(0) QR(b)
Explanation:
dNaN Default quiet NaN
E(0) The value of zero with the exponent value Te is placed in FRT[p].
L(x) The operand x is converted to the form with the exponent value Te.
p The precision of the format.
QR(x) The operand x is rounded to the result of the form with the exponent value Te based on the specified
rounding mode. The result of that form is placed in FRT[p].
Se The exponent of the operand in FRB[p].
Te The target exponent; FRA[p] for dqualq], or TE, a 5-bit signed binary integer for dquailq].
T(x) The value x is placed in FRT[p].
Vp The value of the operand in FRB[p].
W(x) The value and the form of operand x is placed in FRT[p].
Vxcvi: The Invalid-Operation Exception (VXCVI) occurs. The result is produced only when the exception is

disabled. (See Section 5.5.10.1 for actions.)

Figure 92. Actions (part2) Quantize

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point]

195

Version 2.07 B

DFP Reround [Quad] Z23-form

drrnd FRT,FRA,FRB,RMC (Rc=0)
drrnd. FRT,FRA,FRB,RMC (Re=1

59 FRT | FRA | FRB |RMC 35 Rc
0 6 11 16 21 23 31
drrndqg FRTp,FRA,FRBp,RMC (Rc=0)
drrndgq. FRTp,FRA,FRBp,RMC (Re=1)

63 |FRTp| FRA |FRBp |[RMC 35 Rc
0 6 11 16 21 23 31

Let k be the contents of bits 58:63 of FRA that specifies
the reference significance.

When the DFP operand in FRB[p] is a finite number,
and if the reference significance is zero, or if the refer-
ence significance is nonzero and the number of signifi-
cant digits of the source operand is less than or equal
to the reference significance, then the value and the
form of the source operand is placed in FRT[p]. If the
reference significance is nonzero and the number of
significant digits of the source operand is greater than
the reference significance, then the source operand is
converted and rounded to the number of significant dig-
its specified in the reference significance based on the
rounding mode specified in the RMC field. The result
of the form with the specified number of significant dig-
its is placed in FRT[p]. The sign of the result is the
same as the sign of the operand in FRBI[p].

For this instruction, the number of significant digits of
the value 0 is considered to be zero. The ideal expo-
nent is the greater value of the exponent of the operand
in FRB[p] and the referenced exponent. The refer-
enced exponent is the resultant exponent if the operand
in FRB[p] would have been converted and rounded to
the number of significant digits specified in the refer-
ence significance based on the rounding mode speci-
fied in the RMC field.

If the exponent of the rounded result of the form that
has the specified number of significant digits would be
greater than Xpax @an invalid operation exception
(VXCVI) occurs. When the invalid-operation exception
occurs, and if the exception is disabled, a default QNaN
is returned. When an invalid-operation exception
occurs, no inexact exception is recognized.

In the absence of an invalid-operation exception, if the
result differs in value from the operand in FRB[p], an
inexact exception is recognized.

This operation causes neither an overflow nor an
underflow exception.

Figure 94 summarizes the actions for Reround. The
table does not include the setting of the FPSCRgpRrg
field. The FPSCRgpRe field is always set to the class
and sign of the result, except for an enabled

invalid-operation exception, in which case the field
remains unchanged.

Special Registers Altered:

FPRF FR FI
FX XX

VXSNAN VXCVI

CR1 (if Re=1)

—— Programming Note

DFP Reround can be used to adjust a DFP value
(FRB[p]) to have no more than a specified number
(FRA[p]58:63) of significant digits. The result
(FRT[p]) is right-justified leaving the specified num-
ber of digits and rounded as specified by the RMC
field. If rounding increases the number of significant
digits, the result is adjusted again (the significand is
shifted right 1 digit and the exponent is incremented
by 1). Figure 93 has example results from DFP
Reround for 1, 2, and 10 significant digits.

—— Programming Note

DFP Reround is primarily used to round a DFP
value to a specific number of digits before conver-
sion to string format for printing or display. Another
use for DFP Reround is to obtain the effective expo-
nent of the most significant digit by specifying a ref-
erence significance of 1. The exponent can be
extracted and used to compute the number of signif-
icant digits or to left-justify a value.

For example, the following sequence computes the
number of significant digits and returns it as an inte-
ger. FRB is the DFP value for which we want the
number of significant digits; f13 contains the refer-
ence significance value 0x0000000000000001; and
r1 is the stack pointer, with free space for double-
words at offsets -8 and -16. These doublewords are
used to transfer the biased exponents from the
FPRs to GPRs for integer computation. R3 contains
the result of E(reround(1,FRA)) - E(FRA) + 1,
where E(x) represents the biased exponent of x.

dxex f0,FRB

stfd £0,-16(rl)

drrnd f1,£f13,FRB,1 # reround 1 digit toward 0
dxex f1,f1

stfd f1,-8(rl)

1fd rll,-16(rl)

1fd r3,-8(rl)

subf r3,rll,r3

addi r3,r3,1

Given the value 412.34 the result is E(4 x 102) -
E(41234 x 10-2) + 1 = (398+2) - (398-2) + 1 = 400 -
396 + 1 = 5. Additional code is required to detect
and handle special values like Subnormal, Infinity,
and NAN.

196 Power ISA™ - Book |

Version 2.07 B

FRAgg:63 (binary) FRB FRT when RMC=1 FRT when RMC=2
1 0.41234 (41234 x 10°%) 0.4 (4x 107 0.4 (4 x 107
1 4.1234 (41234 x 10%) 4 (4 x 100) 4 (4 x 100)
1 41.234 (41234 x 107%) 4 (4x10") 4 (4 x10")
1 412.34 (41234 X 107?) 4 (4 x 10%) 4 (4 x 10%)

0.491234 (491234 x 10°)

0.49 (49 x 102)

0.49 (49 X 102)

0.499876 (499876 x 10°)

0.49 (49 x 102)

0.50 (50 X 102)

0.999876 (999876 x 10°)

0.99 (99 X 102)

1.0 (10 x 10"

10

0.491234 (491234 x 10°)

0.491234 (491234 x 10°)

0.491234 (491234 x 10°)

10

999.999 (999999 x 10°3)

999.999 (999999 x 10°3)

999.999 (999999 x 10°3)

10

9999999999999999
(9999999999999999 x 10°)

9.999999999E+14
(9999999999 x 105)

1.000000000E+15
(1000000000 x 108)

Figure 93. DFP Reround examples

—— Programming Note

DFP Reround combined with DFP Quantize can be
used to left justify a value (as needed by the frexp
function). FRB is the DFP value for which we want
to left justify; f13 contains the reference significance
value 0x0000000000000001; and r1 is the stack
pointer, with free space for a doubleword at offset
-8. This doubleword is used to transfer the biased
exponents from the FPR to a GPR, for integer com-
putation. The adjusted biased exponent (+ format
precision - 1) is transferred back into an FPR so it
can be inserted into the rerounded value. The
adjusted rerounded value becomes the quantize
reference value. The quantize instruction returns
the left justified result in FRT.

drrnd f£1,f13,FRB,1 # reround 1 digit toward 0

dxex f0,f1

stfd £0,-8(rl)

1fd rll,-8(rl)

addi rl1l,rl11,15 # biased exp + precision - 1

1fd rll,-8(rl)

stfd £0,-8(rl)

diex f1,f0,f1 # adjust exponent

dqua FRT,f1,f0,1 # quantize to adjusted
exponent

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 197

Version 2.07 B

Actions for Reround when operand b in FRB[p] is
o* Fn o0 QNaN SNaN
- RR(b) or T(dINF P(b \ :U(b
k+0,k<m Ve (T()dNaN) (dINF) (b) xsnan: U(b)
k+0,k=m - W(b) T(dINF) P(b) Vysnan: U(b)
k+0and k> m, W(b) W(b) T(dINF) P(b) Vysnan: U(b)
ork=0
Explanation:
* The number of significant digits of the value 0 is considered to be zero for this instruction.
- Not applicable.
dINF Default infinity.
Fn Finite nonzero numbers (includes both subnormal and normal numbers).
k Reference significance, which specifies the number of significant digits in the target operand.
m Number of significant digits in the operand in FRB[p].
P(x) The QNaN of operand x is propagated and placed in FRT[p].
RR(x) The value x is rounded to the form that has the specified number of significant digits.
If RR(x) < (10K-1) x 10X™2X then RR(x) is returned; otherwise an invalid-operation excep-
tion is recognized.
T(x) The value x is placed in FRT[p].
U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].
Vyxevi The Invalid-Operation Exception (VXCVI) occurs. The result is produced only when the excep-
tion is disabled. (See Section 5.5.10.1 for actions.)
VxSNAN: The Invalid-Operation Exception (VXSNAN) occurs. The result is produced only when the
exception is disabled. See Section 5.5.10.1 for actions.
W(x) The value and the form of x is placed in FRT[p].

Figure 94. Actions: Reround

198

Power ISA™ - Book |

Version 2.07 B

DFP Round To FP Integer With Inexact

[Quad] Z23-form
drintx R,FRT,FRB,RMC (Rc=0)
drintx. R,FRT,FRB,RMC (Re=1)

59 FRT | /// |R| FRB |RMC 99 Rc

0 6 11 |15 |16 21 23 31
drintxq R,FRTp,FRBp,RMC (Rc=0)
drintxq. R,FRTp,FRBp,RMC (Rc=1)
63 |FRTp| /// |R|FRBp|RMC 99 Rc
0 6 11 |15 |16 21 23 31

The DFP operand in FRB[p] is rounded to a float-
ing-point integer and placed into FRT[p]. The sign of
the result is the same as the sign of the operand in
FRB[p]. The ideal exponent is the larger value of zero
and the exponent of the operand in FRB[p].

The rounding mode used is specified in the RMC field.
When the RMC-encoding-selection (R) bit is zero, the
RMC field contains the primary encoding; when the bit
is one, the field contains the secondary encoding.

In addition to coercion of the converted value to fit the
target format, the special rounding used by Round To
FP Integer also coerces the target exponent to the ideal
exponent.

When the operand in FRBI[p] is a finite number and the
exponent is less than zero, the operand is rounded to
the result with an exponent of zero. When the expo-
nent is greater than or equal to zero, the result is set to
the numerical value and the form of the operand in
FRB[p].

When the result differs in value from the operand in
FRBI[p], an inexact exception is recognized. No under-
flow exception is recognized by this operation, regard-
less of the value of the operand in FRB[p].

Figure 95 summarizes the actions for Round To FP
Integer With Inexact. The table does not include the
Setting of the FPSCRFPRF field. The FPSCRFPRF field
is always set to the class and sign of the result, except
for an enabled invalid-operation, in which case the field
remains unchanged.

Special Registers Altered:
FPRF FR FlI
FX XX
VXSNAN
CR1 (if Re=1)

— Programming Note

The DFP Round To FP Integer With Inexact and
DFP Round To FP Integer With Inexact Quad
instructions can be used to implement the decimal
equivalent of the C99 rint function by specifying the
primary RMC encoding for round according to
FPSCRpgryn (R=0, RMC=11). The specification for
rint requires the inexact exception be raised if
detected.

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 199

Version 2.07 B

*

dINF

X

W(x)
XX

Operandb | Is n not pre- Inv.-O_p. Inexaf:t Is n Incre-
in FRBis | cise (n » b) Exception | Exception mented _ .
Enabled Enabled (Inl > Ibl) | Actions
-0 No' - - - T(-dINF), Fl <« 0,FR < 0
F No - - - W(n), Fl « 0, FR « 0
F Yes - No No W(n), Fl « 1, FR « 0, XX « 1
F Yes - No Yes W(n), Fl « 1, FR € 1, XX « 1
F Yes - Yes No W(n),Fl « 1,FR « 0, XX « 1, TX
F Yes - Yes Yes W(n),Fl « 1,FR « 1, XX « 1, TX
+0 No' - - - T(+dINF), Fl « 0, FR« 0
QNaN No' - - - P(b), FI « 0, FR< 0
SNaN No' No - - U(b), FI « 0, FR « 0, VXSNAN « 1
SNaN No' Yes - - VXSNAN « 1, TV
Explanation:

Setting of XX and VXSNAN is part of the corresponding exception actions. Also, when an
invalid-operation exception occurs, setting of Fl and FR is part of the exception actions.(See the
sections, “Inexact Exception” and “Invalid Operation Exception” for more details.)

The actions do not depend on this condition.

This condition is true by virtue of the state of some condition to the left of this column.
Default infinity.

All finite numbers, including zeros.

Floating-Point-Fraction-Inexact status flag, FPSCRE,.
Floating-Point-Fraction-Rounded status flag, FPSCRgRg.

The value derived when the source operand, b, is rounded to an integer using the special rounding
for Round To FP Integer.

The QNaN of operand x is propagated and placed in FRTI[p].
The value x is placed in FRT[p].

The system floating-point enabled exception error handler is invoked for the invalid-operation excep-
tion if the FEO and FE1 bits in the machine-state register are set to any mode other than the
ignore-exception mode.

The system floating-point enabled exception error handler is invoked for the inexact exception if the
FEO and FE1 bits in the machine-state register are set to any mode other than the ignore-excep-
tion mode.

The SNaN of operand x is converted to the corresponding QNaN and placed in FPT[p].
The value x in the form of zero exponent or the source exponent is placed in FRT[p].
Floating-Point-Inexact-Exception status flag, FPSCRyx.

Figure 95. Actions: Round to FP Integer With Inexact

200

Power ISA™ - Book |

Version 2.07 B

DFP Round To FP Integer Without Inexact

[Quad] Z23-form
drintn R,FRT,FRB,RMC (Rc=0)
drintn. R,FRT,FRB,RMC (Re=1)

59 FRT | /// |R| FRB |RMC 227 Rc

0 6 1 15|16 21 23 31
drintnq R,FRTp,FRBp,RMC (Rc=0)
drintng. R,FRTp,FRBp,RMC (Re=1)

63 |FRTp| /// |R|FRBp|RMC| 227 |Rc
0 6 11 15 |16 21 23 31

This operation is the same as the Round To FP Integer
With Inexact operation, except that this operation does
not recognize an inexact exception.

Figure 96 summarizes the actions for Round To FP
Integer Without Inexact. The table does not include the
Setting of the FPSCRFPRF field. The FPSCRFPRF field
is always set to the class and sign of the result, except
for an enabled invalid-operation, in which case the field
remains unchanged.

Special Registers Altered:
FPRF FR (setto0) Fl(setto0)
FX
VXSNAN
CR1 (if Re=1)

— Programming Note
The DFP Round To FP Integer Without Inexact and
DFP Round To FP Integer Without Inexact Quad
instructions can be used to implement decimal
equivalents of several C99 rounding functions by
specifying the appropriate R and RMC field values.

Function R RMC

Ceil 1 0b00
Floor 1 0b01
Nearbyint 0 Ob11
Round 0 0b10
Trunc 0 0b01

Note that nearbyint is similar to the rint function but
without raising the inexact exception. Similarly ceil,
floor, round, and trunc do not require the inexact
exception.

Operation Exception” for more details.)

dINF Default infinity.

Round-To-FP-Integer.

T(x) The value x is placed in FRT[p].

ignore-exception mode.

Operand b in | Inv.-Op. Exception .
PERB is Enabled Actions™
-0 - T(-dINF), Fl « 0, FR « 0
F - W(n), Fl«0,FR <0
+00 - T(+dINF), Fl « 0,FR « 0
QNaN - P(b), Fl«0,FR « 0
SNaN No U(b), Fl « 0, FR « 0, VXSNAN«1
SNaN Yes VXSNAN « 1, TV
Explanation:
* Setting of VXSNAN is part of the corresponding exception actions. Also, when an invalid-operation

exception occurs, setting of Fl and FR bits is part of the exception actions. (See the sections, “Invalid

- The actions do not depend on this condition.

F All finite numbers, including zeros.

Fl Floating-Point-Fraction-Inexact status flag, FPSCRE;.

FR Floating-Point-Fraction-Rounded status flag, FPSCRgRg.

n The value derived when the source operand, b, is rounded to an integer using the special rounding for

P(x) The QNaN of operand x is propagated and placed in FRT[p].

TV The system floating-point enabled exception error handler is invoked for the invalid-operation exception
if the FEO and FE1 bits in the machine-state register are set to any mode other than the

U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FPT[p].
W(x) The value x in the form of zero exponent or the source exponent is placed in FRT[p].

Figure 96. Actions: Round to FP Integer Without Inexact

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 201

Version 2.07 B

5.6.5 DFP Conversion Instructions

The DFP conversion instructions consist of data-format
conversion instructions and data-type conversion
instructions. They are all X-form instructions and
employ the record bit (Rc).

5.6.5.1 DFP Data-Format Conversion
Instructions

The data-format conversion instructions consist of Con-
vert To DFP Long, Convert To DFP Extended, Round
To DFP Short, and Round To DFP Long. Figure 97
summarizes the actions for these instructions.

—— Programming Note

DFP does not provide operations on short oper-
ands, so they must be converted to long format,
and then converted back to be stored. Preserving
correct signaling NaN semantics requires that sig-
naling NaNs be propagated from the source to the
result without recognizing an exception during wid-
ening from short to long or narrowing from long to
short. Because DFP does not provide equivalents
to the FP Load Floating-Point Single and Store
Floating-Point Single functions, the widening is per-
formed by loading the DFP short value with a Load
Floating as Integer Word Indexed followed by a
DFP Convert to DFP Long, and narrowing is per-
formed by a DFP Round to DFP Short followed by
a Store Floating-Point as Integer Word Indexed. If
the SNaN or infinity in DFP short format uses the
preferred DPD encoding, then converting this oper-
and to DFP long format and back to DFP short will
result in the original bit pattern.

dINFDefault infinity.
FAIl finite numbers, including zeros.

T(x)The value x is placed in FRT[p].

. Actions when operand b in FRB[p] is
Instruction F - QNaN SNaN
Convert To DFP Long T(b)' P(b)>* P(b)>* P(b)34
Convert To DFP Extended Tb)' T(dINF) P(b)>* Vysnan: U(b)>*
Round To DFP Short R(b)’ P(b)%®° P(b)>® P(b)3°
Round To DFP Long R(b)’ T(dINF) P(b)%® Vysnan: U(0)>°
Explanation:

1The ideal exponent is the exponent of the source operand.

2Bits 5:N-1 of the N-bit combination field are set to zero.

3Bit 5 of the N-bit combination field is set to one. Bits 6:N-1 of the combination field are set to zero.
4The trailing significand field is padded on the left with zeros.

5Leftmost digits in the trailing significand field are removed.

P(x)The special symbol in operand x is propagated into FRT[p].
R(x)The value x is rounded to the target-format precision; see Section 5.5.11

U(x)The SNaN of operand x is converted to the corresponding QNaN.
VxsnanThe Invalid-Operation Exception (VXSNAN) occurs. The result is produced only when the exception
is disabled. See Section 5.5.10.1 for actions.

Figure 97. Actions: Data-Format Conversion Instructions

202 Power ISA™ - Book |

Version 2.07 B

DFP Convert To DFP Long X-form

DFP Convert To DFP Extended X-form

dctdp FRT,FRB (Rc=0) dctgpq FRTp,FRB (Rc=0)
dctdp. FRT,FRB (Re=1) dctgpg. FRTp,FRB (Re=1)

59 FRT i FRB 258 Rc 63 FRTp " FRB 258 Rc
0 6 1 16 21 31 0 6 1 16 21 31

The DFP short operand in bits 32:63 of FRB is con-
verted to DFP long format and the converted result is
placed into FRT. The sign of the result is the same as
the sign of the source operand. The ideal exponent is
the exponent of the source operand.

If the operand in FRB is an SNaN, it is converted to an
SNaN in DFP long format and does not cause an
invalid-operation exception.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
CR1 (if Re=1)

Programming Note

Note that DFP short format is a storage-only for-
mat, Therefore, conversion of a short SNaN to long
format will not cause an exception and the SNaN is
preserved. Subsequent operation on that SNaN in
long format will cause an exception.

The DFP long operand in the FRB is converted to DFP
extended format and placed into FRTp. The sign of the
result is the same as the sign of the operand in FRB.
The ideal exponent is the exponent of the operand in
FRB.

If the operand in FRB is an SNaN, an invalid-operation
exception is recognized. If the exception is disabled,
the SNaN is converted to the corresponding QNaN in
DFP extended format.

Special Registers Altered:
FPRF FR(setto0) FlI (setto0)
FX
VXSNAN
CR1 (if Re=1)

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 203

Version 2.07 B

DFP Round To DFP Short X-form

DFP Round To DFP Long X-form

drsp FRT,FRB (Rc=0) drdpq FRTp,FRBp (Rc=0)
drsp. FRT,FRB (Rc=1) drdpq. FRTp,FRBp (Re=1)

59 FRT " FRB 770 Rc 63 FRTp i FRBp 770 Rc
0 6 1 16 21 31 0 6 1 16 21 31

The DFP long operand in FRB is converted and
rounded to DFP short format. The DFP short value is
extended on the left with zeros to form a 64-bit entity
and placed into FRT. The sign of the result is the same
as the sign of the source operand. The ideal exponent
is the exponent of the source operand.

If the operand in FRB is an SNaN, it is converted to an
SNaN in DFP short format and does not cause an
invalid-operation exception.

Normally, the result is in the format and length of the
target. However, when an overflow or underflow excep-
tion occurs and if the exception is enabled, the opera-
tion is completed by producing a wrapped rounded
result in the same format and length as the source but
rounded to the target-format precision.

Special Registers Altered:

FPRF FR FI
FX OX UX XX
CR1 (if Re=1)

Programming Note

Note that DFP short format is a storage-only for-
mat, Therefore, conversion of a long SNaN to short
format will not cause an exception. Converting a
long format SNaN to short format is an implied
move operation.

The DFP extended operand in FRBp is converted and
rounded to DFP long format. The result concatenated
with 64 Os is placed in FRTp. The sign of the result is
the same as the sign of the source operand. The ideal
exponent is the exponent of the operand in FRBp.

If the operand in FRBp is an SNaN, an invalid-operation
exception is recognized. If the exception is disabled,
the SNaN is converted to the corresponding QNaN in
DFP long format.

Normally, the result is in the format and length of the
target. However, when an overflow or underflow excep-
tion occurs and if the exception is enabled, the opera-
tion is completed by producing a wrapped rounded
result in the same format and length as the source but
rounded to the target-format precision.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN
CR1 (if Re=1)

Programming Note

Note that DFP Round to DFP Long, while produc-
ing a result in DFP long format, actually targets a
register pair, writing 64 Os in FRTp+1.

204 Power ISA™ - Book |

Version 2.07 B

5.6.5.2 DFP Data-Type Conversion Instructions

The DFP data-type conversion instructions are used to
convert data type between DFP and fixed.

The data-type conversion instructions consist of Con-
vert From Fixed and Convert To Fixed.

DFP Convert From Fixed X-form DFP Convert To Fixed [Quad] X-form
dcffix FRT,FRB (Rc=0) dctfix FRT,FRB (Rc=0)
dcffix. FRT,FRB (Re=1) dctfix. FRT,FRB (Re=1)
59 FRT 1 FRB 802 Rc 59 FRT " FRB 290 Rc
0 6 1 16 21 31 0 6 1 16 21 31
The 64-bit signed binary integer in FRB is converted dctfixq FRT,FRBp (Rc=0)
and rounded to a DFP Long value and placed into FRT. dctfixq. FRT,FRBp (Re=1)
The sign of the result is the same as the sign of the
source operand. The ideal exponent is zero. 63 FRT " FRBp 290 Rc
If the source operand is a zero, then a plus zero with a 0 6 " 16 21 31

zero exponent is returned.

The FPSCRgpRe field is set to the class and sign of the
result.

Special Registers Altered:

FPRF FR FI

FX XX

CR1 (if Re=1)
DFP Convert From Fixed Quad X-form
dcffixq FRTp,FRB (Rc=0)
dcffixq. FRTp,FRB (Rc=1)

63 FRTp | /// FRB 802 Rc

0 6 11 16 21 31

The 64-bit signed binary integer in FRB is converted
and rounded to a DFP Extended value and placed into
FRTp. The sign of the result is the same as the sign of
the source operand. The ideal exponent is zero.

If the source operand is a zero, then a plus zero with a
zero exponent is returned.

The FPSCRgpRf field is set to the class and sign of the
result.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
CR1 (if Re=1)

The DFP operand in FRB[p] is rounded to an integer
value and is placed into FRT in the 64-bit signed binary
integer format. The sign of the result is the same as
the sign of the source operand, except when the source
operand is a NaN or a zero.

Figure 98 summarizes the actions for Convert To Fixed.

Special Registers Altered:
FPRF (undefined) FR FlI
FX XX
VXSNAN VXCVI
CR1 (if Re=1)

- Programming Note

It is recommended that software pre-round the
operand to a floating-point integral using drintx{q]
or drintn[q] is a rounding mode other than the cur-
rent rounding mode specified by FPSCRpgy is
needed. Saving, modifying and restoring the
FPSCR just to temporarily change the rounding
mode is less efficient than just employing drintx[p]
or drint[p] which override the current rounding
mode using an immediate control field.

For example if the desired function rounding is
Round to Nearest, Ties away from 0 but the default
rounding (from FPSCRpRy) is Round to Nearest,
Ties to Even then following is preferred.

drintn 0,f1,f1,2
detfix f1,f1

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 205

Version 2.07 B

Operand b _ Isn r_lot Inv.-Op. | Inexact |Is n Incre- _
in FRB[p] is q is | precise | Except. | Except. mented Actions *
(n=b) | Enabled | Enabled | (Inl > Ibl)
-0 < b<MN| <MN - No - - T(MN), Fl « 0, FR « 0, VXCVI « 1
-0 < b<MN| <MN - Yes - - VXCVI « 1, TV
-0 < b<MN| =MN - - No - T(MN), Fl«1,FR < 0, XX « 1
-0 < b<MN| =MN - - Yes - T(MN), Fl « 1,FR « 0, XX « 1,TX
MN< b<0 - No - - - T(n), FI«0,FR <0
MN< b<0 - Yes - No No T(n), Fl«1,FR < 0, XX « 1
MN< b<0 - Yes - No Yes T(n), Fl«1,FR« 1, XX « 1
MN< b<0 - Yes - Yes No T(n), Fl«1,FR < 0, XX « 1, TX
MN< b<0 - Yes - Yes Yes T(n), Fl«1,FR« 1, XX « 1, TX
+0 - No - - - T(), FI«0,FR <0
O<b< MP - No - - - T(n), FI«0,FR <0
O0<b< MP - Yes - No No T(n), Fl«1,FR < 0, XX « 1
O<b< MP - Yes - No Yes T(n), Fl«1,FR« 1, XX « 1
0<b<MP - Yes - Yes No T(n), Fl«1,FR < 0, XX « 1, TX
O<b< MP - Yes - Yes Yes T(n), Fl«1,FR« 1, XX « 1, TX
MP <b <+ | = MP - - No - T(MP), Fl « 1, FR « 0, XX « 1
MP <b < +w | = MP - - Yes - T(MP), Fl « 1,FR « 0, XX « 1, TX
MP <b <+w | > MP - No - - T(MP), Fl « 0, FR « 0, VXCVI « 1
MP <b <+w | > MP - Yes - - VXCVI « 1, TV
QNaN - - No - - T(MN), FI<0, FR<0, VXCVI«1
QNaN - - Yes - - VXCVI<1, TV
SNaN - - No - - T(MN),Fl<0, FR<0, VXCVI«<1,VXSNAN «1
SNaN - - Yes - - VXCVI<1,VXSNAN « 1, TV
Explanation:
* Setting of XX, VXCVI, and VXSNAN is part of the corresponding exception actions. Also, when an

invalid-operation exception occurs, setting of Fl and FR bits is part of the exception actions. (See the
sections, “Inexact Exception” and “Invalid Operation Exception” for more details.)

The actions do not depend on this condition.

Fl Floating-Point-Fraction-Inexact status flag, FPSCR;.

FR Floating-Point-Fraction-Rounded status flag, FPSCREgRg.

MN Maximum negative number representable by the 64-bit binary integer format

MP Maximum positive number representable by the 64-bit binary integer format.

n The value q converted to a fixed-point result.
q The value derived when the source value b is rounded to an integer using the specified rounding mode

T(x) The value x is placed in FRT[p].

TV The system floating-point enabled exception error handler is invoked for the invalid-operation exception
if the FEO and FE1 bits in the machine-state register are set to any mode other than the ignore-excep-
tion mode.

TX The system floating-point enabled exception error handler is invoked for the inexact exception if the FEO
and FE1 bits in the machine-state register are set to any mode other than the ignore-exception mode.

VXCVI The FPSCRyxcy invalid operation exception status bit.
VXSNAN The FPSCRyxsnan invalid operation exception status bit.
XX Floating-Point-Inexact-Exception status flag, FPSCRyy
Figure 98. Actions: Convert To Fixed

206

Power ISA™ - Book |

Version 2.07 B

5.6.6 DFP Format Instructions

The DFP format instructions are used to compose or
decompose a DFP operand. A source operand of
SNaN does not cause an invalid-operation exception.
All format instructions employ the record bit (Rc).

The format instructions consist of Decode DPD To
BCD, Encode BCD To DPD, Extract Biased Exponent,
Insert Biased Exponent, Shift Significand Left Immedi-
ate, and Shift Significand Right Immediate.

DFP Decode DPD To BCD [Quad] X-form

DFP Encode BCD To DPD [Quad] X-form

ddedpd SPFRT,FRB (Rc=0) denbcd S,FRT,FRB (Rc=0)
ddedpd. SP,FRT,FRB (Rc=1) denbcd. S,FRT,FRB (Rc=1)

59 FRT |SP| /// | FRB 322 Rc 59 FRT |S| /// | FRB 834 Rc
0 6 1 |13 |16 21 31 0 6 11 [12 16 21 31
ddedpdq SP,FRTp,FRBp (Rc=0) denbcdq S,FRTp,FRBp (Rc=0)
ddedpdq. SPFRTp,FRBp (Re=1) denbcdg. S,FRTp,FRBp (Rc=1)

63 FRTp |SP| /// | FRBp 322 Rc 63 FRTp |S| /// | FRBp 834 Rc
0 6 1 |13 |16 21 31 0 6 11 [12 16 21 31

A portion of the significand of the DFP operand in
FRBI[p] is converted to a signed or unsigned BCD num-
ber depending on the SP field. For infinity and NaN, the
significand is considered to be the contents in the trail-
ing significand field padded on the left by a zero digit.

SP, = 0 (unsigned conversion)

The rightmost 16 digits of the significand (32 digits
for ddedpdq) is converted to an unsigned BCD
number and the result is placed into FRT[p].

SP,y =1 (signed conversion)

The rightmost 15 digits of the significand (31 digits
for ddedpdq) is converted to a signed BCD num-
ber with the same sign as the DFP operand, and
the result is placed into FRT[p]. If the DFP operand
is negative, the sign is encoded as 0b1101. If the
DFP operand is positive, SP4 indicates which pre-
ferred plus sign encoding is used. If SP4 = 0, the
plus sign is encoded as 0b1100 (the option-1 pre-
ferred sign code), otherwise the plus sign is
encoded as 0b1111(the option-2 preferred sign
code).

Special Registers Altered:
CR1 (if Re=1)

The signed or unsigned BCD operand, depending on
the S field, in FRB[p] is converted to a DFP number.
The ideal exponent is zero.

S = 0 (unsigned BCD operand)

The unsigned BCD operand in FRB[p] is converted
to a positive DFP number of the same magnitude
and the result is placed into FRT[p].

S =1 (sighed BCD operand)

The signed BCD operand in FRB[p] is converted to
the corresponding DFP number and the result is
placed into FRT[p].

If an invalid BCD digit or sign code is detected in the
source operand, an invalid-operation exception
(VXCVI) occurs.

FPSCREepRF is set to the class and sign of the result,
except for Invalid Operation Exception when
FPSCRyg=1.

Special Registers Altered:
FPRF FR (setto0) Fl(setto0)
FX
VXCVI
CR1 (if Re=1)

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 207

Version 2.07 B

DFP Extract Biased Exponent [Quad]
X-form

DFP Insert Biased Exponent [Quad]
X-form

dxex FRT,FRB (Rc=0) diex FRT,FRA,FRB (Rc=0)
dxex. FRT,FRB (Re=1) diex. FRT,FRA,FRB (Rc=1)

59 FRT " FRB 354 Rc 59 FRT | FRA | FRB 866 Rc
0 6 11 16 21 31 0 6 11 16 21 31
dxexq FRT,FRBp (Rc=0) diexq FRTp,FRA,FRBp (Rc=0)
dxexq. FRT,FRBp (Re=1) diexq. FRTp,FRA,FRBp (Re=1)

63 FRT i FRBp 354 Rc 63 FRTp | FRA | FRBp 866 Rc
0 6 11 16 21 31 0 6 11 16 21 31

The biased exponent of the operand in FRB[p] is
extracted and placed into FRT in the 64-bit signed
binary integer format. When the operand in FRB is an
infinity, QNaN, or SNaN, a special code is returned.

Operand Result
Finite Number biased exponent value
Infinity -1
QNaN -2
SNaN -3
Special Registers Altered:
CR1 (if Re=1)

Programming Note

The exponent bias value is 101 for DFP Short, 398
for DFP Long, and 6176 for DFP Extended.

Let a be the value of the 64-bit signed binary integer in
FRA.

a Result
a>MBE' QNaN
MBE >a >0 Finite number with biased exponent a

a=-1 Infinity
a=-2 QNaN
a=-3 SNaN
a<-3 QNaN

T Maximum biased exponent for the target format

When 0 < a < MBE, a is the biased target exponent that
is combined with the sign bit and the significand value
of the DFP operand in FRB[p] to form the DFP result in
FRTI[p]. The ideal exponent is the specified target expo-
nent.

When a specifies a special code (a < 0 or a > MBE), an
infinity, QNaN, or SNaN is formed in FRT[p] with the
trailing significand field containing the value from the
trailing significand field of the source operand in
FRB[p], and with an N-bit combination field set as fol-
lows.

B For an Infinity result,
B the leftmost 5 bits are set to Ob11110, and
B the rightmost N-5 bits are set to zero.
B For a QNaN result,
B the leftmost 5 bits are set to Ob11111,
B bit 5 is set to zero, and
W the rightmost N-5 bits are set to zero.
B For an SNaN result,
B the leftmost 5 bits are set to Ob11111,
B bit 5 is set to one, and
W the rightmost N-5 bits are set to zero.

Special Registers Altered:
CR1 (if Re=1)

Programming Note

The exponent bias value is 101 for DFP Short, 398
for DFP Long, and 6176 for DFP Extended.

208 Power ISA™ - Book |

Version 2.07 B

Operand a in Actions for Insert Biased Exponent when operand b in FRB[p] specifies
FRA[p] specifies F 00 QNaN SNaN
F N, Rb Z,Rb Z,Rb Z,Rb
00 I, Rb I, Rb I, Rb I, Rb
QNaN Q, Rb Q, Rb Q, Rb Q, Rb
SNaN S, Rb S, Rb S, Rb S, Rb
Explanation:
F All finite numbers, including zeros
| The combination field in FRT[p] is set to indicate a default Infinity.
N The combination field in FRT[p] is set to the specified biased exponent in FRA and
the leftmost significand digit in FRB[p].
Q The combination field in FRT[p] is set to indicate a default QNaN.
S The combination field in FRT[p] is set to indicate a default SNaN.
z The combination field in FRT[p] is set to indicate the specific biased exponent in FRA
and a leftmost coefficient digit of zero.
Rb The contents of the trailing significand field in FRB[p] are reencoded using preferred

DPD encodings and the reencoded result is placed in the same field in FRT[p]. The
sign bit of FRBI[p] is copied into the sign bit in FRT[p].

Figure 99. Actions: Insert Biased Exponent

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point]

209

Version 2.07 B

DFP Shift Significand Left Inmediate

DFP Shift Significand Right Inmediate

[Quad] Z22-form [Quad] Z22-form
dscli FRT,FRA,SH (Re=0) dscri FRT,FRA,SH (Rc=0)
dscli. FRT,FRA,SH (Re=1) dscri. FRT,FRA,SH (Re=1)
59 | FRT | FRA | SH 66 Re 59 | FRT | FRA | SH 98 Rc
0 6 11 16 22 31 0 6 11 16 22 31
dscliq FRTp,FRAp,SH (Ro=0) ~ Ma FRTPERAP.SH Eggf?i
dsclig. FRTp,FRAp,SH (Re=1) sena. P.FRAP, =
63 | FRTp | FRAp | SH 66 Rc 63 | FRTp | FRAp | SH % Re
0 6 11 16 22 31
0 6 1 16 22 31

The significand of the DFP operand in FRA[p] is shifted
left SH digits. For a NaN or infinity, all significand digits
are in the trailing significand field. SH is a 6-bit
unsigned binary integer. Digits shifted out of the left-
most digit are lost. Zeros are supplied to the vacated
positions on the right. The result is placed into FRT[p].
The sign of the result is the same as the sign of the
source operand in FRA[p].

If the source operand in FRA[p] is a finite number, the
exponent of the result is the same as the exponent of
the source operand.

For an Infinity, QNaN or SNaN result, the target for-
mat’s N-bit combination field is set as follows.

B For an Infinity result,
W the leftmost 5 bits are set to 0b11110, and
B the rightmost N-5 bits are set to zero.
m For a QNaN result,
W the leftmost 5 bits are set to Ob11111,
W bit 5 is set to zero, and
B the rightmost N-6 bits are set to zero.
m For an SNaN result,
W the leftmost 5 bits are set to Ob11111,
W bit 5 is set to one, and
B the rightmost N-6 bits are set to zero.

Special Registers Altered:
CR1 (if Re=1)

The significand of the DFP operand in FRA[p] is shifted
right SH digits. For a NaN or infinity, all significand dig-
its are in the trailing significand field. SH is a 6-bit
unsigned binary integer. Digits shifted out of the units
digit are lost. Zeros are supplied to the vacated posi-
tions on the left. The result is placed into FRT[p]. The
sign of the result is the same as the sign of the source
operand in FRA[p].

If the source operand in FRA[p] is a finite number, the
exponent of the result is the same as the exponent of
the source operand.

For an Infinity, QNaN or SNaN result, the target for-
mat’s N-bit combination field is set as follows.

B For an Infinity result,
W the leftmost 5 bits are set to 0b11110, and
B the rightmost N-5 bits are set to zero.
B For a QNaN result,
W the leftmost 5 bits are set to Ob11111,
W bit 5 is set to zero, and
m the rightmost N-6 bits are set to zero.
B For an SNaN result,
W the leftmost 5 bits are set to Ob11111,
W bit 5 is set to one, and
m the rightmost N-6 bits are set to zero.

Special Registers Altered:
CR1 (if Re=1)

210 Power ISA™ - Book |

Version 2.07 B

5.6.7 DFP Instruction Summary

§ 2 FPRF

£ = 3 &} FP =

e ol SNaN | ¢ Q | Exception l&" o

= Full Name IL | Operands Vs G| w Oo|lr|VvVzoUuX | |IE | x
dadd DFP Add X | FRT, FRA, FRB Y NIRE|Y |Y |V OUX|Y|Y]|Y
daddq DFP Add Quad X | FRTp, FRAp, FRBp Y NIRE|Y |Y |V OUX|Y|Y]|Y
dsub DFP Subtract X | FRT, FRA, FRB Y NIRE|Y |Y |V OUX|Y|Y]|Y
dsubq DFP Subtract Quad X | FRTp, FRAp, FRBp Y N|IRE|Y |Y |V OuUX|Y|Y]|Y
dmul DFP Multiply X | FRT, FRA, FRB Y NIRE|Y |Y |V OuUX|Y|Y|Y
dmulg | DFP Multiply Quad X | FRTp, FRAp, FRBp Y N|RE|Y|Y|Vv ouUX|Y|Y]|Y
ddiv DFP Divide X | FRT, FRA, FRB Y NIRE|Y |Y|[VZOUX|Y|[Y]|Y
ddivq DFP Divide Quad X | FRTp, FRAp, FRBp Y NIRE|Y | Y |[VZOUX|Y|[Y|Y
dcmpo DFP Compare Ordered X | BF, FRA, FRB Y - - N|Y |V - - | N
dcmpoq | DFP Compare Ordered Quad X | BF, FRAp, FRBp Y - - N|Y |V - - | N
dcmpu DFP Compare Unordered X | BF, FRA, FRB Y - - N|Y |V - - | N
dcmpuq | DFP Compare Unordered Quad | X | BF, FRAp, FRBp Y - - N|Y |V - - | N
dtstdc DFP Test Data Class Z22| BF, FRA, DCM N - - N | Y? - -| N
dtstdcq | DFP Test Data Class Quad Z22| BF, FRAp, DCM N - - N | V! - | -|N
dtstdg DFP Test Data Group Z22| BF, FRA,DGM N -| - | N|Y! -| -|N
dtstdgg | DFP Test Data Group Quad Z22| BF, FRAp, DGM N -] - N | Y? - | -|N
dtstex DFP Test Exponent X | BF, FRA, FRB N - - N|Y - - | N
dtstexq | DFP Test Exponent Quad X | BF, FRAp, FRBp N - - N|Y - - | N
dtstsf DFP Test Significance X | BF, FRA(FIX), FRB N - - N|Y - - | N
dtstsfq DFP Test Significance Quad X | BF, FRA(FIX), FRBp N - - N|Y - - | N
dquai DFP Quantize Immediate Z23| TE, FRT, FRB, RMC Y NIRE|Y |Y |V XIY|Y|Y
dquaiq DFP Quantize Immediate Quad |Z23| TE, FRTp, FRBp, RMC Y N|RE|Y |Y |V XIY|Y|Y
dqua DFP Quantize Z23| FRT,FRA,FRB,RMC Y NIRE|Y |Y |V XIY|Y|Y
dquaq DFP Quantize Quad Z23| FRTp,FRAp,FRBp, RMC Y NIRE|Y |Y |V XIY|Y|Y
drrnd DFP Reround 723| FRT,FRA(FIX),FRB,RMC Y NIRE|Y |Y |V XIY|Y|Y
drrndq DFP Reround Quad Z23 ETAT(ZF) FRA(FIX), FRBp, Y NIRE|Y |Y |V XY |Y Y
drintx aizait"“”d To FP Integer With 17, 3| R FRT, FRB,RMC Y N|RE|Y|Y |V x|vy|vy|Y
drintxq ﬁizafféﬂi? FP Integer With 17> R FRTp,FRBp,RMC Y N|RE|Y|Y|v x| v|v]|Y
drintn c?uFtF;nZZ:th To FP Integer With- 17,3 R FRT, FRB,RMC Y N|RE|Y|Y |V vily | Y
drintnq E;F;n'zi:ZSQTSaZP Integer With- 1,54 R FRTp, FRBp,RMC Y N|RE|Y|Y |V vily | Y
dctdp DFP Convert To DFP Long X | FRT, FRB (DFP Short) N Y| RE|Y|Y? ulyl|Y
dctgpq DFP Convert To DFP Extended X |FRTp, FRB Y N|IRE|Y |Y |V YElY|Y
drsp DFP Round To DFP Short X | FRT (DFP Short), FRB N Y|RE|Y | Y2 OuUX|Y|Y]|Y
drdpq DFP Round To DFP Long X | FRTp, FRBp Y NIRE|Y |Y |V OUX|Y|Y]|Y
dcffixq DFP Convert From Fixed Quad X | FRTp, FRB (FIX) - N|IRE|Y|Y ujly]|yY
dctfix DFP Convert To Fixed X | FRT (FIX), FRB Y N - ulu|Vv XY |-|Y
dctfixq DFP Convert To Fixed Quad X | FRT (FIX), FRBp Y N - ulu|Vv XY | -1]Y
ddedpd | DFP Decode DPD To BCD X | SP, FRT(BCD), FRB N - - N [N - -lY
Figure 100.Decimal Floating-Point Instructions Summary

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 211

Version 2.07 B

2 o | FPRF
£ = B 0 FP -
e ol SNaN | ¢ Q | Exception l&" o
= Full Name IL | Operands Vs G| w Oo|lr|VvVzoUuX | |IE | x
ddedpdq | DFP Decode DPD To BCD Quad | X | SP, FRTp(BCD), FRBp N - N | N -l - 1Y
denbcd | DFP Encode BCD To DPD X | S, FRT, FRB (BCD) - N|RE|Y |Y |V v Y Y
denbcdq | DFP Encode BCD To DPD Quad | X |S, FRTp, FRBp (BCD) - N|RE|Y |Y |V YHLY |Y
dxex DFP Extract Biased Exponent X | FRT (FIX), FRB N N| - N [N -1 - 1Y
dxexq gl:ngxtract Biased Exponent X | FRT (FIX), FRBp N N) NN Y
diex DFP Insert Biased Exponent X | FRT, FRA(FIX), FRB N Y| RE|N|N -lY LY
diexq g':: d'”se” Biased Exponent X |FRTp, FRA(FIX),FRBp | N Y|RE | N | N v |Y
dscli gizfesmft Significand Left Imme- |,)| £ FRA,SH N Y|RE|N|[N I
dsclig 3:2 %hllzds'gn'f'cand Leftmme- 17| FRTp,FRAP,SH N Y|RE|N|[N -y
dscri EZZShlﬂ Significand Right Imme- 722| FRT FRA.SH N YIREININ)) Y
dscriq gzzzhgds'g”'f'ca”d Right ImMe- |- FRTp,FRAp,SH N Y|RE|[N|N -
Explanation:
Fl and FR are set to zeros for these instructions.
- Not applicable.
1 A unique definition of the FPSCRppc field is provided for the instruction.
5 These are the only instructions that may generate an SNaN and also set the FPSCgpge field. Since the BFP FPSCRgpre
field does not include a code for SNaN, these instructions cause the need for redefining the FPSCRgpge field for DFP.
DCM A 6-bit immediate operand specifying the data-class mask.
DGM A 6-bit immediate operand specifying the data-group mask.
G An SNaN can be generated as the target operand.
IE An ideal exponent is defined for the instruction.
FI Setting of the FPSCRE, flag.
FR Setting of the FPSCRER flag.
N No.
(0] An overflow exception may be recognized.
Rc The record bit, Rc, is provided to record FPSCR3,.35 in CR field 1.
RE The trailing significand field is reencoded u§ing .p.referred DPD encodings.The preferred DPD encoding are also used for
propagated NaNs, or converted NaNs and infinities.
RMC A 2-bit immediate operand specifying the rounding-mode control.
S An one-bit immediate operand specifying if the operation is signed or unsigned.
sp Atwo-bi.t‘imme(.jiate operand: one pit specifigs if the operation is signed or unsigned and, for signed operations, another
bit specifies which preferred plus sign code is generated.
U An underflow exception may be recognized.
\% An invalid-operation exception may be recognized.
Vs An input operand of SNaN causes an invalid-operation exception.
X An inexact exception may be recognized.
Y Yes.
u Undefined
z A zero-divide exception may be recognized.

Figure 100.Decimal Floating-Point Instructions Summary (Continued)

212

Power ISA™ - Book |

Version 2.07 B

Chapter 6. Vector Facility [Category: Vector]

6.1 Vector Facility Overview

This chapter describes the registers and instructions
that make up the Vector Facility.

6.2 Chapter Conventions

6.2.1 Description of Instruction
Operation
The following notation, in addition to that described in

Section 1.3.2, is used in this chapter. Additional RTL
functions are described in Appendix C.

x.bit[y]
Return the contents of bit y of x.

x.bit[y:z]
Return the contents of bits y:z of x.

x.byte[y]
Return the contents of byte element y of x.

x.byte[y:z]
Return the contents of byte elements y:z of x.

x.hword[y]
Return the contents of halfword element y of x.

x.hword[y:z]
Return the contents of halfword elements y:z of x.

x.word[y]
Return the contents of word element y of x.

x.word[y:z]
Return the contents of word element y:z of x.

x.dword[y]
Return the contents of doubleword element y of x.

x.dword[y:z]
Return the contents of doubleword elements y:z of
X.

X?y:z
if the value of x is true, then the value of vy,
otherwise the value z.

Fint
Integer addition.
+p
Floating-point addition.
“fp
Floating-point subtraction.
Xsui
Multiplication of a signed-integer (first operand) by
an unsigned-integer (second operand).
Xf
Floating-point multiplication.
Sint
Integer equals relation.

Floating-point equals relation.

<ui» Suir 2uiv 2ui

Unsigned-integer comparison relations.
<ai, <aiy Seiy >

Si» =siv ~siv =si
Signed-integer comparison relations.

Sto =fp: >fp: 2fp. . .
Floating-point comparison relations.

LENGTH(x)
Length of x, in bits. If x is the word “element”,
LENGTH(x) is the length, in bits, of the element
implied by the instruction mnemonic.

Chapter 6. Vector Facility [Category: Vector] 213

Version 2.07 B

X <<y
Result of shifting x left by y bits, filling vacated bits
with zeros.

b € LENGTH (x)
result € (v <b) ? (x5 [FO) : 5

X >>i Y
Result of shifting x right by y bits, filing vacated
bits with zeros.

b € LENGTH(x)
result € (v <b) 2 (Y0 || x5, pyy-1) : B

X >> y
Result of shifting x right by y bits, filling vacated
bits with copies of bit 0 (sign bit) of x.

b € LENGTH (x)
result € (y<b) ? (% [Ixg, (pyy-1) ¢ %o

X <<<y

Result of rotating x left by y bits.
b € LENGTH (x)
result € %1 [Xg.ye1

InvMixColumns(x)

doc=0¢to3
result.word[c].byte[0]
result.word[c].byte[1]
result.word[c].byte[2]
result.word[c].byte[3]

end

return(result);

A

0x0Eex.word[c].byte[0] " 0x0Be

0x09ex.word[c].byte[0]

0x0Dex.word[c].byte[0]
[c]

0x0Bex.word[c].byte[0]

~ 0x09ex.word

A

“.n
.

where

x.word[c].byte[l
0x0Eex.word[c].byte[l

[
[
(
[

0x0Dex.word[c] .byte[l

X >>>y
Returns the contents of x rotated right by y bits.

Chop(x, y)
Result of extending the right-most y bits of x on
the left with zeros.
result € x & ((Il<<y)-1)

EXTZ(x)
Result of extending x on the left with zeros.
b € LENGTH(x)
result € x & ((1<<b)-1)

Clamp(x, y, 2)
x is interpreted as a signed integer. If the value of
x is less than y, then the value y is returned, else if
the value of x is greater than z, the value z is
returned, else the value x is returned.
if (x < y) then
result €y
VSCRgyp € 1
else if (x > z) then
result € z
VSCRgyp € 1
else result € x

A A

0x0Dex.word[c] .byte[2]
0x0Bex.word[c].byte[2]
0x0Eex.word[c] .byte[2]
0x09+x.word[c] .byte[2]

0x09ex.word[c] .byte[3]
0x0Dex.word[c].byte[3]
0x0Bex.word[c] .byte[3]
0x0E*x.word[c] .byte[3]

A A

A A

A~ A

]]
]]
c].byte[l]
]]

is a GF(28) multiply, a binary polynomial multiplication reduced by modulo 0x11B.

The GF(28) multiply of 0x09«x can be expressed in minimized terms as the following.

product.bit[0] = x.bit[0] " x.bit[3]

product.bit[1l] = x.bit[1] * x.bit[4] * x.bit[0]
product.bit(2] = x.bit[2] * x.bit[5] * x.bit[0] " x.bit[1]
product.bit[3] = x.bit[3] * x.bit[6] * x.bit[1] " x.bit[2]
product.bit[4] = x.bit[4] * x.bit[7] * x.bit[0] * x.bit[2]
product.bit[5] = x.bit[5] * x.bit[0] * x.bit[1]
product.bit[6] = x.bit[6] " x.bit[1] * x.bit[2]
product.bit[7] = x.bit[7] * x.bit[2]

The GF(28) multiply of 0x0Bex can be expressed

product.bit[0] = x.bit[0] * x.bit[1] " x.bit[3]

product.bit[1] = x.bit[1] * x.bit[2] " x.bit[4] * x.bit[0]
product.bit[2] = x.bit[2] * x.bit[3] " x.bit[5] * x.bit[0]
product.bit[3] = x.bit[3] * x.bit[4] " x.bit[6] * x.bit[0]
product.bit[4] = x.bit[4] * x.bit[5] " x.bit[7] * x.bit[2]
product.bit[5] = x.bit[5] * x.bit[6] " x.bit[0] * x.bit[1]
product.bit[6] = x.bit[6] * x.bit[7] " x.bit[0] * x.bit[1]
product.bit[7] = x.bit[7] * x.bit[0] " x.bit[2]

in minimized terms as the following.

~ x.bit[1]
~ x.bit[1] * x.bit[2]

~ x.bit[2]

214 Power ISA™ - Book |

Version 2.07 B

The GF(28) multiply of 0x0Dex can be expressed in minimized terms as the following.
product.bit[0] =
product.bit[1] =

[
product.bit|
product.bit[
product.bit[
product.bit[
product.bit[
product.bit[

]
2]
3]
4] =
5
6
7]

x.bit[0] 7
x.bit[1] 7
x.bit[2] 7
x.bit[3] 7
x.bit[4] *
x.bit[5] 7
x.bit[6] 7
x.bit[7] *

x.bit[2]

The GF(28) multiply of 0xOEex can be
product.bit[0] =
product.bit[1] =

[
product.bit|
product.bit[
product.bit[
product.bit|
product.bit[
product.bit[

InvShiftRows(x)
result.word[0
result.word[l
result.word[2
result.word[3

result.word|
result.word[
result.word[
result.word|[

result.word[0]
result.word[1]
result.word[2]
result.word(3]
result.word
result.word

result.word
result.word

return(result)

.byte[0
.byte[0
.byte[0

]

] =
] =
] =
] =
] =
]

2
3
4
5
6
7

byte[0]
]
]
]

.byte[l

.byte[l
.byte[l

]
.byte[1]
]
]

.byte[2
.byte[2

]
]
.byte[2]
]

.byte[2

.byte[3
.byte[3
.byte[3
.byte[3

]
]
]
]

x.bit[1] 7
x.bit[2] 7
x.bit[3] 7
x.bit[4] 7
x.bit[5] 7
x.bit[6] 7
x.bit[7] 7
x.bit[0] 7

x.bit[2

* x.bit[3]
~ x.bit[4] * x.bit[0]
~ x.bit[5] * x.bit[l
~ x.bit[6] " x.bit[0] " x.bit[2]
A x.bit[7] » x.bit[0] " x.bit[1] * x.bit[2]
~ x.bit[1]
~ x.bit[2]
]

~ x.bit[2

expressed in minimized terms as the following.
~ x.bit[3]

~ x.bit[4] [0
~ x.bit[5] (1]
~ x.bit[6] * x.bit[2]
~ x.bit[7] [1
~ x.bit[1]

* x.bit[2]

Chapter 6. Vector Facility [Category: Vector]

215

Version 2.07 B

InvSubBytes(x)
InvSBOX.byte[256] =

doi=0tol5
result.byte[i]

end

return(result)

MixColumns(x)
doc=0¢to3
result.word[c

result.word[c

result.word[c
end
return(result)

The GF(28) multiply of 0x02ex can be expressed in minimized terms as the following.

product.bit[0]
product.bit[1
product.bit[
product.bit[
product.bit[
product.bit[
product.bit[

[

]
]
]
]
]
]
product.bit[7]

2
3
4
5
6
1

The GF(28) multiply of 0x03ex can be expressed in minimized terms as the following.

product.bit[0]

[
product.bit[
product.bit[
product.bit[
product.bit[
product.bit[
product.bit[

[c].byte[0] =
result.word[c].byte[l] =
[c].
[c].

{ 0x52,0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0XFB,

0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
0x54,0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0XEE, 0x4C, 095, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
0x08, 0x2E, 0xAl, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
0x72,0xF8, 0xF6, 0x64,0x86, 0x68,0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
0x6C, 0x70, 0x48, 0x50, 0xFD, 0XED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06
0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03,0x01, 0x13, 0x8A, 0x6B,
0x3A,0x91,0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
0x47,0xF1,0x1A, 0x71,0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 020, 0x9A, 0xDB, 0xCO, 0XFE, 0x78, 0xCD, 0x5A, 0xF4,
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
0x60,0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 093, 0xC9, 0x9C, 0XEF,
0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0XEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,

0x17,0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xEL, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D }

byte[2] =
byte(3] =

= x.bit[1]
= x.bit[2]
= x.bit[3]
= x.bit[4]
= x.bit[5]
= x.bit[6]
= x.bit[7]
x.bit[0]

= x.bit[0]
= x.bit[1]
= x.bit[2]
= x.bit[3]
= x.bit[4]
= x.bit[5]
= x.bit[6]
= x.bit[7]

0x02+x.word[c] .byte[0] *

0x03ex.word[c].byte[0] *

= InvSBOX.byte[x.byte[i]]

A

0x03+x.word[c] .byte[1]

0x02+x.word[c] .byte[1] *
x.word[c].byte[0] * x.word[c].byte[l]
[c]]

x.word[c].byte[l

A

[c] [c]
x.word[c].byte[0] * 0x03x.word[c]
[c] [c]
[c] [c]

~ x.bit[0]
~ x.bit[0]

~ x.bit[0]

~ x.bit[1]
~ x.bit[2]
~ x.bit]
~ x.bit[4] " x.bit[0]
~ x.bit[5] " x.bit[0]
~ x.bit]
~ x.bit]
~ x.bit]

* x.bit[0]

x.word[c].byte[2
.byte[2
~ 0x02ex.word[c] .byte[2
x.word[c].byte[2

]
]
]
]

A

A

A

A

x.word[c].byte[3
x.word[c] .byte[3
0x03+x.word[c] .byte[3
0x02ex.word[c].byte[3

]
]
]
]

216

Power ISA™ - Book |

Version 2.07 B

ShiftRows(x)

result.word[0].byte[0] = x.word[0].byte[0]
result.word[1].byte[0] = x.word[1].byte[0]
result.word([2].byte[0] = x.word[2].byte[0]
result.word[3].byte[0] = x.word[3].byte[0]
result.word[0].byte[l] = x.word[1l].byte[l]
result.word[1].byte[l] = x.word[2].byte[l]
result.word[2].byte[l] = x.word[3].byte[l]
result.word[3].byte[l] = x.word[0].byte[1]
result.word[0] .byte[2] = x.word[2].byte[2]
result.word[1].byte[2] = x.word[3].byte[2]
result.word[2].byte[2] = x.word[0].byte[2]
result.word([3].byte[2] = x.word[1].byte[2]
result.word[0].byte[3] = x.word[3].byte[3]
result.word[1].byte[3] = x.word[0].byte[3]
result.word([2].byte[3] = x.word[1l].byte[3]
result.word[3].byte[3] = x.word[2].byte[3]

return(result)

Signed_BCD_Add(x,y,z)
Let x and y be 31-digit signed decimal values.

Performs a signed decimal addition of x and y.

If the unbounded result is equal to zero, eq_flag is set to 1. Otherwise, eq_flag is set to 0.

If the unbounded result is greater than zero, gt_flag is set to 1. Otherwise, gt_flag is set to 0.
If the unbounded result is less than zero, It_flag is set to 1. Otherwise, 1t_flag is set to 0.

If the magnitude of the unbounded result is greater than 103
0.

-1, ox_flag is set to 1. Otherwise, ox_flag is set to

If the unbounded result is greater than or equal to zero, the sign code of the result is set to 0b1100 if z=0.
If the unbounded result is greater than or equal to zero, the sign code of the result is set to 0b1111 if z=1.
If the unbounded result is less than zero, the sign code of the result is set to 0b1101.

The low-order 31 digits of the unbounded result magnitude concatented with the sign code are returned.

If either operand is an invalid encoding of a signed decimal value, the result returned is undefined and inv_flag
is set to 1 and It_flag, gt_flag and eq_flag are set to 0. Otherwise, inv_flag is set to 0.

Chapter 6. Vector Facility [Category: Vector] 217

Version 2.07 B

Signed_BCD_Subtract(x,y,z)
Let x and y be 31-digit signed decimal values.

Performs a signed decimal subtract of y from x.

If the unbounded result is equal to zero, eq_flag is set to 1. Otherwise, eq_flag is set to 0.
If the unbounded result is greater than zero, gt_flag is set to 1. Otherwise, gt_flag is set to 0.
If the unbounded result is less than zero, 1t_flag is set to 1. Otherwise, It_flag is set to 0.

If the magnitude of the unbounded result is greater than 1
0.

031

-1, ox_flag is set to 1. Otherwise, ox_flag is set to

If the unbounded result is greater than or equal to zero, the sign code of the result is set to 0b1100 if z=0.
If the unbounded result is greater than or equal to zero, the sign code of the result is set to 0b1111 if z=1.
If the unbounded result is less than zero, the sign code of the result is set to 0b1101.

The low-order 31 digits of the unbounded result magnitude concatented with the sign code are returned.

If either operand is an invalid encoding of a signed decimal value, the result returned is undefined and inv_flag
is setto 1 and It_flag, gt_flag and eq_flag are set to 0. Otherwise, inv_flag is set to 0.

SubBytes(x)

SBOX.byte[0:255] = { 0x63,0x7C,0x77,0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0XFE, 0xD7, 0xAB, 0x76
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xCO,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04,0xC7,0x23,0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09,0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x524, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53,0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, OXFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60,0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0XEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xEQ, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0XAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7,0xC8,0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0XEA, 0x65, 0x7A, 0XAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0XE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x83,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xBY, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8,0x98,0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0XE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xAl, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16 }

doi=0tol5

result.byte[i] = SBOX.byte[x.byte[i]]
end
return(result)

RoundToSPIntCeil(x) RoundToSPIntTrunc(x)

The value x if x is a single-precision floating-point
integer; otherwise the smallest single-precision
floating-point integer that is greater than x.

RoundToSPIntFloor(x)
The value x if x is a single-precision floating-point

The value x if x is a single-precision floating-point
integer; otherwise the largest single-precision
floating-point integer that is less than x if x>0, or
the smallest single-precision floating-point integer
that is greater than x if x<0.

integer; otherwise the largest single-precision RoundToNearSP(x)

floating-point integer that is less than x.

RoundToSPIntNear(x)
The value x if x is a single-precision floating-point
integer; otherwise the single-precision
floating-point integer that is nearest in value to x
(in case of a tie, the even single-precision
floating-point integer is used).

The single-precision floating-point number that is
nearest in value to the infinitely-precise
floating-point intermediate result x (in case of a tie,
the single-precision floating-point value with the
least-significant bit equal to 0 is used).

218 Power ISA™ - Book |

Version 2.07 B

ReciprocalEstimateSP(x)
A single-precision floating-point estimate of the
reciprocal of the single-precision floating-point
number Xx.

ReciprocalSquareRootEstimateSP(x)
A single-precision floating-point estimate of the
reciprocal of the square root of the
single-precision floating-point number x.

LogBase2EstimateSP(x)
A single-precision floating-point estimate of the
base 2 logarithm of the single-precision
floating-point number x.

Power2EstimateSP(x)
A single-precision floating-point estimate of the 2
raised to the power of the single-precision
floating-point number x.

Chapter 6. Vector Facility [Category: Vector] 219

Version 2.07 B

6.3 Vector Facility Registers

.qword
.word[0] -word[1] -word[2] .word[3]
-hword[0] -hword[1] -hword[2] -hword[3] -hword[4] -hword[5] -hword[6] -hword[7]
.byte[0] | -byte[1] | .byte[2] | .byte[3] | .byte[4] | -byte[5] | -byte[6] | -byte[7] | .byte[8] | -byte[9] | .byte[10]|.byte[11]|.byte[12]|.byte[13]{.byte[14]|.byte[15]
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Figure 101.Vector Register elements

6.3.1 Vector Registers

There are 32 Vector Registers (VRs), each containing
128 bits. See Figure 102. All computations and other
data manipulation are performed on data residing in
Vector Registers, and results are placed into a VR.

VRO
VR1

VR30
VR31

0 127

Figure 102.Vector Registers

Depending on the instruction, the contents of a Vector
Register are interpreted as a sequence of equal-length
elements (bytes, halfwords, or words) or as a
quadword. Each of the elements is aligned within the
Vector Register, as shown in Figure 101. Many
instructions perform a given operation in parallel on all
elements in a Vector Register. Depending on the
instruction, a byte, halfword, or word element can be
interpreted as a signed-integer, an unsigned-integer,
or a logical value; a word element can also be
interpreted as a single-precision floating-point value. In
the instruction descriptions, phrases like
“signed-integer word element” are used as shorthand
for “word element, interpreted as a signed-integer”.

Load and Store instructions are provided that transfer
a byte, halfword, word, or quadword between storage
and a Vector Register.

6.3.2 Vector Status and Control
Register

The Vector Status and Control Register (VSCR) is a
special 32-bit register (not an SPR) that is read and
written in a manner similar to the FPSCR in the Power
ISA scalar floating-point unit. Special instructions
(mfvscr and mtvscr) are provided to move the VSCR
from and to a vector register. When moved to or from a
vector register, the 32-bit VSCR is right justified in the
128-bit vector register. When moved to a vector
register, bits 0:95 of the vector register are cleared (set
to 0).

VSCR \
127

96

Figure 103.Vector Status and Control Register

The bit definitions for the VSCR are as follows.

Bit(s) Description
96:110 Reserved
111 Vector Non-Java Mode (NJ)

This bit controls how denormalized values

are handled by Vector Floating-Point

instructions.

0 Denormalized values are handled as
specified by Java and the IEEE stan-
dard; see Section 6.6.1.

1 If an element in a source VR contains a
denormalized value, the value 0 is used
instead. If an instruction causes an
Underflow Exception, the correspond-
ing element in the target VR is set to 0.
In both cases the 0 has the same sign
as the denormalized or underflowing
value.

112:126 Reserved
127 Vector Saturation (SAT)

Every vector instruction having “Saturate” in
its name implicitly sets this bit to 1 if any
result of that instruction “saturates”; see

220 Power ISA™ - Book |

Version 2.07 B

Section 6.8. mtvscr can alter this bit explic-
itly. This bit is sticky; that is, once set to 1 it
remains set to 1 until it is set to 0 by an
mtvscr instruction.

After the mfvscr instruction executes, the result in the
target vector register will be architecturally precise.
That is, it will reflect all updates to the SAT bit that
could have been made by vector instructions logically
preceding it in the program flow, and further, it will not
reflect any SAT updates that may be made to it by
vector instructions logically following it in the program
flow. To implement this, processors may choose to
make the mfvscr instruction execution serializing
within the vector unit, meaning that it will stall vector
instruction execution until all preceding vector
instructions are complete and have updated the
architectural machine state. This is permitted in order
to simplify implementation of the sticky status bit (SAT)
which would otherwise be difficult to implement in an
out-of-order execution machine. The implication of this
is that reading the VSCR can be much slower than
typical Vector instructions, and therefore care must be
taken in reading it, as advised in Section 6.5.1, to
avoid performance problems.

The mtvscr is context synchronizing. This implies that
all Vector instructions logically preceding an mtvscr in
the program flow will execute in the architectural
context (NJ mode) that existed prior to completion of
the mtvscr, and that all instructions logically following
the mtvscr will execute in the new context (NJ mode)
established by the mtvscr.

6.3.3 VR Save Register

The VR Save Register (VRSAVE) is a 32-bit register in
the fixed-point processor provided for application and
operating system use; see Section 3.2.3.

—— Programming Note

The VRSAVE register can be used to indicate
which VRs are currently being used by a program.
If this is done, the operating system could save
only those VRs when an “interrupt” occurs (see
Book 1), and could restore only those VRs when
resuming the interrupted program.

If this approach is taken it must be applied
rigorously; if a program fails to indicate that a given
VR is in use, software errors may occur that will be
difficult to detect and correct because they are
timing-dependent.

Some operating systems save and restore
VRSAVE only for programs that also use other
vector registers.

6.4 Vector Storage Access
Operations

The Vector Storage Access instructions provide the
means by which data can be copied from storage to a
Vector Register or from a Vector Register to storage.
Instructions are provided that access byte, halfword,
word, and quadword storage operands. These
instructions differ from the fixed-point and floating-point
Storage Access instructions in that vector storage
operands are assumed to be aligned, and vector
storage accesses are performed as if the appropriate
number of low-order bits of the specified effective
address (EA) were zero. For example, the low-order bit
of EA is ignored for halfword Vector Storage Access
instructions, and the low-order four bits of EA are
ignored for quadword Vector Storage Access
instructions. The effect is to load or store the storage
operand of the specified length that contains the byte
addressed by EA.

If a storage operand is unaligned, additional
instructions must be used to ensure that the operand is
correctly placed in a Vector Register or in storage.
Instructions are provided that shift and merge the
contents of two Vector Registers, such that an
unaligned quadword storage operand can be copied
between storage and the Vector Registers in a
relatively efficient manner.

As shown in Figure 101, the elements in Vector
Registers are numbered; the high-order (or most
significant) byte element is numbered 0 and the
low-order (or least significant) byte element is
numbered 15. The numbering affects the values that
must be placed into the permute control vector for the
Vector Permute instruction in order for that instruction
to achieve the desired effects, as illustrated by the
examples in the following subsections.

A vector quadword Load instruction for which the
effective address (EA) is quadword-aligned places the
byte in storage addressed by EA into byte element 0 of
the target Vector Register, the byte in storage
addressed by EA+1 into byte element 1 of the target
Vector Register, etc. Similarly, a vector quadword
Store instruction for which the EA is quadword-aligned
places the contents of byte element 0 of the source
Vector Register into the byte in storage addressed by
EA, the contents of byte element 1 of the source
Vector Register into the byte in storage addressed by
EA+1, etc.

Chapter 6. Vector Facility [Category: Vector] 221

Version 2.07 B

Figure 104 shows an aligned quadword in storage.
Figure 105 shows the result of loading that quadword
into a Vector Register or, equivalently, shows the
contents that must be in a Vector Register if storing
that Vector Register is to produce the storage contents
shown in Figure 104.

When an aligned byte, halfword, or word storage
operand is loaded into a Vector Register, the element
(byte, halfword, or word respectively) that receives the
data is the element that would have received the data
had the entire aligned quadword containing the
storage operand addressed by EA been loaded.
Similarly, when a byte, halfword, or word element in a
Vector Register is stored into an aligned storage
operand (byte, halfword, or word respectively), the
element selected to be stored is the element that
would have been stored into the storage operand
addressed by EA had the entire Vector Register been
stored to the aligned quadword containing the storage
operand addressed by EA. (Byte storage operands are
always aligned.)

For aligned byte, halfword, and word storage
operands, if the corresponding element number is
known when the program is written, the appropriate
Vector Splat and Vector Permute instructions can be
used to copy or replicate the data contained in the
storage operand after loading the operand into a
Vector Register. An example of this is given in the
Programming Note for Vector Splat; see page 244.
Another example is to replicate the element across an
entire Vector Register before storing it into an arbitrary
aligned storage operand of the same length; the
replication ensures that the correct data are stored
regardless of the offset of the storage operand in its
aligned quadword in storage.

00 00 01 02 03 04 05 06

07

08 09 | OA | OB | OC | OD | OE | OF

10

0 1 2 3 4 5 6

Figure 104.Aligned quadword storage operand

\00\01\02\03\04\05|06|o7|08|09\0A\

| 0D |

0 1 2 3 4 5 6

7

8 9 A B Cc D E F

Figure 105.Vector Register contents for aligned quadword Load or Store

00 00 | 01 [02] 03] 04
10 | 05 | 06 | 07 | 08 | 09 | oA | oB [0oC | oD | OE | OF
0 1 2 3 4 5 6 7 8 9 A B C D E F
Figure 106.Unaligned quadword storage operand
Vhi 00 [01 [02] 03] 04
Vio| 05 | 06 | 07 | 08 | 09 [oA | 0B | oCc | oD]| OE | OF
Vt,vS\oo\m\02\03\04\05|06|07|08|09\OA\OB\OC\OD\OE\OF\
0 15

Figure 107.Vector Register contents

222 Power ISA™ - Book |

Version 2.07 B

6.4.1 Accessing Unaligned Storage Operands

Figure 106 shows an unaligned quadword storage
operand that spans two aligned quadwords. In the
remainder of this section, the aligned quadword that
contains the most significant bytes of the unaligned
quadword is called the most significant quadword
(MSQ) and the aligned quadword that contains the
least significant bytes of the unaligned quadword is
called the least significant quadword (LSQ). Because

the Vector Storage Access instructions ignore the
low-order bits of the effective address, the unaligned
quadword cannot be transferred between storage and
a Vector Register using a single instruction. The
remainder of this section gives examples of accessing
unaligned quadword storage operands. Similar
sequences can be used to access unaligned halfword
and word storage operands.

Programming Note

The sequence of instructions given below is one
approach that can be used to load the unaligned
quadword shown in Figure 106 into a Vector Register.
In Figure 107 Vhi and Vlo are the Vector Registers that
will receive the most significant quadword and least
significant quadword respectively. VRT is the target
Vector Register.

After the two quadwords have been loaded into Vhi
and Vlo, using Load Vector Indexed instructions, the
alignment is performed by shifting the 32-byte quantity
Vhi || Vio left by an amount determined by the address
of the first byte of the desired data. The shifting is done
using a Vector Permute instruction for which the
permute control vector is generated by a Load Vector
for Shift Left instruction. The Load Vector for Shift Left
instruction uses the same address specification as the
Load Vector Indexed instruction that loads the Vhi
register; this is the address of the desired unaligned
quadword.

The following sequence of instructions copies the
unaligned quadword storage operand into register Vt.

Assumptions:
Rb != 0 and contents of Rb = 0xB

lvx vhi,0,Rb # load MSQ
lvsl Vp,0,Rb # set permute control vector
addi Rb,Rb,16 # address of LSQ

lvx Vlo,0,Rb # load LSQ
vperm Vt,Vhi,Vlo,Vp # align the data

The procedure for storing an unaligned quadword is
essentially the reverse of the procedure for loading
one. However, a read-modify-write sequence is
required that inserts the source quadword into two
aligned quadwords in storage. The quadword to be

stored is assumed to be in Vs; see Figure 107 The
contents of Vs are shifted right and split into two parts,
each of which is merged (using a Vector Select
instruction) with the current contents of the two aligned
quadwords (MSQ and LSQ) that will contain the most
significant bytes and least significant bytes,
respectively, of the unaligned quadword. The resulting
two quadwords are stored using Store Vector Indexed
instructions. A Load Vector for Shift Right instruction is
used to generate the permute control vector that is
used for the shifting. A single register is used for the
“shifted” contents; this is possible because the
“shifting” is done by means of a right rotation. The
rotation is accomplished by specifying Vs for both
components of the Vector Permute instruction. In
addition, the same permute control vector is used on a
sequence of 1s and Os to generate the mask used by
the Vector Select instructions that do the merging.

The following sequence of instructions copies the
contents of Vs into an unaligned quadword in storage.

Assumptions:
Rb != 0 and contents of Rb = 0xB

lvx Vhi,0,Rb # load current MSQ

lvsr Vp,0,Rb # set permute control vector
addi Rb,Rb, 16 # address of LSQ

lvx Vlo,0,Rb # load current LSQ

vspltisb Vis,-1
vspltisb V0s,0
vperm Vmask,V0s,V1s,Vp # generate the select mask

generate the select mask bits

vperm Vs, Vs, Vs, Vp # right rotate the data
vsel Vlo,Vs,Vlo,Vmask # insert LSQ component
vsel Vhi,Vhi,Vs,Vmask # insert MSQ component
stvx Vlo,0,Rb # store LSQ

addi Rb,Rb,-16 # address of MSQ

stvx Vhi,0,Rb # store MSQ

Chapter 6. Vector Facility [Category: Vector] 223

Version 2.07 B

6.5 Vector Integer Operations

Many of the instructions that produce fixed-point
integer results have the potential to compute a result
value that cannot be represented in the target format.
When this occurs, this unrepresentable intermediate
value is converted to a representable result value
using one of the following methods.

1. The high-order bits of the intermediate result that
do not fit in the target format are discarded. This
method is used by instructions having names that
include the word "Modulo".

2. The intermediate result is converted to the nearest
value that is representable in the target format
(i.e., to the minimum or maximum representable
value, as appropriate). This method is used by
instructions having names that include the word
"Saturate". An intermediate result that is forced to
the minimum or maximum representable value as
just described is said to "saturate".

An instruction for which an intermediate result
saturates causes VSCRgaT to be set to 1; see
Section 6.3.2.

3. If the intermediate result includes non-zero
fraction bits it is rounded up to the nearest
fixed-point integer value. This method is used by
the six Vector Average Integer instructions and by
the Vector Multiply-High-Round-Add Signed
Halfword Saturate instruction. The latter
instruction then uses method 2, if necessary.

— Programming Note

Because VSCRgpT is sticky, it can be used to
detect whether any instruction in a sequence of
“Saturate”-type instructions produced an inexact
result due to saturation. For example, the contents
of the VSCR can be copied to a VR (mfvscr), bits
other than the SAT bit can be cleared in the VR
(vand with a constant), the result can be
compared to zero setting CR6 (vcmpequb.), and a
branch can be taken according to whether
VSCRgaT Was set to 1 (Branch Conditional that
tests CR field 6).

Testing VSCRgpt after each “Saturate’-type
instruction would degrade performance
considerably. Alternative techniques include the
following:

— Retain sufficient information at "checkpoints"
that the sequence of computations performed
between one checkpoint and the next can be
redone (more slowly) in a manner that detects
exactly when saturation occurs. Test
VSCRgaT only at checkpoints, or when
redoing a sequence of computations that
saturated.

— Perform intermediate computations using an
element length sufficient to prevent saturation,
and then use a Vector Pack Integer Saturate
instruction to pack the final result to the
desired length. (Vector Pack Integer Saturate
causes results to saturate if necessary, and
sets VSCRgaT to 1 if any result saturates.)

6.5.1

Saturation occurs whenever the result of a saturating
instruction does not fit in the result field. Unsigned
saturation clamps results to zero (0) on underflow and
to the maximum positive integer value (2"-1, e.g. 255
for byte fields) on overflow. Signed saturation clamps
results to the smallest representable negative number
(-2™1 e.g. -128 for byte fields) on underflow, and to
the largest representable positive number (2”‘1-1, e.g.
+127 for byte fields) on overflow.

Integer Saturation

224 Power ISA™ - Book |

Version 2.07 B

In most cases, the simple maximum/minimum
saturation performed by the vector instructions is
adequate. However, sometimes, e.g. in the creation of
very high quality images, more complex saturation
functions must be applied. To support this, the Vector
facility provides a mechanism for detecting that
saturation has occurred. The VSCR has a bit, the SAT
bit, which is set to a one (1) anytime any field in a
saturating instruction saturates. The SAT bit can only
be cleared by explicitly writing zero to it. Thus SAT
accumulates a summary result of any integer overflow
or underflow that occurs on a saturating instruction.

Borderline cases that generate results equal to
saturation values, for example unsigned 0+0=0 and
unsigned byte 1+254=255, are not considered
saturation conditions and do not cause SAT to be set.

The SAT bit can be set by the following types of
instructions:

— Move To VSCR

— Vector Add Integer with Saturation

— Vector Subtract Integer with Saturation

— Vector Multiply-Add Integer with Saturation
— Vector Multiply-Sum with Saturation

— Vector Sum-Across with Saturation

— Vector Pack with Saturation

— Vector Convert to Fixed-point with Saturation

Note that only instructions that explicitly call for
“saturation” can set SAT. “Modulo” integer instructions
and floating-point arithmetic instructions never set
SAT.

— Programming Note

The SAT state can be tested and used to alter
program flow by moving the VSCR to a vector
register (with mfvscr), then masking out bits 0:126
(to clear undefined and reserved bits) and
performing a vector compare equal-to unsigned
byte w/record (vcmpequb.) with zero to get a
testable value into the condition register for
consumption by a subsequent branch.

Since mfvscr will be slow compared to other
Vector instructions, reading and testing SAT after
each instruction would be prohibitively expensive.
Therefore, software is advised to employ
strategies that minimize checking SAT. For
example: checking SAT periodically and
backtracking to the last checkpoint to identify
exactly which field in which instruction saturated;
or, working in an element size sufficient to prevent
any overflow or underflow during intermediate
calculations, then packing down to the desired
element size as the final operation (the vector pack
instruction saturates the results and updates SAT
when a loss of significance is detected).

Chapter 6. Vector Facility [Category: Vector] 225

Version 2.07 B

6.6 Vector Floating-Point Opera-
tions

6.6.1

Unless VSCRyp,=1 (see Section 6.3.2), the
floating-point model provided by the Vector Facility
conforms to The Java Language Specification
(hereafter referred to as “Java”), which is a subset of
the default environment specified by the IEEE
standard (i.e., by ANSI/IEEE Standard 754-1985,
“IEEE Standard for Binary Floating-Point Arithmetic”).
For aspects of floating-point behavior that are not
defined by Java but are defined by the |IEEE standard,
vector floating-point conforms to the IEEE standard.
For aspects of floating-point behavior that are defined
neither by Java nor by the IEEE standard but are
defined by the “C9X Floating-Point Proposal”
(hereafter referred to as “C9X”), vector floating-point
conforms to C9X.

Floating-Point Overview

The single-precision floating-point data format, value
representations, and computational models defined in
Chapter 4. “Floating-Point Facility [Category:
Floating-Point]” on page 113 apply to vector
floating-point except as follows.

— In general, no status bits are set to reflect the
results of floating-point operations. The only
exception is that VSCRgar may be set by the
Vector Convert To Fixed-Point Word instructions.

— With the exception of the two Vector Convert To
Fixed-Point Word instructions and three of the four
Vector Round to Floating-Point Integer
instructions, all vector floating-point instructions
that round use the rounding mode Round to
Nearest.

— Floating-point exceptions (see Section 6.6.2)
cannot cause the system error handler to be
invoked.

—— Programming Note

If a function is required that is specified by the
IEEE standard, is not supported by the Vector
Facility, and cannot be emulated satisfactorily
using the functions that are supported by the
Vector Facility, the functions provided by the
Floating-Point Facility should be used; see
Chapter 4.

6.6.2 Floating-Point Exceptions

The following floating-point exceptions may occur
during execution of vector floating-point instructions.

— NaN Operand Exception

— Invalid Operation Exception
— Zero Divide Exception

— Log of Zero Exception

— Overflow Exception

— Underflow Exception

If an exception occurs, a result is placed into the
corresponding target element as described in the
following subsections. This result is the default result
specified by Java, the IEEE standard, or C9X, as
applicable.

Recall that denormalized source values are treated as
if they were zero when VSCRy,=1. This has the
following consequences regarding exceptions.

— Exceptions that can be caused by a zero source
value can be caused by a denormalized source
value when VSCRy=1.

— Exceptions that can be caused by a nonzero
source value cannot be caused by a denormalized
source value when VSCRy;=1.

6.6.2.1 NaN Operand Exception
A NaN Operand Exception occurs when a source
value for any of the following instructions is a NaN.

— A vector instruction that would normally produce
floating-point results

— Either of the two Vector Convert To Fixed-Point
Word instructions

— Any of the four Vector Floating-Point Compare
instructions

The following actions are taken:

If the vector instruction would normally produce
floating-point results, the corresponding result is a
source NaN selected as follows. In all cases, if the
selected source NaN is a Signaling NaN it is converted
to the corresponding Quiet NaN (by setting the
high-order bit of the fraction field to 1) before being
placed into the target element.

if the element in VRA is a NaN
then the result is that NaN
else if the element in VRB is a NaN
then the result is that NaN
else if the element in VRC is a NaN

226 Power ISA™ - Book |

Version 2.07 B

then the result is that NaN

else if Invalid Operation exception
(Section 6.6.2.2)

then the result is the QNaN 0x7FC0_0000

If the instruction is either of the two Vector Convert To
Fixed-Point Word instructions, the corresponding result
is 0x0000_0000. VSCRgT is not affected.

If the instruction is Vector Compare Bounds
Floating-Point, the corresponding result is
0xC000_0000.

If the instruction is one of the other Vector
Floating-Point Compare instructions, the
corresponding result is 0x0000_0000.

6.6.2.2 Invalid Operation Exception

An Invalid Operation Exception occurs when a source
value or set of source values is invalid for the specified
operation. The invalid operations are:

— Magnitude subtraction of infinities

— Multiplication of infinity by zero

— Reciprocal square root estimate of a negative,
nonzero number or -infinity.

— Log base 2 estimate of a negative, nonzero
number or -infinity.

The corresponding result is the QNaN 0x7FCO0_0000.

6.6.2.3 Zero Divide Exception

A Zero Divide Exception occurs when a Vector
Reciprocal Estimate Floating-Point or Vector
Reciprocal Square Root Estimate Floating-Point
instruction is executed with a source value of zero.

The corresponding result is an infinity, where the sign
is the sign of the source value.

6.6.2.4 Log of Zero Exception

A Log of Zero Exception occurs when a Vector Log
Base 2 Estimate Floating-Point instruction is executed
with a source value of zero.

The corresponding result is -Infinity.

6.6.2.5 Overflow Exception

An Overflow Exception occurs under either of the
following conditions.

— For a vector instruction that would normally
produce floating-point results, the magnitude of
what would have been the result if the exponent

range were unbounded exceeds that of the largest
finite floating-point number for the target
floating-point format.

— For either of the two Vector Convert To
Fixed-Point Word instructions, either a source
value is an infinity or the product of a source value
and 29" is a number too large in magnitude to be
represented in the target fixed-point format.

The following actions are taken:

1. If the vector instruction would normally produce
floating-point results, the corresponding result is
an infinity, where the sign is the sign of the inter-
mediate result.

2. If the instruction is Vector Convert To Unsigned
Fixed-Point Word Saturate, the corresponding
result is OXFFFF_FFFF if the source value is a
positive number or +infinity, and is 0x0000_0000 if
the source value is a negative number or -infinity.
VSCRgpr is set to 1.

3. If the instruction is Vector Convert To Signed
Fixed-Point Word Saturate, the corresponding
result is 0Ox7FFF_FFFF if the source value is a pos-
itive number or +infinity., and is 0x8000_0000 if the
source value is a negative number or -infinity.
VSCRgar is set to 1.

6.6.2.6 Underflow Exception

An Underflow Exception can occur only for vector
instructions that would normally produce floating-point
results. It is detected before rounding. It occurs when a
nonzero intermediate result computed as though both
the precision and the exponent range were unbounded
is less in magnitude than the smallest normalized
floating-point number for the target floating-point
format.

The following actions are taken:

1. If VSCRy,=0, the corresponding result is the value
produced by denormalizing and rounding the inter-
mediate result.

2. If VSCRyy=1, the corresponding result is a zero,
where the sign is the sign of the intermediate
result.

Chapter 6. Vector Facility [Category: Vector] 227

Version 2.07 B

6.7 Vector Storage Access
Instructions

The Vector Storage Access instructions compute the
effective address (EA) of the storage to be accessed
as described in Section 1.10.3, “Effective Address
Calculation” on page 26. The low-order bits of the EA
that would correspond to an unaligned storage
operand are ignored.

The Load Vector Element Indexed and Store Vector
Element Indexed instructions transfer a byte, halfword,
or word element between storage and a Vector
Register. The Load Vector Indexed and Store Vector
Indexed instructions transfer an aligned quadword
between storage and a Vector Register.

6.7.1 Storage Access Exceptions

Storage accesses will cause the system data storage
error handler to be invoked if the program is not
allowed to modify the target storage (Store only), or if
the program attempts to access storage that is
unavailable.

228 Power ISA™ - Book |

Version 2.07 B

6.7.2 Vector Load Instructions

The aligned byte, halfword, word, or quadword in
storage addressed by EA is loaded into register VRT.

Programming Note
The Load Vector Element instructions load the
specified element into the same location in the
target register as the location into which it would
be loaded using the Load Vector instruction.

Load Vector Element Byte Indexed X-form

Ivebx VRT,RA,RB

31 VRT RA RB 7 /
0 6 1t 16 21 31

if RA =0 then b « 0
else b € (RA)
EA € b + (RB)

eb € Eigy.q

VRT € undefined

if Big-Endian byte ordering then
VRT8><eb :8xeb+7 € MEM(EA,1)

else

VRT120- (8xeb) : 127~ (8xeb) < MEM(EA,1)

Let the effective address (EA) be the sum
(RAJ0)+(RB).

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access, the contents of the byte in storage at address
EA are placed into byte eb of register VRT. The
remaining bytes in register VRT are set to undefined
values.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access, the contents of the byte in storage at address
EA are placed into byte 15-eb of register VRT. The
remaining bytes in register VRT are set to undefined
values.

Special Registers Altered:
None

Load Vector Element Halfword Indexed
X-form

Ivehx VRT,RA,RB

31 VRT RA RB 39 /

0 6 1 16 21 31

if RA =0 thenb « 0

else b < (RA)
EA € (b + (RB)) & OXFFFF_FFFF_FFFF_FFFE
eb € Ehgp.¢3

VRT €< undefined
if Big-Endian byte ordering then
VRTgxeb: gxeb+15 © MEM(ER,2)
else
VRT112- (8xeb) :127- (8xeb) ¢ MEM(EA,2)

Let the effective address (EA) be the result of ANDing
OxFFFF_FFFF_FFFF_FFFE with the sum
(RA[0)+(RB).

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access,

— the contents of the byte in storage at address EA
are placed into byte eb of register VRT,

— the contents of the byte in storage at address
EA+1 are placed into byte eb+1 of register VRT,
and

— the remaining bytes in register VRT are set to
undefined values.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access,

— the contents of the byte in storage at address EA
are placed into byte 15-eb of register VRT,

— the contents of the byte in storage at address
EA+1 are placed into byte 14-eb of register VRT,
and

— the remaining bytes in register VRT are set to
undefined values.

Special Registers Altered:
None

Chapter 6. Vector Facility [Category: Vector] 229

Version 2.07 B

Load Vector Element Word Indexed
X-form

Ivewx VRT,RA,RB

31 VRT RA RB 71 /
0 6 1t 16 21 31

if RA =0 thenb < 0
else b € (RA)
EA € (b + (RB)) & OXFFFF_FFFF_FFFF_FFFC

eb € Ehgy.q

VRT € undefined

if Big-Endian byte ordering then
VRTgxob: axebr31 © MEM(ER,4)

else

VRTg6- (gxeb) :127- (8xeb) < MEM(EA,4)

Let the effective address (EA) be the result of ANDing
OxFFFF_FFFF_FFFF_FFFC with the sum
(RA|0)+(RB).

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access,

— the contents of the byte in storage at address EA
are placed into byte eb of register VRT,

— the contents of the byte in storage at address
EA+1 are placed into byte eb+1 of register VRT,

— the contents of the byte in storage at address
EA+2 are placed into byte eb+2 of register VRT,

— the contents of the byte in storage at address
EA+3 are placed into byte eb+3 of register VRT,
and

— the remaining bytes in register VRT are set to
undefined values.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access,

— the contents of the byte in storage at address EA
are placed into byte 15-eb of register VRT,

— the contents of the byte in storage at address
EA+1 are placed into byte 14-eb of register VRT,

— the contents of the byte in storage at address
EA+2 are placed into byte 13-eb of register VRT,

— the contents of the byte in storage at address
EA+3 are placed into byte 12-eb of register VRT,
and

— the remaining bytes in register VRT are set to
undefined values.

Special Registers Altered:
None

Load Vector Indexed X-form

Ivx VRT,RA,RB

31 VRT RA RB 103 /
0 6 1 16 2 31

if RA = 0 then b «< 0

else b ¢« (RA)

EA € b + (RB)

VRT € MEM(EA & OXFFFF_FFFF_FFFF_FFF0, 16)

Let the effective address (EA) be the sum
(RA|0)+(RB). The quadword in storage addressed by
the result of EA ANDed with
OxFFFF_FFFF_FFFF_FFFO is loaded into VRT.

Special Registers Altered:
None

Load Vector Indexed LRU X-form

IvxI VRT,RA,RB

31 VRT RA RB 359 /

0 6 1 16 21 3

if RA =0 thenb < 0

else b < (RA)

EA € b + (RB)

VRT € MEM(EA & OXFFFF_FFFF_FFFF_FFF0, 16)
mark_as_not_likely to_be_needed_again_anytime_soon (EA)

Let the effective address (EA) be the sum
(RA|0)+(RB). The quadword in storage addressed by
the result of EA ANDed with
OxFFFF_FFFF_FFFF_FFFO is loaded into VRT.

Ivxl provides a hint that the quadword in storage
addressed by EA will probably not be needed again by
the program in the near future.

Special Registers Altered:
None

230 Power ISA™ - Book |

Version 2.07 B

—— Programming Note

On some implementations, the hint provided by the
Ivxl instruction and the corresponding hint
provided by the stvxl, Ivepxl, and stvepxl
instructions are applied to the entire cache block
containing the specified quadword. On such
implementations, the effect of the hint may be to
cause that cache block to be considered a likely
candidate for replacement when space is needed
in the cache for a new block. Thus, on such
implementations, the hint should be used with
caution if the cache block containing the quadword
also contains data that may be needed by the
program in the near future. Also, the hint may be
used before the last reference in a sequence of
references to the quadword if the subsequent
references are likely to occur sufficiently soon that
the cache block containing the quadword is not
likely to be displaced from the cache before the
last reference.

Chapter 6. Vector Facility [Category: Vector]

231

Version 2.07 B

6.7.3 Vector Store Instructions

Some portion or all of the contents of VRS are stored
into the aligned byte, halfword, word, or quadword in
storage addressed by EA.

Programming Note

The Store Vector Element instructions store the
specified element into the same storage location
as the location into which it would be stored using
the Store Vector instruction.

Store Vector Element Byte Indexed X-form

stvebx VRS,RA,RB

31 VRS RA RB 135 /
0 6 1t 16 21 31

if RA=0thenb < 0
else b < (RR)
EA € b + (RB)
eb € Ehgy.
if Big-Endian byte ordering then
MEM(EA, 1) € VRSgyop: gxebs?
else
MEM(EA,1) € VRS130- (8xeb) :127- (8xeb)

Let the effective address (EA) be the sum
(RA|0)+(RB).

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access, the contents of byte eb of register VRS are
placed in the byte in storage at address EA.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access, the contents of byte 15-eb of register VRS are
placed in the byte in storage at address EA.

Special Registers Altered:
None

Programming Note

Unless bits 60:63 of the address are known to
match the byte offset of the subject byte element in
register VRS, software should use Vector Splat to
splat the subject byte element before performing
the store.

Store Vector Element Halfword Indexed
X-form

stvehx VRS,RA,RB

31 VRS RA RB 167 /

0 6 1 16 21 3

if RA =0 thenb « 0

else b ¢« (RA)
EA € (b + (RB)) & OxXFFFF_FFFF_FFFF_FFFE
eb € Ehgy.q;

if Big-Endian byte ordering then
MEM(EA,2) € VRSgxeb: gxeb+15
else

MEM(EA,2) € VRS115_ (gxeb):127- (8xeb)

Let the effective address (EA) be the result of ANDing
OxFFFF_FFFF_FFFF_FFFE with the sum
(RAJ0)+(RB).

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access,

— the contents of byte eb of register VRS are placed
in the byte in storage at address EA, and

— the contents of byte eb+1 of register VRS are
placed in the byte in storage at address EA+1.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access,

— the contents of byte 15-eb of register VRS are
placed in the byte in storage at address EA, and

— the contents of byte 14-eb of register VRS are
placed in the byte in storage at address EA+1.

Special Registers Altered:
None

Programming Note

Unless bits 60:62 of the address are known to
match the halfword offset of the subject halfword
element in register VRS software should use
Vector Splat to splat the subject halfword element
before performing the store.

232 Power ISA™ - Book |

Version 2.07 B

Store Vector Element Word Indexed
X-form

stvewx VRS,RA,RB

31 VRS RA RB 199 /
0 6 1t 16 21 31

if RA =0 then b < 0

else b < (RA)
EA €< (b + (RB)) & OXFFFF_FFFF_FFFF_FFFC
eb € EAgy.

if Big-Endian byte ordering then
MEM(EA,4) € VRSgueb:gxeb+31
else

MEM(EA, 4) € VRSgq_ (gxeb) :127- (8xeb)

Let the effective address (EA) be the result of ANDing
OxFFFF_FFFF_FFFF_FFFC with the sum
(RA]0)+(RB).

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access,

— the contents of byte eb of register VRS are placed
in the byte in storage at address EA,

— the contents of byte eb+1 of register VRS are
placed in the byte in storage at address EA+1,

— the contents of byte eb+2 of register VRS are
placed in the byte in storage at address EA+2,
and

— the contents of byte eb+3 of register VRS are
placed in the byte in storage at address EA+3.

If Category: Vector.Little-Endian is supported, then if
Little-Endian byte ordering is used for the storage
access,

— the contents of byte 15-eb of register VRS are
placed in the byte in storage at address EA,

— the contents of byte 14-eb of register VRS are
placed in the byte in storage at address EA+1,

— the contents of byte 13-eb of register VRS are
placed in the byte in storage at address EA+2,
and

— the contents of byte 12-eb of register VRS are
placed in the byte in storage at address EA+3.

Special Registers Altered:
None

Programming Note

Unless bits 60:61 of the address are known to
match the word offset of the subject word element
in register VRS, software should use Vector Splat
to splat the subject word element before
performing the store.

Store Vector Indexed X-form

stvx VRS,RA,RB

31 VRS RA RB 231 /
0 6 1 16 2 31

if RA = 0 then b «< 0

else b ¢« (RA)

EA € b+ (RB)

MEM (EA & OxFFFF_FFFF_FFFF_FFF0, 16) € (VRS)

Let the effective address (EA) be the sum
(RA|0)+(RB). The contents of VRS are stored into the
quadword in storage addressed by the result of EA
ANDed with OxFFFF_FFFF_FFFF_FFFO.

Special Registers Altered:

None

Store Vector Indexed LRU X-form

stvx| VRS,RA,RB

31 VRS RA RB 487 /

0 6 1 16 21 3

if RA =0 thenb « 0

else b < (RA)

EA € b + (RB)

MEM(EA & OXFFFF_FFFF_FFFF_FFF0, 16) € (VRS)
mark_as_not_likely to_be_needed_again_anytime_soon (EA)

Let the effective address (EA) be the sum
(RA|0)+(RB). The contents of VRS are stored into the
quadword in storage addressed by the result of EA
ANDed with OxFFFF_FFFF_FFFF_FFFO.

stvxl provides a hint that the quadword in storage
addressed by EA will probably not be needed again by
the program in the near future.

Special Registers Altered:
None

Programming Note

See the Programming Note for the Ivx! instruction
on page 230.

Chapter 6. Vector Facility [Category: Vector]

233

Version 2.07 B

6.7.4 Vector Alignment Support Instructions

—— Programming Note

The Ivsl and lvsr instructions can be used to cre-
ate the permute control vector to be used by a sub-
sequent vperm instruction (see page 246). Let X
and Y be the contents of register VRA and VRB
specified by the vperm. The control vector created
by Ivsl causes the vperm to select the high-order
16 bytes of the result of shifting the 32-byte value X
[1'Y left by sh bytes. The control vector created by
Ivsr causes the vperm to select the low-order 16
bytes of the result of shifting X Il Y right by sh bytes.

— Programming Note

Examples of uses of Ivsl, Ivsr, and vperm to load
and store unaligned data are given in Section 6.4.1.

These instructions can also be used to rotate or
shift the contents of a Vector Register left (Ivsl) or
right (lvsr) by sh bytes. For rotating, the Vector
Register to be rotated should be specified as both
register VRA and VRB for vperm. For shifting left,
VRB for vperm should be a register containing all
zeros and VRA should contain the value to be
shifted, and vice versa for shifting right.

Load Vector for Shift Left Indexed X-form

Ivsl VRT,RA,RB

31 VRT RA RB 6 /
0 6 11 16 21 31

if RA =0 thenb « 0

else b < (RR)
sh € (b + (RB))gp.e3
switch(sh)

case(0x0): VRT€0x000102030405060708090A0BOCODOEOF
case(0x1): VRT€0x0102030405060708090A0BOCODOEOF10
x2): VRT€0x02030405060708090A0B0CODOEOF1011
x3): VRT<0x030405060708090A0B0CODOEOF101112

case
case
case(0x4): VRT€0x0405060708090A0B0CODOEOF10111213

): VRT€0x05060708090A0B0CODOEOF1011121314
x6) : VRT<0x060708090A0B0CODOEOF101112131415

(

(0

(0

(

case (0x

case(0

case(0x7): VRT€0x0708090A0BOCODOEOF10111213141516

case (0x): VRT€0x08090A0BOCODOEOF1011121314151617

case(0x9): VRT€0x090A0BOCODOEOF101112131415161718

case(0xA): VRT€ 0x0A0BOCODOEOF10111213141516171819

case (0 xB): VRT€0x0BOCODOEOF101112131415161718191A

case(0xC) : VRT€0x0CODOE0F101112131415161718191A1B

case(0xD): VRT€ 0x0DOEOF101112131415161718191A1B1C
(0XE) : VRT¢ 0x0E0F101112131415161718191A1BIC1D
(0xF): VRT€0x0F101112131415161718191A1BIC1DIE

case
case

Let sh be bits 60:63 of the sum (RA|0)+(RB). Let X be
the 32 byte value 0x00 || 0x01 || 0x02 || ... || OX1E ||
0x1F.

Bytes sh to sh+15 of X are placed into VRT.

Special Registers Altered:
None

Load Vector for Shift Right Indexed
X-form

Ivsr VRT,RA,RB

31 VRT RA RB 38
0 6 1 16 2

3

if RA = 0 then b < 0

else b < (RA)
sh € (b + (RB))gp.e3
switch(sh)

case(0x0): VRT<0x101112131415161718191A1B1C1DIELIF

case(0x1): VRT€0x0F101112131415161718191A1BICIDIE
case(0x2): VRT< 0x0E0F101112131415161718191A1B1C1D
case(0x3): VRT< 0x0DOEOF101112131415161718191A1B1C
case (0x4): VRT€ 0x0CODOEOF101112131415161718191A1B
case(0x5) : VRT€ 0x0BOCODOEOF101112131415161718191A
case(0x6) : VRT< 0x0A0BOCODOEOF10111213141516171819
case(0x7) : VRT€ 0x090A0BOCODOEOF101112131415161718
case(0x8) : VRT< 0x08090A0BOCODOEOF1011121314151617
case(0x9) : VRT<0x0708090A0BOCODOEOF10111213141516
case (0xA) : VRT€0x06070809020B0CODOEOF101112131415
case(0xB) : VRT€0x05060708090A0BOCODOEOF1011121314
case(0xC) : VRT< 0x0405060708090A0BOCODOEOF10111213
case (0xD) : VRT€ 0x030405060708090A0BOCODOEOF101112
case(0xE) : VRT€0x02030405060708090A0B0CODOEOF1011
case(0xF) : VRT<0x0102030405060708090A0B0CODOEOF10

Let sh be bits 60:63 of the sum (RA|0)+(RB). Let X be
the 32-byte value 0x00 || 0x01 || 0x02 || ... || Ox1E

0x1F.

Bytes 16-sh to 31-sh of X are placed into VRT.

Special Registers Altered:
None

234 Power ISA™ - Book |

Version 2.07 B

6.8 Vector Permute and Formatting Instructions

6.8.1 Vector Pack and Unpack Instructions

Vector Pack Pixel VX-form

vpkpx VRT,VRA,VRB

4 VRT VRA VRB 782
0 6 1t 16 21 31

doi=0to 63 byl6

VR[VRT]; € VRIVRA]jxp47
VRIVRT]i41:545 € VRIVRADjy0u8:1x0412
VRIVRT]146:5010 € VRIVRAD30416: 12420

VRB
RB;x+8:ix2+12
RBix2+16:1x2+20
VRIVRT]5475.5479 € VRIVRB;xg404:ix0428

end

[VRA]
[VRA]
[VRA]
VRIVRT]5411.5415 € VRIVRAD1x0404:ix0428
[VRB]
[VRB]
[VRB]
[VRB]

Let the source vector be the concatenation of the
contents of VR[VRA] followed by the contents of
VR[VRB].

For each integer value i from 0 to 7, do the following.
Word element i in the source vector is packed to
produce a 16-bit value as described below.

— bit 7 of the first byte (bit 7 of the word)

— bits 0:4 of the second byte (bits 8:12 of the
word)

— bits 0:4 of the third byte (bits 16:20 of the
word)

— bits 0:4 of the fourth byte (bits 24:28 of the
word)

The result is placed into halfword element i of
VR[VRT].

Special Registers Altered:
None

— Programming Note

Each source word can be considered to be a 32-bit
"pixel", consisting of four 8-bit "channels". Each
target halfword can be considered to be a 16-bit
pixel, consisting of one 1-bit channel and three
5-bit channels. A channel can be used to specify
the intensity of a particular color, such as red,
green, or blue, or to provide other information
needed by the application.

Vector Pack Signed Doubleword Signed
Saturate VX-form

vpksdss VRT,VRA,VRB

4 VRT VRA VRB 1486
0 6 1 16 2 31

src.qword[0] « VR[VRA]
src.qword[1l] ¢« VR[VRB]
doi=0to3
VR[VRT] .word[i] « Chop(Clamp(ExtendSign(src.dword[i]),
23 %), 32
end

Let doubleword elements 0 and 1 of src be the
contents of VR[VRA].

Let doubleword elements 2 and 3 of src be the
contents of VR[VRB].

For each integer value i from 0 to 3, do the following.
The signed integer value in doubleword element i
of src is placed into word element i of VR[VRT] in
signed integer format.

—If the value is greater than
saturates to 231-1.

—If the value is less than -2%! the result
saturates to -2,

2311 the result

Special Registers Altered:
SAT

Chapter 6. Vector Facility [Category: Vector]

235

Version 2.07 B

Vector Pack Signed Doubleword
Unsigned Saturate VX-form

vpksdus VRT,VRA,VRB

Vector Pack Signed Halfword Signed
Saturate VX-form

vpkshss VRT,VRA,VRB

4 VRT VRA VRB 1358
0 6 1t 16 21 31

4 VRT VRA VRB 398
0 6 1 16 2 31

src.qword[0] ¢« VR[VRA]
src.qword[l] « VR[VRB]
doi=0to3
VR[VRT].word[i] ¢« Chop(Clamp(ExtendSign(src.dword[i]), 0,
221, 32)
end

Let doubleword elements 0 and 1 of src be the
contents of VR[VRA].

Let doubleword elements 2 and 3 of src be the
contents of VR[VRB].

For each integer value i from 0 to 3, do the following.
The signed integer value in doubleword element i
of src is placed into word element i of VR[VRT] in
unsigned integer format.

—If the value is greater than
saturates to 232-1.

— If the value is less than 0 the result saturates
to 0.

2321 the result

Special Registers Altered:
SAT

do 1=0 to 63 by 8
srcl € EXTS((VRA);yy.ix2s15)
src2 € EXTS((VRB)iXZ:iX2+15)
VRT;,;,; € Clamp(srcl, -128, 127)y.5
VRTS 64,5471 € Clamp(src2, -128, 127),4.31
end

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB.

| Foreach integer value i from O to 15, do the following.
Signed-integer halfword element i in the source
vector is converted to an signed-integer byte.

— If the value of the element is greater than 127
the result saturates to 127

— If the value of the element is less than -128
the result saturates to -128.

The low-order 8 bits of the result is placed into
byte element i of VRT.

Special Registers Altered:
SAT

236 Power ISA™ - Book |

Version 2.07 B

Vector Pack Sighed Halfword Unsigned

Vector Pack Signed Word Signed Saturate

Saturate VX-form VX-form
vpkshus VRT,VRA,VRB vpkswss VRT,VRA,VRB
4 VRT | VRA | VRB 270 4 VRT | VRA | VRB 462

6

1

16

6

1

16

Al

3

do i=0 to 63 by 8

srcl € EXTS((VRA);ixo.ix415)
src2 € EXTS((VRB)iyp.ix0415)
€ Clamp(srcl, 0, 255)54.3
VRT,464.1471 € Clamp(src2, 0, 255),4.3;

VRT} i+

end

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB.

7

For each integer value i from 0 to 15, do the following.

Signed-integer halfword element i in the source
vector is converted to an unsigned-integer byte.

— If the value of the element is greater than 255
the result saturates to 255

— If the value of the element is less than 0 the

The low-order 8 bits of the result is placed into
byte element i of VRT.

result saturates to 0.

Special Registers Altered:

SAT

do 1=0 to 63 by 16

srel € EXTS((VRA) i5g.5x2431)
Src2 € EXTS((VRB)y.ix0:31)
€ Clamp(srcl, -2%5, 2%5-1) 14,41

VRT} .i415

VRTS 643470 € Clamp(src2, -25, 2%5-1) 14,41

end

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB.

For each integer value i from 0 to 7, do the following.
Signed-integer word element i in the source vector
is converted to an signed-integer halfword.

— If the value of the element is greater than

2151 the result saturates to 215-1

— If the value of the element is less than -2'°
the result saturates to -21°.

The low-order 16 bits of the result is placed into
halfword element i of VRT.

Special Registers Altered:

SAT

Chapter 6. Vector Facility [Category: Vector]

237

Version 2.07 B

Vector Pack Sighed Word Unsigned
Saturate VX-form

vpkswus VRT,VRA,VRB

Vector Pack Unsignhed Doubleword
Unsigned Saturate VX-form

vpkudus VRT,VRA,VRB

4 VRT VRA VRB 334
0 6 1t 16 21 31

4 VRT VRA VRB 1230
0 6 1 16 2 31

do 1=0 to 63 by 16
srcl € EXTS((VRA)iy0.540431)
src2 € EXTS((VRB)iy;.ix0431)
VRT;.i.q5 € Clamp(srcl, 0, 2%6-1)44,4;
VRTj,ge:1079 € Clamp(src2, 0, 216-1)54,5

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB.

For each integer value i from 0 to 7, do the following.
Signed-integer word element i in the source vector
is converted to an unsigned-integer halfword.

— If the value of the element is greater than
216_1 the result saturates to 216-1

— If the value of the element is less than 0 the
result saturates to 0.

The low-order 16 bits of the result is placed into
halfword element i of VRT.

Special Registers Altered:
SAT

Vector Pack Unsigned Doubleword
Unsigned Modulo VX-form

vpkudum VRT,VRA,VRB

4 VRT VRA VRB 1102
0 6 1t 16 21 31

if MSR.VEC then Vector_Unavailable()

src.qword[0] « VR[VRA]
src.qword[1l] « VR[VRB]
doi=0to3
VR[VRT] .word[i] « Chop(ExtendZero(src.dword[i]), 32)
end

Let doubleword elements 0 and 1 of src be the
contents of VR[VRA].

Let doubleword elements 2 and 3 of src be the
contents of VR[VRB].

For each integer value i from 0 to 3, do the following.
The contents of bits 32:63 of doubleword element
i of srcis placed into word element 1 of VR[VRT].

Special Registers Altered:
None

if MSR.VEC then Vector_Unavailable()

src.qword[0] ¢« VR[VRA]
src.qword[1l] « VR[VRB]
doi=0to3
VR[VRT] .word[i] « Chop(Clamp(ExtendZero(src.dword[i]), 0,
2321, 32)
end

Let doubleword elements 0 and 1 of src be the
contents of VR[VRA].

Let doubleword elements 2 and 3 of src be the
contents of VR[VRB].

For each integer value i from 0 to 3, do the following.
The unsigned integer value in doubleword
element 1 of src is placed into word element 1 of
VR[VRT] in unsigned integer format.

—If the value of the element is greater than
2321 the result saturates to 232-1

Special Registers Altered:
SAT

Vector Pack Unsigned Halfword Unsigned
Modulo VX-form

vpkuhum VRT,VRA,VRB

4 VRT VRA VRB 14
0 6 1 16 2 31

do i=0 to 63 by 8
VRTy,j07 € (VRA)ju948:1x0415

VRTj460:5471 € (VRB) i3048:1x2415
end

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB.

For each integer value i from 0 to 15, do the following.
The contents of bits 8:15 of halfword element i in
the source vector is placed into byte element i of
VRT.

Special Registers Altered:
None

238 Power ISA™ - Book |

Version 2.07 B

Vector Pack Unsigned Halfword Unsigned
Saturate VX-form

vpkuhus VRT,VRA,VRB

Vector Pack Unsigned Word Unsigned
Saturate VX-form

vpkuwus VRT,VRA,VRB

4 VRT VRA VRB 142
0 6 1t 16 21 31

4 VRT VRA VRB 206

0 6 1 16 Al 3

do i=0 to 63 by 8
srcl € EXTZ((VRA) 1p.1x0415)
src2 € EXTZ((VRB);y9.ix2415)
VRS, 147 € Clamp(srcl, 0, 255)p4.31
VRT;464.1471 € Clamp(src2, 0, 255)yy.31
end

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB.

For each integer value i from 0 to 15, do the following.
Unsigned-integer halfword element i in the source
vector is converted to an unsigned-integer byte.

— If the value of the element is greater than 255
the result saturates to 255.

The low-order 8 bits of the result is placed into byte
elementi of VRT.

Special Registers Altered:
SAT

Vector Pack Unsigned Word Unsigned
Modulo VX-form

vpkuwum VRT,VRA,VRB

4 VRT VRA VRB 78
0 6 1t 16 21 31

do 1=0 to 63 by 16
VRTy.1415 € (VRA)ixp416:4x2431

«

VRT3464:5479 € (VRB) ix0416:4x2431

end

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB.

For each integer value i from 0 to 7, do the following.
The contents of bits 16:31 of word element i in the
source vector is placed into halfword element i of
VRT.

Special Registers Altered:
None

do i=0 to 63 by 16
srcl € EXTZ((VRA)iyp.5x0431)
src2 € EXTZ((VRB)j4p.540431)
VRTS ;5 € Clamp(srcl, 0, 2%6-1)¢5
VRTy 54,5079 € Clamp(szc2, 0, 21°-1 Jyg.5
end

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB.

For each integer value i from 0 to 7, do the following.
Unsigned-integer word element i in the source
vector is converted to an unsigned-integer
halfword.

— If the value of the element is greater than
216.1 the result saturates to 216-1.

The low-order 16 bits of the result is placed into
halfword element i of VRT.

Special Registers Altered:
SAT

Chapter 6. Vector Facility [Category: Vector] 239

Version 2.07 B

Vector Unpack High Pixel VX-form

vupkhpx VRT,VRB

Vector Unpack Low Pixel VX-form

vupklpx VRT,VRB

4 VRT 1 VRB 846
0 6 11 16 21 31

4 VRT " VRB 974
0 6 1 16 2 31

do 1=0 to 63 by 16
VRTixp.ix47 € EXTS((VRB);)
VRTxp4g:4x2415 € EXTZ((VRB)
VRTixp416:1x2+23 € EXTZ((VRB)46.1410)
VRT 504241150431 € EXTZ((VRB) 1417 5415)
end

i+1:145)

VR
VR

For each vector element i from 0 to 3, do the following.
Halfword element i in VRB is unpacked as follows.

— sign-extend bit 0 of the halfword to 8 bits

— zero-extend bits 1:5 of the halfword to 8 bits

— zero-extend bits 6:10 of the halfword to 8 bits

— zero-extend bits 11:15 of the halfword to 8
bits

The result is placed in word element i of VRT.

Special Registers Altered:
None

—— Programming Note

The source and target elements can be considered
to be 16-bit and 32-bit “pixels” respectively, having
the formats described in the Programming Note for
the Vector Pack Pixel instruction on page 235.

—— Programming Note

Notice that the unpacking done by the Vector
Unpack Pixel instructions does not reverse the
packing done by the Vector Pack Pixel instruction.
Specifically, if a 16-bit pixel is unpacked to a 32-bit
pixel which is then packed to a 16-bit pixel, the
resulting 16-bit pixel will not, in general, be equal
to the original 16-bit pixel (because, for each
channel except the first, Vector Unpack Pixel
inserts high-order bits while Vector Pack Pixel
discards low-order bits).

do i=0 to 63 by 16
VRTxp.5x007 € EXTS((VRB)ieq)
VRTjx048:ix2015 € EXTE((VRB) j4¢5.1469)
VRT;x0+16:1x2+23 € EXTZ((VRB)1490.1474)
VRT;50424:1x2431 € EXTZ((VRB) j475,1479)
end

For each vector element i from 0 to 3, do the following.
Halfword element i+4 in VRB is unpacked as
follows.

— sign-extend bit 0 of the halfword to 8 bits

— zero-extend bits 1:5 of the halfword to 8 bits

— zero-extend bits 6:10 of the halfword to 8 bits

— zero-extend bits 11:15 of the halfword to 8
bits

The result is placed in word element i of VRT.

Special Registers Altered:
None

240 Power ISA™ - Book |

Version 2.07 B

Vector Unpack High Signed Byte VX-form

vupkhsb VRT,VRB

Vector Unpack Low Signed Byte VX-form

vupklisb VRT,VRB

4 VRT 1 VRB 526
0 6 1 16 21 31

4 VRT 1 VRB 654
0 6 1 16 2 31

do i=0 to 63 by 8
VRTj50:4x0415 € EXTS((VRB); 47)
end

For each vector element i from 0 to 7, do the following.
Signed-integer byte element i in VRB is
sign-extended to produce a signed-integer
halfword and placed into halfword element i in
VRT.

Special Registers Altered:
None

Vector Unpack High Signed Halfword
VX-form

vupkhsh VRT,VRB

do i=0 to 63 by 8
VRT;g.5x0415 € EXTS((VRB) ;64,5471
end

For each vector element i from 0 to 7, do the following.
Signed-integer byte element i+8 in VRB is
sign-extended to produce a signed-integer
halfword and placed into halfword element i in
VRT.

Special Registers Altered:
None

Vector Unpack Low Signed Halfword
VX-form

vupklish VRT,VRB

4 VRT 1 VRB 590
0 6 1 16 21 31

4 VRT 1 VRB 718
0 6 1 16 2 31

do i=0 to 63 by 16
VRTix:ix2+31 € EXTS((VRB);.5415)
end

For each vector element i from 0 to 3, do the following.
Signed-integer halfword element i in VRB is
sign-extended to produce a signed-integer word
and placed into word element i in VRT.

Special Registers Altered:

None

Vector Unpack High Signed Word VX-form

vupkhsw VRT,VRB

do 1=0 to 63 by 16
VRT;:5x0+31 € EXTS((VRB);.64.5479)
end

For each vector element i from 0 to 3, do the following.
Signed-integer halfword element i+4 in VRB is
sign-extended to produce a signed-integer word
and placed into word element i in VRT.

Special Registers Altered:
None

Vector Unpack Low Signed Word VX-form

vupkisw VRT,VRB

4 VRT 1 VRB 1614

0 6 1 16 21 3

4 VRT 1 VRB 1742

0 6 il 16 2 31

VR[VRT] .dword[0] ¢« Chop(ExtendSign(VR[VRB].word[0]), 64)
VR[VRT] .dword[1] ¢« Chop(ExtendSign(VR[VRB].word[1]), 64)

For each integer value i from 0 to 1, do the following.
The signed integer value in word element i of
VR[VRB] is sign-extended and placed into
doubleword element i of VR[VRT].

Special Registers Altered:
None

VRIVRT] .dword[0] « Chop(ExtendSign(VR[VRB].word[2]), 64)
VR[VRT] .dword[1] ¢« Chop(ExtendSign(VR[VRB].word[3]), 64)

For each integer value i from 0 to 1, do the following.
The signed integer value in word element i+2 of
VR[VRB] is sign-extended and placed into
doubleword element i of VR[VRT].

Special Registers Altered:
None

Chapter 6. Vector Facility [Category: Vector] 241

Version 2.07 B

6.8.2 Vector Merge Instructions

Vector Merge High Byte VX-form

vmrghb VRT,VRA,VRB

Vector Merge Low Byte VX-form

vmrglb VRT,VRA,VRB

4 VRT VRA VRB 12
0 6 1t 16 21 31

4 VRT VRA VRB 268
0 6 1 16 2 31

do i=0 to 63 by 8
VRT:x7:1x247 €< (VRA)
VRT3 x248:1x2+15 € (VRB)

end

1:147

1:147

For each vector element i from 0 to 7, do the following.
Byte element i in VRA is placed into byte element
2%iin VRT.

Byte element i in VRB is placed into byte element
2xi+1in VRT.

Special Registers Altered:
None

Vector Merge High Halfword VX-form

vmrghh VRT,VRA,VRB

do 1=0 to 63 by 8
VRTixg:ix047 € (VRB)iygq:1471
VRT;x048:5x0+15 € (VRB)i46s:1471
end

For each vector element i from 0 to 7, do the following.
Byte element i+8 in VRA is placed into byte
element 2x%i in VRT.

Byte element i+8 in VRB is placed into byte
element 2xi+1 in VRT.

Special Registers Altered:
None

Vector Merge Low Halfword VX-form

vmrglh VRT,VRA,VRB

4 VRT VRA VRB 76
0 6 1t 16 21 31

4 VRT VRA VRB 332

0 6 1 16 21 3

do 1=0 to 63 by 16
VRTixp:ix2415 € (VRB).i415
VRTu0416:1x2431 € (VRB)iu1415
end

For each vector element i from 0 to 3, do the following.
Halfword element i in VRA is placed into halfword
element 2xi in VRT.

Halfword element i in VRB is placed into halfword
element 2xi+1 in VRT.

Special Registers Altered:
None

do 1=0 to 63 by 16
VRTixp:5x0015 € (VRB)jy6s:1479
VRT0416:1x2:31 € (VRB) 1464:1479
end

For each vector element i from 0 to 3, do the following.
Halfword element i+4 in VRA is placed into
halfword element 2xi in VRT.

Halfword element i+4 in VRB is placed into
halfword element 2xi+1 in VRT.

Special Registers Altered:
None

242 Power ISA™ - Book |

Version 2.07 B

Vector Merge High Word VX-form

Vector Merge Low Word VX-form

vmrghw VRT,VRA,VRB vmrglw VRT,VRA,VRB
4 VRT VRA VRB 140 4 VRT VRA VRB 396
0 6 1 16 21 3 0 6 1 16 2 3
do 1=0 to 63 by 32 do 1=0 to 63 by 32
VRTiup:ix0031 € (VRA)iug43; VRTiy0:ix0431 € (VRB)iug4:i495
VRTix2432:1x2+63 € (VRB):.1431 VRT:0432:1x2¢063 € (VRB)1464:1495

end

For each vector element i from 0 to 1, do the following.
Word element i in VRA is placed into word
element 2x%i in VRT.

Word element i in VRB is placed into word
element 2xi+1 in VRT.

The word elements in the high-order half of VRA are
placed, in the same order, into the even-numbered
word elements of VRT. The word elements in the
high-order half of VRB are placed, in the same order,
into the odd-numbered word elements of VRT.

Special Registers Altered:
None

end

For each vector element i from 0 to 1, do the following.
Word element i+2 in VRA is placed into word
element 2xi in VRT.

Word element i+2 in VRB is placed into word
element 2xi+1 in VRT.

Special Registers Altered:
None

Chapter 6. Vector Facility [Category: Vector] 243

Version 2.07 B

Vector Merge Even Word VX-form
[Category: Vector-Scalar]

vmrgew VRT,VRA,VRB

Vector Merge Odd Word VX-form
[Category: Vector-Scalar]

vmrgow VRT,VRA,VRB

4 VRT VRA VRB 1932
0 6 1 16 21 31

4 VRT VRA VRB 1676
0 6 1t 16 2 31

if MSR.VEC=0 then Vector_Unavailable()
VR[VRT].word[0] « VR[VRA].word[0]
VR[VRT].word[1] « VR[VRB].word[0]
VR[VRT].word[2] « VR[VRA].word[2]
VR[VRT].word[3] « VR[VRB].word[2]

The contents of word element 0 of VR[VRA] are placed
into word element 0 of VR[VRT].

The contents of word element 0 of VR[VRB] are placed
into word element 1 of VR[VRT].

The contents of word element 2 of VR[VRA] are placed
into word element 2 of VR[VRT].

The contents of word element 2 of VR[VRB] are placed
into word element 3 of VR[VRT].

vmrgew is treated as a Vector instruction in terms of
resource availability.

Special Registers Altered
None

if MSR.VEC=0 then Vector_Unavailable()
VR[VRT].word[0] « VR[VRA].word[1]
VR[VRT].word[1] « VR[VRB].word[1]
VR[VRT].word[2] « VR[VRA].word[3]
VR[VRT].word[3] « VR[VRB].word[3]

The contents of word element 1 of VR[VRA] are placed
into word element 0 of VR[VRT].

The contents of word element 1 of VR[VRB] are placed
into word element 1 of VR[VRT].

The contents of word element 3 of VR[VRA] are placed
into word element 2 of VR[VRT].

The contents of word element 3 of VR[VRB] are placed
into word element 3 of VR[VRT].

vmrgow is treated as a Vector instruction in terms of
resource availability.

Special Registers Altered
None

244 Power ISA™ - Book |

Version 2.07 B

6.8.3 Vector Splat Instructions

Programming Note

The Vector Splat instructions can be used in
preparation for performing arithmetic for which one
source vector is to consist of elements that all
have the same value (e.g., multiplying all elements
of a Vector Register by a constant).

Vector Splat Byte VX-form

vspltb VRT,VRB,UIM

Vector Splat Word VX-form

vspltw VRT,VRB,UIM

4 VRT |/| UM | VRB 524
0 6 1|12 16 21 31

4 VRT i {UM] VRB 652

0 6 1 14 |16 21 31

b € UIM || 0000
do 1=0 to 127 by 8

VRT < (VRB)y.pe7
end

1:147

For each integer value i from 0 to 15, do the following.
The contents of byte element UIM in VRB are
placed into byte element i of VRT.

Special Registers Altered:

None

Vector Splat Halfword VX-form

vsplth VRT,VRB,UIM

4 VRT | // |{UM| VRB 588
0 6 113 |1 21 31

b € UIM || 000000
do i=0 to 127 by 16

VRTS 5415 € (VRB)ppats
end

For each integer value i from 0 to 7, do the following.
The contents of halfword element UIM in VRB are
placed into halfword element i of VRT.

Special Registers Altered:
None

b € UIN || 0b00000
do i=0 to 127 by 32

VRT 5031 € (VRB)p ey
end

For each integer value i from 0 to 3, do the following.
The contents of word element UIM in VRB are
placed into word element i of VRT.

Special Registers Altered:
None

Chapter 6. Vector Facility [Category: Vector] 245

Version 2.07 B

Vector Splat Immediate Signed Byte
VX-form

vspltisb VRT,SIM

4 VRT SIM 1 780
0 6 1t 16 21 31

do 1=0 to 127 by 8
VRT € EXTS(SIM, 8)
end

1:147

For each integer value i from 0 to 15, do the following.
The value of the SIM field, sign-extended to 8 bits,
is placed into byte elementi of VRT.

Special Registers Altered:
None

Vector Splat Immediate Signed Halfword
VX-form

vspltish VRT,SIM

6.8.4 Vector Permute Instruction

The Vector Permute instruction allows any byte in two
source Vector Registers to be copied to any byte in the
target Vector Register. The bytes in a third source
Vector Register specify from which byte in the first two
source Vector Registers the corresponding target byte
is to be copied. The contents of the third source Vector
Register are sometimes referred to as the “permute
control vector”.

Vector Permute VA-form

vperm VRT,VRA,VRB,VRC

4 VRT VRA VRB VRC 43

0 6 1 16 Al 26 3

4 VRT SIM i 844

0 6 1 16 21 3

do 1=0 to 127 by 16
VRTy,3,15 € EXTS(SIM, 16)
end

For each integer value i from 0 to 7, do the following.
The value of the SIM field, sign-extended to 16
bits, is placed into halfword element i of VRT.

Special Registers Altered:
None

Vector Splat Immediate Signed Word
VX-form

vspltisw VRT,SIM

4 VRT SIM 1 908

0 6 1 16 21 3

do 1=0 to 127 by 32
VRT € EXTS(SIM, 32)
end

1:1431

For each vector element i from 0 to 3, do the following.
The value of the SIM field, sign-extended to 32
bits, is placed into word element i of VRT.

Special Registers Altered:
None

tempy.z55 < (VRA) || (VRB)
do 1=0 to 127 by 8
b & (VRO)j,a.500 || 00000
VRS 547 € tempy.pi
end

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB.

For each integer value i from 0 to 15, do the following.
The contents of the byte element in the source
vector specified by bits 3:7 of byte element i of
VRC are placed into byte element i of VRT.

Special Registers Altered:
None

Programming Note
See the Programming Notes with the Load Vector
for Shift Left and Load Vector for Shift Right
instructions on page 234 for examples of uses of
vperm.

246 Power ISA™ - Book |

Version 2.07 B

6.8.5 Vector Select Instruction

Vector Select VA-form

vsel VRT,VRA,VRB,VRC

4 VRT
0 6

1

VRA

16

VRB

VRC 42
2% 31

do i=0 to 127

VRT; € ((VRC);=0) ? (VRA); :

end

(VRB) ;

For each bit in VRC that contains the value 0, the

corresponding bit

corresponding bit

corresponding bit

Special Registers Altered:

None

in VRA
of
in VRB
corresponding bit of VRT.

VRT.

is placed into the
Otherwise, the
is placed into the

Chapter 6. Vector Facility [Category: Vector]

247

Version 2.07 B

6.8.6 Vector Shift Instructions

The Vector Shift instructions rotate or shift the contents
of a Vector Register or a pair of Vector Registers left or
right by a specified number of bytes (vslo, vsro,
vsldoi) or bits (vsl, vsr). Depending on the instruction,
this “shift count” is specified either by the contents of a
Vector Register or by an immediate field in the
instruction. In the former case, 7 bits of the shift count
register give the shift count in bits (0 < count < 127). Of
these 7 bits, the high-order 4 bits give the number of
complete bytes by which to shift and are used by vslo
and vsro; the low-order 3 bits give the number of
remaining bits by which to shift and are used by vsl
and vsr.

— Programming Note

A pair of these instructions, specifying the same
shift count register, can be used to shift the
contents of a Vector Register left or right by the
number of bits (0-127) specified in the shift count
register. The following example shifts the contents
of register Vx left by the number of bits specified in
register Vy and places the result into register Vz.

vslo Vz,Vx,Vy
vsl Vz,Vz,Vy

Vector Shift Left VX-form

vsl VRT,VRA,VRB

4 VRT VRA VRB 452
0 6 1t 16 21 31

sh € (VRB) 195,157
t €1
do 1=0 to 127 by 8
t €t & ((VRB);s,;.=sh)

end
if t=1 then VRT € (VRA) << sh
else VRT €< undefined

The contents of VRA are shifted left by the number of
bits specified in (VRB){25.127.

— Bits shifted out of bit 0 are lost.

— Zeros are supplied to the vacated bits on the right.
The result is place into VRT, except if, for any byte
element in register VRB, the low-order 3 bits are not

equal to the shift amount, then VRT is undefined.

Special Registers Altered:
None

Vector Shift Left Double by Octet
Immediate VA-form

vsldoi VRT,VRA,VRB,SHB

4 VRT VRA VRB |/| SHB 44
0 6 1 16 21|22 % 31

VRT € ((VRA) || (VRB)) gigup:sxsups127

Let the source vector be the concatenation of the
contents of VRA followed by the contents of VRB.
Bytes SHB:SHB+15 of the source vector are placed
into VRT.

Special Registers Altered:
None

Vector Shift Left by Octet VX-form

vslo VRT,VRA,VRB

4 VRT VRA VRB 1036

0 6 1 16 2 3

shb € (VRB) 151,194
VRT € (VRA) << (shb || 0b000)

The contents of VRA are shifted left by the number of
bytes specified in (VRB){21.124.

— Bytes shifted out of byte 0 are lost.

— Zeros are supplied to the vacated bytes on the
right.

The result is placed into VRT.

Special Registers Altered:
None

248 Power ISA™ - Book |

Version 2.07 B

Vector Shift Right VX-form

vsr VRT,VRA,VRB

Vector Shift Right by Octet VX-form

VSro VRT,VRA,VRB

4 VRT VRA VRB 708
0 6 1 16 21 31

4 VRT VRA VRB 1100
0 6 1 16 2 31

sh € (VRB) 135,129
t el
do 3=0 to 127 by 8
t € t & ((VRB)y,s,i,9=sh)

end
if t=1 then VRT € (VRR) >>, sh
else VRT € undefined

The contents of VRA are shifted right by the number of
bits specified in (VRB)125:127.

— Bits shifted out of bit 127 are lost.

— Zeros are supplied to the vacated bits on the left.
The result is place into VRT, except if, for any byte
element in register VRB, the low-order 3 bits are not

equal to the shift amount, then VRT is undefined.

Special Registers Altered:
None

—— Programming Note

A double-register shift by a dynamically specified
number of bits (0-127) can be performed in six
instructions. The following example shifts Vw || Vx
left by the number of bits specified in Vy and
places the high-order 128 bits of the result into Vz.

vslo vtl, Vw, Vy #shift high-order reg left
vsl vtl,vel, vy

vsububm Vt3,V0,Vy #adjust shift count ((V0)=0)
VST0 Vt2,Vx,Vt3 #shift low-order reg right
vsr Vt2,Vt2,Vt3

vor Vz,Vtl,Vt2 #merge to get final result

shb € (VRB) 151,19
VRT € (VRA) >>,; (shb || 0000)

The contents of VRA are shifted right by the number of
bytes specified in (VRB)121.124.

— Bytes shifted out of byte 15 are lost.

— Zeros are supplied to the vacated bytes on the
left.

The result is placed into VRT.

Special Registers Altered:
None

Chapter 6. Vector Facility [Category: Vector] 249

Version 2.07 B

vaddcuw

6.9 Vector Integer Instructions

6.9.1.1 Vector Integer Add Instructions

Vector Add and Write Carry-Out Unsigned
Word VX-form

VRT,VRA,VRB

6.9.1 Vector Integer Arithmetic Instructions

Vector Add Signed Halfword Saturate
VX-form

vaddshs VRT,VRA,VRB

4 VRT VRA VRB 384
6 1t 16 21 31

4 VRT VRA VRB
0 6 1 16 2

832

31

vaddsbs

do i=0 to 127 by 32

aop € EXTZ((VRA);,;431)

bop € EXTZ((VERB);.;431)

VRT;.1431 € Chop((aop +, bop) >>y; 32,1)
end

For each integer value i from 0 to 3, do the following.

Unsigned-integer word element i in VRA is added
to unsigned-integer word element i in VRB. The
carry out of the 32-bit sum is zero-extended to 32
bits and placed into word element i of VRT.

Special Registers Altered:

None

Vector Add Signed Byte Saturate VX-form

VRT,VRA,VRB

4 VRT VRA VRB 768
6 11 16 21 31

do 1=0 to 127 by 8

aop € EXTS(VRA;.;.q)
bop € EXTS (VRB;.;,7)

VRT;,;47 € Clamp(aop +;, bop, -128, 127)yy.3

end

For each integer value i from 0 to 15, do the following.

Signed-integer byte element i in VRA is added to
signed-integer byte element i in VRB.

— If the sum is greater than 127 the result
saturates to 127.

— If the sum is less than -128 the result
saturates to -128.

The low-order 8 bits of the result are placed into
byte element i of VRT.

Special Registers Altered:

SAT

do 1=0 to 127 by 16

aop € EXTS((VRA);.i,15)

bop € EXTS((VRB)i;iJrH)

VRT; ;.15 € Clamp(aop +i bop, -2%°, 2%5-1)4¢.4;
end

For each integer value i from 0 to 7, do the following.

Signed-integer halfword element i in VRA is added

to signed-integer halfword element i in VRB.

— If the sum is greater than 2"5.1 the result

saturates to 21°-1

— If the sum is less than -2'° the result

saturates to -21°.

The low-order 16 bits of the result are placed into

halfword element i of VRT.

Special Registers Altered:
SAT

250

Power ISA™ - Book |

Version 2.07 B

Vector Add Signed Word Saturate
VX-form

Vector Add Unsigned Doubleword Modulo
VX-form

vaddsws VRT,VRA,VRB vaddudm VRT,VRA,VRB
4 VRT VRA VRB 896 4 VRT VRA VRB 192
0 6 1 16 21 3 0 6 1 16 2 3
do 1=0 to 127 by 32 doi=0¢tol

aop € EXTS((VRA);.;,31)

bop € EXTS((VRB);.;,31)

VRT; ;.31 € Clamp(aop +3, bop, -23%, 23%-1)
end

For each integer value i from 0 to 3, do the following.
Signed-integer word element i in VRA is added to
signed-integer word element i in VRB.

— If the sum is greater than 23'-1 the result
saturates to 23'-1.

— If the sum is less than -237 the result
saturates to -23".

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
SAT

Vector Add Unsigned Byte Modulo
VX-form

vaddubm VRT,VRA,VRB

4 VRT VRA VRB 0
0 6 1t 16 21 31

do 1=0 to 127 by 8

aop € EXTZ((VRA);.i47)

bop € EXTZ((VRB);,;,7)

VRT;,;47 € Chop(aop +;,. bop, 8)
end

For each integer value i from 0 to 15, do the following.
Unsigned-integer byte element i in VRA is added
to unsigned-integer byte element i in VRB.

The low-order 8 bits of the result are placed into
byte element i of VRT.

Special Registers Altered:
None

Programming Note

vaddubm can be wused for unsigned or
signed-integers.

aop « VR[VRA].dword[i]

bop « VR[VRB].dword[i]

VR[VRT] .dword[i] ¢ Chop(aop +;,. bop, 64)
end

For each integer value i from 0 to 1, do the following.
The integer value in doubleword element i of
VR[VRB] is added to the integer value in
doubleword element i of VR[VRA].

The low-order 64 bits of the result are placed into
doubleword element i of VR[VRT].

Special Registers Altered:
None

Programming Note

vaddudm can be used for signed or unsigned inte-
gers.

Chapter 6. Vector Facility [Category: Vector] 251

Version 2.07 B

Vector Add Unsigned Halfword Modulo
VX-form

vadduhm VRT,VRA,VRB

Vector Add Unsigned Word Modulo
VX-form

vadduwm VRT,VRA,VRB

4 VRT VRA VRB 64

0 6 1 16 21 kil

4 VRT VRA VRB 128
0 6 1 16 2 31

do 1=0 to 127 by 16

aop € EXTZ((VRA)j,j,15)

bop € EXTZ((VRB);.i,15)

VRT;.i415 € Chop(aop +i, bop, 16)
end

For each integer value i from 0 to 7, do the following.
Unsigned-integer halfword element i in VRA is
added to unsigned-integer halfword element i in
VRB.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
None

Programming Note

vadduhm can be wused for unsigned or
signed-integers.

do 1=0 to 127 by 32

aop € EXTZ((VRA);,i.31)

bop € EXTZ((VRB)j.i,31)

temp € aop +;,. bop

VRT; ;437 € Chop(aop +;,. bop, 32)
end

For each integer value i from 0 to 3, do the following.
Unsigned-integer word element i in VRA is added
to unsigned-integer word element i in VRB.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
None

Programming Note

vadduwm can be wused for wunsigned or
signed-integers.

252 Power ISA™ - Book |

Version 2.07 B

Vector Add Unsignhed Byte Saturate
VX-form

vaddubs VRT,VRA,VRB

Vector Add Unsigned Word Saturate
VX-form

vadduws VRT,VRA,VRB

4 VRT VRA VRB 512
0 6 1t 16 21 31

4 VRT VRA VRB 640
0 6 1 16 2 31

do 1=0 to 127 by 8

aop € EXTZ((VRA);.i49)

bop € EXTZ((VRB);,;,7)

VRT;,;47 € Clamp(aop +3,: bop, 0, 255)g4.31
end

For each integer value i from 0 to 15, do the following.
Unsigned-integer byte element i in VRA is added
to unsigned-integer byte element i in VRB.

— If the sum is greater than 255 the result
saturates to 255.

The low-order 8 bits of the result are placed into
byte element i of VRT.

Special Registers Altered:
SAT

Vector Add Unsigned Halfword Saturate
VX-form

vadduhs VRT,VRA,VRB

4 VRT VRA VRB 576
0 6 1t 16 21 31

do 1=0 to 127 by 16

aop € EXTZ((VRA);.;,15)

bop € EXTZ((VRB){,;415)

VR ,j5 € Clamp(aop +ine bop, 0, 276-1) 34,3
end

For each integer value i from 0 to 7, do the following.
Unsigned-integer halfword element i in VRA is
added to unsigned-integer halfword element i in
VRB.

— If the sum is greater than 2161 the result
saturates to 2161,

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
SAT

do 1=0 to 127 by 32

aop € EXTZ((VRA);,331)

bop € EXTZ((VRB);.1,3)

VRT,;,3; € Clamp(aop +i, bop, 0, 232-1)
end

For each integer value i from 0 to 3, do the following.
Unsigned-integer word element i in VRA is added
to unsigned-integer word element i in VRB.

— If the sum is greater than 232-1 the result
saturates to 232-1.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
SAT

Chapter 6. Vector Facility [Category: Vector]

253

Version 2.07 B

Vector Add Unsighed Quadword Modulo
VX-form

vaddugm VRT,VRA,VRB

Vector Add & write Carry Unsighed
Quadword VX-form

vaddcuq VRT,VRA,VRB

4 VRT VRA VRB 256
0 6 1 16 21 31

4 VRT VRA VRB 320
0 6 1t 16 2 31

if MSR.VEC=0 then Vector_Unavailable()

srcl « VR[VRA]
src2 « VR[VRB]
sum « EXTZ(srcl) + EXTZ(src2)

VR[VRT] « Chop(sum, 128)

Let srcl be the integer value in VR[VRA].
Let src2 be the integer value in VR[VRB].

srcl and src2 can be signed or unsigned integers.

The rightmost 128 bits of the sum of srcl and src2 are
placed into VR[VRT].

Special Registers Altered:
None

Vector Add Extended Unsigned
Quadword Modulo VA-form

vaddeugm VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

srcl « VR[VRA]
src2 « VR[VRB]
sum « EXTZ(srcl) + EXTZ(src2)

VR[VRT] « Chop(EXTZ(Chop(sum>>128, 1)), 128)

Let srcl be the integer value in VR[VRA].
Let src2 be the integer value in VR[VRB].

srcl and src2 can be signed or unsigned integers.

The carry out of the sum of srcl and src2 is placed
into VR[VRT].

Special Registers Altered:
None

Vector Add Extended & write Carry
Unsigned Quadword VA-form

vaddecuq VRT,VRA,VRB,VRC

4 VRT VRA VRB VRC 60
0 6 1 16 21 2 31

4 VRT VRA VRB VRC 61
0 6 1 16 2 2% 31

if MSR.VEC=0 then Vector_Unavailable()

srcl « VR[VRA]

src2 « VR[VRB]

cin « VR[VRC].bit[127]

sum « EXTZ(srcl) + EXTZ(src2) + EXTZ(cin)

VR[VRT] « Chop(sum, 128)
Let srcl be the integer value in VR[VRA].
Let src2 be the integer value in VR[VRB].
Let cin be the integer value in bit 127 of VR[VRC].

srcl and src2 can be signed or unsigned integers.

The rightmost 128 bits of the sum of srcl, src2, and cin
are placed into VR[VRT].

Special Registers Altered:
None

if MSR.VEC=0 then Vector_Unavailable()

srcl « VR[VRA]

src2 « VR[VRB]

cin « VR[VRC].bit[127]

sum « EXTZ(srcl) + EXTZ(src2) + EXTZ(cin)

VR[VRT] « Chop(EXTZ(Chop(sum >> 128, 1)), 128)
Let srcl be the integer value in VR[VRA].
Let src2 be the integer value in VR[VRB].
Let cin be the integer value in bit 127 of VR[VRC].

srcl and src2 can be signed or unsigned integers.

The carry out of the sum of srcl, src2, and cin are
placed into VR[VRT].

Special Registers Altered:
None

254 Power ISA™ - Book |

Version 2.07 B

—— Programming Note
The Vector Add Unsigned Quadword instructions support efficient wide-integer addition

sequence can be used to implement a 512-bit signed or unsigned add operation.

vaddugm

vaddcuq

vaddeugm
vaddecuq
vaddeugm
vaddecuq
vaddeugm

vS3,VA3,vB3

vC3,VA3,VB3

vS2,VvA2,vB2,vC3
vC2,vA2,vB2,vC3
vS1,vAl,vB1,vC2
vC1,vAl,vB1,vC2
vS0,VvA0,vB0,vC1

bits 384:511 of sum

carry out of bit 384 of sum
bits 256:383 of sum

carry out of bit 256 of sum
bits 128:255 of sum

carry out of bit 128 of sum
bits 0:127 of sum

. The following code

Chapter 6. Vector Facility [Category: Vector]

255

Version 2.07 B

6.9.1.2 Vector Integer Subtract Instructions

Vector Subtract and Write Carry-Out
Unsigned Word VX-form

vsubcuw VRT,VRA,VRB

Vector Subtract Signed Halfword Saturate
VX-form

vsubshs VRT,VRA,VRB

4 VRT VRA VRB 1408
0 6 11 16 21 31

4 VRT VRA VRB 1856
0 6 1 16 2 31

do 1=0 to 127 by 32
aop € EXTZ((VRA);,;431)
bop € EXTZ((VRB);.;.31)
temp € (a0p +;p; “bOp +ipe 1) >> 32
VRT; ;.31 € temp & 0x0000_0001
end

For each integer value i from 0 to 3, do the following.
Unsigned-integer word element i in VRB s
subtracted from unsigned-integer word element i
in VRA. The complement of the borrow out of bit 0
of the 32-bit difference is zero-extended to 32 bits
and placed into word element i of VRT.

Special Registers Altered:
None

Vector Subtract Signed Byte Saturate
VX-form

vsubsbs VRT,VRA,VRB

4 VRT VRA VRB 1792
0 6 1t 16 21 31

do 1=0 to 127 by 8
aop € EXTS((VRA);.;.7)
bop € EXTS((VRB);.;.7)
VRT; ;47 € Clamp(aop +;p. "bop +ine 1, -128, 127)94.31
end

For each integer value i from 0 to 15, do the following.
Signed-integer byte element i in VRB is subtracted
from signed-integer byte elementiin VRA.

— If the intermediate result is greater than 127
the result saturates to 127.

— If the intermediate result is less than -128 the
result saturates to -128.

The low-order 8 bits of the result are placed into
byte element i of VRT.

Special Registers Altered:
SAT

do 1=0 to 127 by 16

aop € EXTS((VRA);.i,15)

bop € EXTS((VRB);.i,15)

temp € aop +ip hop +ip 1

VRTS ;.15 € Clamp(temp, -2%°, 215-1)q¢.5
end

For each integer value i from 0 to 7, do the following.
Signed-integer halfword element i in VRB s
subtracted from signed-integer halfword element i
in VRA.

— If the intermediate result is greater than 2151
the result saturates to 21%-1.

— If the intermediate result is less than -21° the
result saturates to -21.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
SAT

256 Power ISA™ - Book |

Version 2.07 B

Vector Subtract Signed Word Saturate
VX-form

vsubsws VRT,VRA,VRB

4 VRT VRA VRB 1920
0 6 1t 16 21

do 1=0 to 127 by 32
aop € EXTS((VRA);.;,31)
bop € EXTS((VRB);,;431)
VRT; ;.31 € Clamp(aop +
end

wbop +ipe 1,-231,231-1)

int

For each integer value i from 0 to 3, do the following.

Signed-integer word element i in VRB

is

subtracted from signed-integer word element i in

VRA.

— If the intermediate result is greater than 231-1

the result saturates to 231-1.

— If the intermediate result is less than -231 the

result saturates to -23".

The low-order 32 bits of the result are placed into

word element i of VRT.

Special Registers Altered:
SAT

Chapter 6. Vector Facility [Category: Vector] 257

Version 2.07 B

Vector Subtract Unsigned Byte Modulo
VX-form

vsububm VRT,VRA,VRB

Vector Subtract Unsigned Halfword
Modulo VX-form

vsubuhm VRT,VRA,VRB

4 VRT VRA VRB 1024
0 6 1t 16 21 31

4 VRT VRA VRB 1088
0 6 1 16 2 31

do 1=0 to 127 by 8
aop € EXTZ((VRA);.i,9)
bop € EXTZ((VRB);,;.7)
VRT;.;,7 € Chop(aop +;,. “bop +ipe 1, 8)
end

For each integer value i from 0 to 15, do the following.
Unsigned-integer byte element i in VRB is
subtracted from unsigned-integer byte element i in
VRA. The low-order 8 bits of the result are placed
into byte element i of VRT.

Special Registers Altered:

None

Vector Subtract Unsigned Doubleword
Modulo VX-form

do 1=0 to 127 by 16

aop € EXTZ((VRA);,3,15)

bop ¢ EXTZ((VRB);,j,;5)

VRS, 5,16 € Chop(aop +ipe “bop +ipe 1, 16)
end

For each integer value i from 0 to 7, do the following.
Unsigned-integer halfword element i in VRB is
subtracted from unsigned-integer halfword
element i in VRA. The low-order 16 bits of the
result are placed into halfword element i of VRT.

Special Registers Altered:

None

Vector Subtract Unsigned Word Modulo
VX-form

vsubudm VRT,VRA,VRB vsubuwm VRT,VRA,VRB
4 VRT VRA VRB 1216 4 VRT VRA VRB 1152
0 6 1 16 21 3 0 6 1" 16 21 3
doi=0¢tol do 1=0 to 127 by 32

aop « VRIVRA].dword[i]

bop « VR[VRB].dword[i]

VR[VRT] .dword[i] « Chop(aop +;,. ~bop +j,e 1, 64)
end

For each integer value i from 0 to 1, do the following.
The integer value in doubleword element i of
VR[VRB] is subtracted from the integer value in
doubleword element i of VR[VRA].

The low-order 64 bits of the result are placed into
doubleword element i of VR[VRT].

Special Registers Altered:
None

Programming Note

vsubudm can be used for signed or unsigned inte-
gers.

aop € EXTZ((VRA);,;431)

bop € EXTZ((VRB);.;31)

VRT; ;431 € Chop(aop +;, bop +;p¢ 1, 32)
end

For each integer value i from 0 to 3, do the following.
Unsigned-integer word element i in VRB is
subtracted from unsigned-integer word element i
in VRA. The low-order 32 bits of the result are
placed into word element i of VRT.

Special Registers Altered:
None

258 Power ISA™ - Book |

Version 2.07 B

Vector Subtract Unsigned Byte Saturate
VX-form

vsububs VRT,VRA,VRB

4 VRT VRA VRB 1536

0 6 1 16 21 3

do i=0 to 127 by 8

aop € EXTZ((VRA);.;.7)

bop € EXTZ((VRB);,;,7)

VRT;,;47 € Clamp(aop +;pe 7bop +35 1, 0, 255)94.31
end

For each integer value i from 0 to 15, do the following.
Unsigned-integer byte element i in VRB is
subtracted from unsigned-integer byte element i in
VRA. If the intermediate result is less than 0 the
result saturates to 0. The low-order 8 bits of the
result are placed into byte element i of VRT.

Special Registers Altered:
SAT

Vector Subtract Unsigned Halfword
Saturate VX-form

vsubuhs VRT,VRA,VRB

4 VRT VRA VRB 1600
0 6 1t 16 21 31

do 1=0 to 127 by 16

aop € EXTZ((VRA);,1415)

bop € EXTZ((VRB);,;,q5)

VRTy,5.q5 € Clamp(aop +pc wbop +ip¢ 1,0,226-1) 14,3
end

For each integer value i from 0 to 7, do the following.
Unsigned-integer halfword element i in VRB is
subtracted from unsigned-integer halfword
element i in VRA. If the intermediate result is less
than O the result saturates to 0. The low-order 16
bits of the result are placed into halfword element i
of VRT.

Special Registers Altered:
SAT

Vector Subtract Unsigned Word Saturate
VX-form

vsubuws VRT,VRA,VRB

4 VRT VRA VRB 1664
0 6 1 16 2 31

do 1=0 to 127 by 32

aop € EXTZ((VRA);.i,31)

bop € EXTZ((VRB);,;431)

VRTS ;.31 € Clamp(aop +ipe “bop +ipe 1, 0, 232-1)
end

For each integer value i from 0 to 7, do the following.
Unsigned-integer word element i in VRB is
subtracted from unsigned-integer word element i
in VRA.

— If the intermediate result is less than 0 the
result saturates to 0.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
SAT

Chapter 6. Vector Facility [Category: Vector]

259

Version 2.07 B

Vector Subtract Unsigned Quadword
Modulo VX-form

vsubugm VRT,VRA,VRB

Vector Subtract & write Carry Unsigned
Quadword VX-form

vsubcuq VRT,VRA,VRB

4 VRT VRA VRB 1280

0 6 1 16 21 3

4 VRT VRA VRB 1344
0 6 1t 16 2 31

if MSR.VEC=0 then Vector_Unavailable()
srcl « VR[VRA]

src2 « VR[VRB]

sum ¢ EXTZ(srcl) + EXTZ(-src2) + EXTZ(1)
VR[VRT] ¢« Chop(sum, 128)

Let srcl be the integer value in VR[VRA].
Let src2 be the integer value in VR[VRB].

srcl and src2 can be signed or unsigned integers.

The rightmost 128 bits of the sum of srcl, the one’s
complement of src2, and the value 1 are placed into
VRLVRT].

Special Registers Altered:
None

Vector Subtract Extended Unsigned
Quadword Modulo VA-form

vsubeugm VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

srcl « VR[VRA]

src2 « VR[VRB]

sum ¢ EXTZ(srcl) + EXTZ(-src2) + EXTZ(1)

VR[VRT] ¢ Chop(EXTZ(Chop(sum >> 128, 1)), 128)

Let srcl be the integer value in VR[VRA].
Let src2 be the integer value in VR[VRB].

srcl and src2 can be signed or unsigned integers.

The carry out of the sum of srcl, the one’s
complement of src2, and the value 1 is placed into
VRLVRT].

Special Registers Altered:
None

Vector Subtract Extended & write Carry
Unsigned Quadword VA-form

vsubecuq VRT,VRA,VRB,VRC

4 VRT VRA VRB VRC 62
0 6 1 16 21 2 31

4 VRT VRA VRB VRC 63
0 6 1 16 2 2% 31

if MSR.VEC=0 then Vector_Unavailable()

srcl « VR[VRA]

src2 « VR[VRB]

cin « VR[VRC].bit[127]

sum ¢« EXTZ(srcl) + EXTZ(asrc2) + EXTZ(cin)
VR[VRT] ¢« Chop(sum, 128)

Let srcl be the integer value in VR[VRA].
Let src2 be the integer value in VR[VRB].
Let cin be the integer value in bit 127 of VR[VRC].

srcl and src2 can be signed or unsigned integers.

The rightmost 128 bits of the sum of srcl, the one’s
complement of src2, and cin are placed into VR[VRT].

Special Registers Altered:
None

if MSR.VEC=0 then Vector_Unavailable()

srcl « VR[VRA]

src2 « VR[VRB]

cin « VR[VRC].bit[127]

sum ¢« EXTZ(srcl) + EXTZ(-src2) + EXTZ(cin)
VR[VRT] ¢ Chop(EXTZ(Chop(sum >> 128, 1)), 128)

Let srcl be the integer value in VR[VRA].
Let src2 be the integer value in VR[VRB].
Let cin be the integer value in bit 127 of VR[VRC].

srcl and src2 can be signed or unsigned integers.

The carry out of the sum of srcl, the one’s
complement of src2, and cin are placed into VR[VRT].

Special Registers Altered:
None

260 Power ISA™ - Book |

Version 2.07 B

—— Programming Note

The Vector Subtract Unsigned Quadword instructions support efficient wide-integer subtraction. The following
code sequence can be used to implement a 512-bit signed or unsigned subtract operation.

vsubugm vS3,vA3,vB3 # bits 384:511 of difference
vsubcug vC3,vA3,vB3 # carry out of bit 384 of difference
vsubeugm vS2,vA2,vB2,vC3 # bits 256:383 of difference
vsubecuq vC2,vA2,vB2,vC3 # carry out of bit 256 of difference
vsubeuagm vS1,vAl,vBl,vC2 # bits 128:255 of difference
vsubecug vCl,vAl,vBl,vC2 # carry out of bit 128 of difference
vsubeugn vS0,vAQ,vB0,vCl # bits 0:127 of difference

Chapter 6. Vector Facility [Category: Vector] 261

Version 2.07 B

6.9.1.3 Vector Integer Multiply Instructions

Vector Multiply Even Signed Byte VX-form

vmulesb VRT,VRA,VRB

Vector Multiply Odd Sighed Byte VX-form

vmulosb VRT,VRA,VRB

4 VRT VRA VRB 776
0 6 11 16 21 31

4 VRT VRA VRB 264
0 6 1 16 2 31

do 1=0 to 127 by 16
prod € EXTS((VRA);.;u7) Xg; EXTS((VRB);.;.7)
VRT; ;.15 € Chop(prod, 16)

end

For each integer value i from 0 to 7, do the following. |
Signed-integer byte element ix2 in VRA is
multiplied by signed-integer byte element ix2 in
VRB. The low-order 16 bits of the product are
placed into halfword element i VRT.

Special Registers Altered:
None

Vector Multiply Even Unsigned Byte
VX-form

vmuleub VRT,VRA,VRB

do 1=0 to 127 by 16
prod € EXTS((VRA);,g.5415) X EXTS((VRB).g.5.15)
VRT; ;415 € Chop(prod, 16)

end

For each integer value i from 0 to 7, do the following.
Signed-integer byte element ix2+1 in VRA is
multiplied by signed-integer byte element ix2+1 in
VRB. The low-order 16 bits of the product are
placed into halfword element i VRT.

Special Registers Altered:
None

Vector Multiply Odd Unsigned Byte
VX-form

vmuloub VRT,VRA,VRB

4 VRT VRA VRB 520
0 6 1t 16 21 31

4 VRT VRA VRB 8
0 6 1 16 2 31

do 1=0 to 127 by 16
prod € EXTZ((VRA);.i47) Xy EXTZ((VRB);.i.9)
VRT; ;.15 € Chop(prod, 16)

end

For each integer value i from 0 to 7, do the following. |
Unsigned-integer byte element ix2 in VRA is
multiplied by unsigned-integer byte element ix2 in
VRB. The low-order 16 bits of the product are
placed into halfword element i VRT.

Special Registers Altered:
None

do 1=0 to 127 by 16
prod € EXTZ((VRA);,5.1415) Xy EXTZ((VRB);.g.1415)
VRT; ;415 € Chop(prod, 16)

end

For each integer value i from 0 to 7, do the following.
Unsigned-integer byte element ix2+1 in VRA is
multiplied by unsigned-integer byte element ix2+1
in VRB. The low-order 16 bits of the product are
placed into halfword element i VRT.

Special Registers Altered:
None

262 Power ISA™ - Book |

Version 2.07 B

Vector Multiply Even Signed Halfword
VX-form

vmulesh VRT,VRA,VRB

Vector Multiply Odd Signed Halfword
VX-form

vmulosh VRT,VRA,VRB

4 VRT VRA VRB 840
0 6 1t 16 21 31

4 VRT VRA VRB 328
0 6 1 16 2 31

do 1=0 to 127 by 32
prod € EXTS((VRA);.;.15) Xg; EXTS((VEB)j,i15)
VRT; 3,31 € Chop(prod, 32)

end

For each integer value i from 0 to 3, do the following.
Signed-integer halfword element ix2 in VRA is
multiplied by signed-integer halfword element ix2
in VRB. The low-order 32 bits of the product are
placed into halfword element i VRT.

Special Registers Altered:
None

Vector Multiply Even Unsigned Halfword
VX-form

vmuleuh VRT,VRA,VRB

do i=0 to 127 by 32
prod € EXTS((VRA);,16.5431) Xsi EXTS((VRB)ji1.3431)
VRT; ;431 € Chop(prod, 32)

end

For each integer value i from 0 to 3, do the following.
Signed-integer halfword element ix2+1 in VRA is
multiplied by signed-integer halfword element
ix2+1 in VRB. The low-order 32 bits of the product
are placed into halfword element i VRT.

Special Registers Altered:
None

Vector Multiply Odd Unsignhed Halfword
VX-form

vmulouh VRT,VRA,VRB

4 VRT VRA VRB 584
0 6 1t 16 21 31

4 VRT VRA VRB 72
0 6 1 16 2 31

do 1=0 to 127 by 32
prod € EXTZ((VRA).i435) Xy EXTZ((VRB);.5u15)
VRT; 3,31 € Chop(prod, 32)

end

For each integer value i from 0 to 3, do the following.
Unsigned-integer halfword element ix2 in VRA is
multiplied by unsigned-integer halfword element
ix2 in VRB. The low-order 32 bits of the product
are placed into halfword element i VRT.

Special Registers Altered:
None

do i=0 to 127 by 32
prod € EXTZ((VRA)i,416.1431) Xyi EXTZ((VRB)1416.1431)
VRT; 3,31 € Chop(prod, 32)

end

For each integer value i from 0 to 3, do the following.
Unsigned-integer halfword element ix2+1 in VRA
is multiplied by unsigned-integer halfword element
ix2+1 in VRB. The low-order 32 bits of the product
are placed into halfword element i VRT.

Special Registers Altered:
None

Chapter 6. Vector Facility [Category: Vector] 263

Version 2.07 B

Vector Multiply Even Signed Word
VX-form

vmulesw VRT,VRA,VRB

Vector Multiply Odd Sighed Word
VX-form

vmulosw VRT,VRA,VRB

4 VRT VRA VRB 904
0 6 1 16 21 3

4 VRT VRA VRB 392
0 6 1 16 2 31

doi=0to1l
srcl « VR[VRA].word[2xi]
src2 « VR[VRB].word[2xi]
VR[VRT].dword[i] « srcl xg; src2
end

For each integer value i from 0 to 1, do the following.
The signed integer in word element 2xi of VR[VRA]
is multiplied by the signed integer in word element
2xi of VR[VRB].

The 64-bit product is placed into doubleword
element 1 of VR[VRT].

Special Registers Altered:
None

Vector Multiply Even Unsigned Word
VX-form

vmuleuw VRT,VRA,VRB

doi=0tol
srcl « VR[VRA].word[2xi+1]
src2 « VR[VRB].word[2xi+1]
VR[VRT] .dword[i] « srcl xg; src2
end

For each integer value i from 0 to 1, do the following.
The signed integer in word element 2xi+1 of
VR[VRA] is multiplied by the signed integer in word
element 2xi+1 of VR[VRB].

The 64-bit product is placed into doubleword
element 1 of VR[VRT].

Special Registers Altered:
None

Vector Multiply Odd Unsigned Word
VX-form

vmulouw VRT,VRA,VRB

4 VRT VRA VRB 648
0 6 1 16 21 3t

4 VRT VRA VRB 136
0 6 1 16 2 31

doi=0to1l
srcl « VR[VRA].word[2xi]
src2 « VR[VRB].word[2xi]
VR[VRT].dword[i] « srcl x,; src2
end

For each integer value i from 0 to 1, do the following.
The unsigned integer in word element 2xi of
VR[VRA] is multiplied by the unsigned integer in
word element 2xi of VR[VRB].

The 64-bit product is placed into doubleword
element i of VR[VRT].

Special Registers Altered:
None

doi=0tol
srcl « VR[VRA].word[2xi+1]
src2 « VR[VRB].word[2xi+1]
VRIVRT].dword[i] « srcl x,; src2
end

For each integer value i from 0 to 1, do the following.
The unsigned integer in word element 2xi+1 of
VR[VRA] is multiplied by the unsigned integer in
word element 2xi+1 of VR[VRB].

The 64-bit product is placed into doubleword
element i of VR[VRT].

Special Registers Altered:
None

264 Power ISA™ - Book |

Version 2.07 B

Vector Multiply Unsigned Word Modulo
VX-form

vmuluwm VRT,VRA,VRB

4 VRT VRA VRB 137
0 6 1 16 21 3

doi=0to3

srcl « VR[VRA].word[i]

src2 « VR[VRB].word[i]

VR[VRT].word[i] « Chop(srcl x,; src2, 32)
end

The integer in word element i of VR[VRA] is multiplied
by the integer in word element i of VR[VRB].

The least-significant 32 bits of the product are placed
into word element i of VR[VRT].

Special Registers Altered:
None

Programming Note

vmuluwm can be used for unsigned or signed
integers.

Chapter 6. Vector Facility [Category: Vector] 265

Version 2.07 B

6.9.1.4 Vector Integer Multiply-Add/Sum Instructions

Vector Multiply-High-Add Signed
Halfword Saturate VA-form

vmhaddshs VRT,VRA,VRB,VRC

Vector Multiply-High-Round-Add Signed
Halfword Saturate VA-form

vmhraddshs VRT,VRA,VRB,VRC

4 VRT VRA VRB VRC 32

0 6 1 16 Al 2 31

4 VRT VRA VRB VRC 33
0 6 1 16 2 % 31

do 1=0 to 127 by 16
prod € EXTS((VRA);.;.15) Xg; EXTS((VEB);,i.15)
sum € (prod >>¢; 15) +;, EXTS((VRC);.;,15)
VRT;.i,q5 € Clamp(sum, -2%°, 215-1)4.5;

end

For each vector element i from 0 to 7, do the following.
Signed-integer halfword element i in VRA is
multiplied by signed-integer halfword element i in
VRB, producing a 32-bit signed-integer product.
Bits 0:16 of the product are added to
signed-integer halfword element i in VRC.

— If the intermediate result is greater than 2151
the result saturates to 21%-1.

— If the intermediate result is less than -2'° the
result saturates to -219.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
SAT

do 1=0 to 127 by 16
temp € EXTS((VRC);,i415)
prod € EXTS((VRA);.i,15) Xg; EXTS((VRB)j.i,15)
sum € ((prod +;,, 0x0000_4000) >>g; 15) +;,. temp
VRTS ;.5 € Clamp(sum, -2%°, 2%5-1)6.5
end

For each vector element i from O to 7, do the following.
Signed-integer halfword element i in VRA s
multiplied by signed-integer halfword element i in
VRB, producing a 32-bit signed-integer product.
The value 0x0000_4000 is added to the product,
producing a 32-bit signed-integer sum. Bits 0:16 of
the sum are added to signed-integer halfword
elementiin VRC.

— If the intermediate result is greater than 21%-1
the result saturates to 215-1.

— If the intermediate result is less than -2° the
result saturates to -21.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
SAT

266 Power ISA™ - Book |

Version 2.07 B

Vector Multiply-Low-Add Unsigned
Halfword Modulo VA-form

vmladduhm VRT,VRA,VRB,VRC

Vector Multiply-Sum Unsigned Byte
Modulo VA-form

vmsumubm VRT,VRA,VRB,VRC

4 VRT VRA VRB VRC 34
0 6 1t 16 21 2% 31

4 VRT VRA VRB VRC 36
0 6 1 16 2 2% 31

do 1=0 to 127 by 16
prod € EXTZ((VRA);.;415) Xy EXTZ((VRB);.i45)
sun € Chop(prod, 16) +pc (VRC)j.ju15
VRT; 5,15 € Chop(sum, 16)

end

For each integer value i from 0 to 3, do the following.
Unsigned-integer halfword element i in VRA is
multiplied by unsigned-integer halfword element i
in VRB, producing a 32-bit unsigned-integer
product. The low-order 16 bits of the product are
added to unsigned-integer halfword element i in
VRC.

The low-order 16 bits of the sum are placed into
halfword element i of VRT.

Special Registers Altered:
None

Programming Note

vmladduhm can be used for unsigned or
signed-integers.

do 1=0 to 127 by 32
temp € EXTZ((VRC);.i,31)
do j=0 to 31 by 8
prod € EXTZ((VRA);,5.14947
temp € temp +;,. prod
end
VRT; ;431 € Chop(temp, 32)
end

) Xui EXTZ ((VRB) i+j:i+j+7)

For each word element in VRT the following operations
are performed, in the order shown.

— Each of the four unsigned-integer byte elements
contained in the corresponding word element of
VRA is multipied by the corresponding
unsigned-integer byte element in VRB, producing
an unsigned-integer halfword product.

— The sum of these four unsigned-integer halfword
products is added to the unsigned-integer word
element in VRC.

— The unsigned-integer word result is placed into
the corresponding word element of VRT.

Special Registers Altered:
None

Chapter 6. Vector Facility [Category: Vector] 267

Version 2.07 B

Vector Multiply-Sum Mixed Byte Modulo
VA-form

vmsummbm VRT,VRA,VRB,VRC

Vector Multiply-Sum Signed Halfword
Modulo VA-form

vmsumshm VRT,VRA,VRB,VRC

4 VRT VRA VRB VRC 37
0 6 1t 16 21 2% 31

4 VRT VRA VRB VRC 40

0 6 1 16 Al 26 3

do 1=0 to 127 by 32
temp € (VRC);, 543
do j=0 to 31 by 8
prody.1s € (VRA)i45.54947 Xsui (VRB) 14514947
temp € temp +;,. EXTS(prod)
end
VRT; 1,31 € temp
end

For each word element in VRT the following operations
are performed, in the order shown.

— Each of the four signed-integer byte elements
contained in the corresponding word element of
VRA is multiplied by the corresponding
unsigned-integer byte element in VRB, producing
a signed-integer product.

— The sum of these four signed-integer halfword
products is added to the signed-integer word
element in VRC.

— The signed-integer result is placed into the
corresponding word element of VRT.

Special Registers Altered:
None

do 1=0 to 127 by 32
temp € (VRC)y, 5.3
do j=0 to 31 by 16
prody,3; € (VRA)i45:549415 Xsi (VRB)i4:iisjats
temp € temp +;,. prod
end
VRT; 5431 € temp
end

For each word element in VRT the following operations
are performed, in the order shown.

— Each of the two signed-integer halfword elements
contained in the corresponding word element of
VRA is multipied by the corresponding
signed-integer halfword element in VRB,
producing a signed-integer product.

— The sum of these two signed-integer word
products is added to the signed-integer word
element in VRC.

— The signed-integer word result is placed into the
corresponding word element of VRT.

Special Registers Altered:
None

268 Power ISA™ - Book |

Version 2.07 B

Vector Multiply-Sum Signed Halfword
Saturate VA-form

vmsumshs VRT,VRA,VRB,VRC

Vector Multiply-Sum Unsigned Halfword
Modulo VA-form

vmsumuhm VRT,VRA,VRB,VRC

4 VRT VRA VRB VRC LY
0 6 1t 16 21 2% 31

4 VRT VRA VRB VRC 38

0 6 1 16 Al 26 3

do 1=0 to 127 by 32
temp €< EXTS((VRC);.j,31)
do j=0 to 31 by 16
srch € EXTS((VRA)i,5,545415)
SIcB € EXTS((VRB),5,is515)
prod € srcA xg; srcB
temp € temp +;,. prod
end
VRTy,3,31 € Clamp(temp, -231, 231-1)
end

For each word element in VRT the following operations
are performed, in the order shown.

— Each of the two signed-integer halfword elements
contained in the corresponding word element of
VRA is multiplied by the corresponding
signed-integer halfword element in VRB,
producing a signed-integer product.

— The sum of these two signed-integer word
products is added to the signed-integer word
element in VRC.

— If the intermediate result is greater than 23'-1 the
result saturates to 23'-1 and if it is less than -237 it
saturates to -23".

— The result is placed into the corresponding word
element of VRT.

Special Registers Altered:
SAT

do 1=0 to 127 by 32
temp € EXTZ((VRC);.i,31)
do j=0 to 31 by 16
srcA € EXTZ((VRA)
srcB € EXTZ((VRB)j,5.i,5415)
prod € srcA x,; srcB
temp € temp +;,. prod
end
VRTj.;431 € Chop(temp, 32)
end

i+j :i+j+15)

For each word element in VRT the following operations
are performed, in the order shown.

— Each of the two unsigned-integer halfword
elements contained in the corresponding word
element of VRA is multiplied by the corresponding
unsigned-integer halfword element in VRB,
producing an unsigned-integer word product.

— The sum of these two unsigned-integer word
products is added to the unsigned-integer word
element in VRC.

— The unsigned-integer result is placed into the
corresponding word element of VRT.

Special Registers Altered:
None

Chapter 6. Vector Facility [Category: Vector] 269

Version 2.07 B

Vector Multiply-Sum Unsigned Halfword
Saturate VA-form

vmsumuhs VRT,VRA,VRB,VRC

4 VRT VRA VRB VRC 39
0 6 1t 16 21 2% 31

do 1=0 to 127 by 32
temp € EXTZ((VRC);.j,31)
do j=0 to 31 by 16
srcl € EXTZ((VRA) i 5,545415)
Src2 € EXTZ((VRB),j,i1515)
prod € srcl xy; src2
end
temp € temp +;,. prod
VRT;.;,3; € Clamp(temp, 0, 232-1)
end

For each word element in VRT the following operations
are performed, in the order shown.

— Each of the two unsigned-integer halfword
elements contained in the corresponding word
element of VRA is multiplied by the corresponding
unsigned-integer halfword element in VRB,
producing an unsigned-integer product.

— The sum of these two unsigned-integer word
products is added to the unsigned-integer word
element in VRC.

— If the intermediate result is greater than 232-1 the
result saturates to 232-1.

— The result is placed into the corresponding word
element of VRT.

Special Registers Altered:
SAT

270 Power ISA™ - Book |

Version 2.07 B

6.9.1.5 Vector Integer Sum-Across Instructions

Vector Sum across Signed Word Saturate
VX-form

VSUMSwWs VRT,VRA,VRB

Vector Sum across Half Signed Word
Saturate VX-form

vsSum2sws VRT,VRA,VRB

4 VRT VRA VRB 1928
0 6 1 16 21 31

4 VRT VRA VRB 1672
0 6 1 16 2 31

temp € EXTS((VRB)gg.127)
do 1=0 to 127 by 32
temp € temp +int EXTS((VRA);.i431)
end
VRTy.3; € 0x0000_0000
VRT35.63 € 0x0000_0000
VRTgy.95 € 0x0000_0000
VRTgg,157 € Clamp(temp, -23%, 23%-1)

The sum of the four signed-integer word elements in
VRA is added to signed-integer word element 3 of
VRB.

— If the intermediate result is greater than 2311 the
result saturates to 231-1.

— If the intermediate result is less than -237 the
result saturates to -23".

The low-end 32 bits of the result are placed into word
element 3 of VRT.

Word elements 0 to 2 of VRT are set to 0.

Special Registers Altered:
SAT

do 1=0 to 127 by 64
temp € EXTS((VRB);.,39,1463)
do j=0 to 63 by 32
temp € temp +;,. EXTS((VRA)
end
VRT
end

i+j :i+j+31)

€ 0x0000_0000 || Clamp(temp, -23%, 231-1)

i:1+63

Word elements 0 and 2 of VRT are set to 0.

The sum of the signed-integer word elements 0 and 1
in VRA is added to the signed-integer word element in
bits 32:63 of VRB.

— If the intermediate result is greater than 237-1 the
result saturates to 231-1.

— If the intermediate result is less than -23' the
result saturates to -23.

The low-order 32 bits of the result are placed into word
element 1 of VRT.

The sum of signed-integer word elements 2 and 3 in
VRA is added to the signed-integer word element in
bits 96:127 of VRB.

— If the intermediate result is greater than 2311 the
result saturates to 231-1.

— If the intermediate result is less than -23' the
result saturates to -23".

The low-order 32 bits of the result are placed into word
element 3 of VRT.

Special Registers Altered:
SAT

Chapter 6. Vector Facility [Category: Vector] 271

Version 2.07 B

Vector Sum across Quarter Signed Byte
Saturate VX-form

vsum4sbs VRT,VRA,VRB

Vector Sum across Quarter Signed
Halfword Saturate VX-form

vsum4shs VRT,VRA,VRB

4 VRT VRA VRB 1800
0 6 1t 16 21 31

4 VRT VRA VRB 1608

0 6 1 16 Al 3

do 1=0 to 127 by 32
temp € EXTS((VRB);.j,31)
do j=0 to 31 by 8
temp € temp +;,. EXTS ((VRA) 145.14347)
end
VRT, ;.3 € Clamp(temp, -23%, 231-1)
end

For each integer value i from 0 to 3, do the following.
The sum of the four signed-integer byte elements
contained in word element i of VRA is added to
signed-integer word element i in VRB.

— If the intermediate result is greater than 2819
the result saturates to 231-1.

— If the intermediate result is less than -231 the
result saturates to -23".

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
SAT

do i=0 to 127 by 32
temp € EXTS((VRB);.j,31)
do j=0 to 31 by 16
temp € temp +;;c EXTS((VRA)j 5,144415)
end
VRT, ;3 € Clamp(temp, -231, 231-1)
end

For each integer value i from 0 to 3, do the following.
The sum of the two signed-integer halfword
elements contained in word element i of VRA is
added to signed-integer word element i in VRB.

— If the intermediate result is greater than 2311
the result saturates to 231-1.

— If the intermediate result is less than -237 the
result saturates to -23".

The low-order 32 bits of the result are placed into
the corresponding word element of VRT.

Special Registers Altered:
SAT

272 Power ISA™ - Book |

Version 2.07 B

Vector Sum across Quarter Unsigned
Byte Saturate VX-form

vsum4ubs VRT,VRA,VRB

4 VRT VRA VRB 1544
0 6 1t 16 21

do 1=0 to 127 by 32
temp € EXTZ((VRB);,;.31)
do j=0 to 31 by 8
temp € temp +;,. EXTZ((VRA)
end
VRT; ;.3 € Clamp(temp, 0, 232-1)
end

1+3: i+j+7)

For each integer value i from 0 to 3, do the following.
byte

The sum of the four unsigned-integer

elements contained in word element i of VRA is
added to unsigned-integer word element i in VRB.

— If the intermediate result is greater than 2521
it saturates to 232-1.

The low-order 32 bits of the result are placed into

word element i of VRT.

Special Registers Altered:
SAT

Chapter 6. Vector Facility [Category: Vector] 273

Version 2.07 B

6.9.1.6 Vector Integer Average Instructions

Vector Average Signed Byte VX-form

vavgsb VRT,VRA,VRB

Vector Average Signed Word VX-form

vavgsw VRT,VRA,VRB

4 VRT VRA VRB 1282
0 6 11 16 21 31

4 VRT VRA VRB 1410
0 6 1 16 2 31

do 1=0 to 127 by 8

aop € EXTS((VRA);.;.9)

bop ¢ EXTS((VRB);,;.7)

VRT;.;,7 € Chop((aop +ipr DO +5c 1) >> 1, 8)
end

For each integer value i from 0 to 15, do the following.
Signed-integer byte element i in VRA is added to
signed-integer byte element i in VRB. The sum is
incremented by 1 and then shifted right 1 bit.

The low-order 8 bits of the result are placed into
byte element i of VRT.

Special Registers Altered:
None

Vector Average Signed Halfword VX-form

vavgsh VRT,VRA,VRB

4 VRT VRA VRB 1346
0 6 1t 16 21 31

do i=0 to 127 by 16

aop € EXTS((VRA);.i415)

bop € EXTS((VRB);.;.15)

VRTy.i,15 € Chop((aop +;, bop +3n: 1) >> 1, 16)
end

For each integer value i from 0 to 7, do the following.
Signed-integer halfword element i in VRA is added
to signed-integer halfword element i in VRB. The
sum is incremented by 1 and then shifted right 1
bit.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
None

do i=0 to 127 by 32

aop € EXTS((VRA);.i,31)

bop € EXTS((VRB),;,31)

VRT;.1431 € Chop((aop +;pe bop +ipe 1) >> 1, 32)
end

For each integer value i from 0 to 3, do the following.
Signed-integer word element i in VRA is added to
signed-integer word element i in VRB. The sum is
incremented by 1 and then shifted right 1 bit.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
None

274 Power ISA™ - Book |

Version 2.07 B

Vector Average Unsigned Byte VX-form

vavgub VRT,VRA,VRB

4 VRT VRA VRB 1026
0 6 1 16 21 31

do 1=0 to 127 by 8

aop € EXTZ((VRA);.;47)

bop € EXTZ((VRB); ;.7

VRT;.;,7 € Chop((aop +ipe DOD +;5c 1) >>45 1, 8)
end

For each integer value i from 0 to 15, do the following.
Unsigned-integer byte element i in VRA is added
to unsigned-integer byte element i in VRB. The
sum is incremented by 1 and then shifted right 1
bit.

The low-order 8 bits of the result are placed into
byte element i of VRT.

Special Registers Altered:
None

Vector Average Unsigned Word VX-form

vavguw VRT,VRA,VRB

4 VRT VRA VRB 1154
0 6 1 16 21 31

do 1=0 to 127 by 32

aop € EXTZ((VRA);.i.31)

bop € EXTZ((VRB){,;.31)

VRT;.1,31 € Chop((aop +;5c bop +ip: 1) >>y5 1, 32)
end

For each integer value i from 0 to 3, do the following.
Unsigned-integer word element i in VRA is added
to unsigned-integer word element i in VRB. The
sum is incremented by 1 and then shifted right 1
bit.

The low-order 32 bits of the result are placed into
word element i of VRT.

Special Registers Altered:
None

Vector Average Unsigned Halfword
VX-form

vavguh VRT,VRA,VRB

4 VRT VRA VRB 1090

0 6 1 16 Al 3

do 1=0 to 127 by 16

aop € EXTZ((VRA);.i,q5)

bop € EXTZ((VRB);.i.15)

VRT;.1415 € Chop((aop +;pp bop +ipe 1) >>y; 1, 16)
end

For each integer value i from 0 to 7, do the following.
Unsigned-integer halfword element i in VRA is
added to unsigned-integer halfword element i in
VRB. The sum is incremented by 1 and then
shifted right 1 bit.

The low-order 16 bits of the result are placed into
halfword element i of VRT.

Special Registers Altered:
None

Chapter 6. Vector Facility [Category: Vector]

275

Version 2.07 B

6.9.1.7 Vector Integer Maximum and Minimum Instructions

Vector Maximum Signed Byte VX-form

vmaxsb VRT,VRA,VRB

Vector Maximum Unsigned Byte VX-form

vmaxub VRT,VRA,VRB

4 VRT VRA VRB 258

0 6 1 16 Al 31

4 VRT VRA VRB 2
0 6 1 16 2 31

do 1=0 to 127 by 8

aop € EXTS((VRA);.;.7)

bop € EXTS((VRB);.;,7)

VRT; ;47 € (@0p >g; bop) ? (VRA)j,q47 ¢
end

(VRB) 3,147

For each integer value i from 0 to 15, do the following.
Signed-integer byte element i in VRA is compared
to signed-integer byte element i in VRB. The
larger of the two values is placed into byte
element i of VRT.

Special Registers Altered:

None

Vector Maximum Signed Doubleword
VX-form

do 1=0 to 127 by 8

aop € EXTZ((VRA);.i47)

bop € EXTZ((VRB);.;47)

VRT;.;47 € (aop >y; bop) ? (VRA)j.i47 ¢
end

(VRB) 3,347

For each integer value i from 0 to 15, do the following.
Unsigned-integer byte element i in VRA is
compared to unsigned-integer byte element i in
VRB. The larger of the two values is placed into
byte element i of VRT.

Special Registers Altered:

None

Vector Maximum Unsigned Doubleword
VX-form

vmaxsd VRT,VRA,VRB vmaxud VRT,VRA,VRB
4 VRT VRA VRB 450 4 VRT VRA VRB 194
0 6 11 16 21 31 0 6 1 16 21 31
doi=0¢tol doi=0¢tol

aop ¢ VR[VRA].dword[i]

bop ¢« VR[VRB].dword[1i]

VR[VRT] .dword[i] « (aop >g; bop) ? aop : bop
end

For each integer value i from 0 to 1, do the following.
The signed integer value in doubleword element i
of VR[VRA] is compared to the signed integer value
in doubleword element i of VR[VRB]. The larger of
the two values is placed into doubleword element
i of VR[VRT].

Special Registers Altered:
None

aop « VR[VRA].dword[i]

bop « VR[VRB].dword[i]

VR[VRT] .dword[i] ¢ (aop >, bop) ? aop : bop
end

For each integer value i from 0 to 1, do the following.
The unsigned integer value in doubleword
element i of VR[VRA] is compared to the unsigned
integer value in doubleword element i of VR[VRB].
The larger of the two values is placed into
doubleword element i of VR[VRT].

Special Registers Altered:
None

276 Power ISA™ - Book |

Version 2.07 B

Vector Maximum Signed Halfword
VX-form

vmaxsh VRT,VRA,VRB

Vector Maximum Unsigned Halfword
VX-form

vmaxuh VRT,VRA,VRB

4 VRT VRA VRB 322

0 6 1 16 21 kil

4 VRT VRA VRB 66
0 6 1 16 2 31

do 1=0 to 127 by 16

aop € EXTS((VRA);.i,15)

bop € EXTS((VRB);, .15

VRT; 5415 € ((@0p > bop) ? (VRA)j.5u5
end

(VRB) ;1415

For each integer value i from 0 to 7, do the following.
Signed-integer halfword element i in VRA is
compared to signed-integer halfword element i in
VRB. The larger of the two values is placed into
halfword element i of VRT.

Special Registers Altered:
None

Vector Maximum Signed Word VX-form

vmaxsw VRT,VRA,VRB

do 1=0 to 127 by 16

aop €< EXTZ((VRA);.i,15)

bop € EXTZ((VRB);,;415)

VRT; 5415 € (20p >y; bop) ? (VRA); 415 :
end

(VRB) 45415

For each integer value i from 0 to 7, do the following.
Unsigned-integer halfword element i in VRA is
compared to unsigned-integer halfword element i
in VRB. The larger of the two values is placed into
halfword element i of VRT.

Special Registers Altered:
None

Vector Maximum Unsigned Word VX-form

vmaxuw VRT,VRA,VRB

4 VRT VRA VRB 386
0 6 1t 16 21 31

4 VRT VRA VRB 130
0 6 1 16 2 31

do 1=0 to 127 by 32

aop € EXTS((VRA);.i.31)

bop € EXTS((VRB);.;,31)

VRT; j431 € (1@0p >g5 bop) 2 (VRA); 5431 ¢
end

(VRB)1.1431

For each integer value i from 0 to 3, do the following.
Signed-integer word element i in VRA s
compared to signed-integer word element i in
VRB. The larger of the two values is placed into
word element i of VRT.

Special Registers Altered:
None

do 1=0 to 127 by 32

aop € EXTZ((VRA);.i431)

bop € EXTZ((VRB);,;431)

VRT;. 1431 € (20D >y3 bop) ? (VRA);,5,3 :
end

(VRB) ;1431

For each integer value i from 0 to 3, do the following.
Unsigned-integer word element i in VRA is
compared to unsigned-integer word element i in
VRB. The larger of the two values is placed into
word element i of VRT.

Special Registers Altered:
None

Chapter 6. Vector Facility [Category: Vector] 277

Version 2.07 B

Vector Minimum Signed Byte VX-form

vminsb VRT,VRA,VRB

Vector Minimum Unsigned Byte VX-form

vminub VRT,VRA,VRB

4 VRT VRA VRB 770

0 6 1 16 Al 31

4 VRT VRA VRB 514
0 6 1 16 2 31

do 1=0 to 127 by 8
aop € EXTS((VRA);.i.7)
bop € EXTS((VRB);.;,7)
VRT,

i:147 € (@0D <53 bop) ? (VRA)j 547 ¢ (VRB)y 4
end

For each integer value i from 0 to 15, do the following.
Signed-integer byte element i in VRA is compared
to signed-integer byte element i in VRB. The
smaller of the two values is placed into byte
elementi of VRT.

Special Registers Altered:

None

Vector Minimum Signed Doubleword
VX-form

do i=0 to 127 by 8
aop € EXTZ((VRA);.i4)
bop € EXTZ((VRB); ;47
VRT;

12447 € (20D <y5 bop) 2 (VRA)j.549 ¢ (VRB)j 49
end

For each integer value i from 0 to 15, do the following.
Unsigned-integer byte element i in VRA is
compared to unsigned-integer byte element i in
VRB. The smaller of the two values is placed into
byte element i of VRT.

Special Registers Altered:

None

Vector Minimum Unsigned Doubleword
VX-form

vminsd VRT,VRA,VRB vminud VRT,VRA,VRB
4 VRT VRA VRB 962 4 VRT VRA VRB 706
0 6 1 16 2 31 0 6 1" 16 21 3
doi=0tol doi=0tol

aop ¢ VR[VRA].dword[i]

bop « VR[VRB].dword[i]

VR[VRT].dword[i] « (ExtendSign(aop) <4; ExtendSign(bop)) ?
aop : bop
end

For each integer value i from 0 to 1, do the following.
The signed integer value in doubleword element i
of VR[VRA] is compared to the signed integer value
in doubleword element i of VR[VRB]. The smaller
of the two values is placed into doubleword
element 1 of VR[VRT].

Special Registers Altered:
None

aop « VR[VRA].dword[i]

bop « VR[VRB].dword[i]

VR[VRT] .dword[i] ¢ (aop <y bop) ? aop : bop
end

For each integer value i from 0 to 1, do the following.
The unsigned integer value in doubleword
element i of VR[VRA] is compared to the unsigned
integer value in doubleword element i of VR[VRB].
The smaller of the two values is placed into
doubleword element i of VR[VRT].

Special Registers Altered:
None

278 Power ISA™ - Book |

Version 2.07 B

Vector Minimum Signed Halfword
VX-form

vminsh VRT,VRA,VRB

Vector Minimum Unsigned Halfword
VX-form

vminuh VRT,VRA,VRB

4 VRT VRA VRB 834

0 6 1 16 21 kil

4 VRT VRA VRB 578
0 6 1 16 2 31

do 1=0 to 127 by 16

aop € EXTS((VRA);.i,15)

bop € EXTS((VRB);.;.15)

VBT 5415 € ((@0p < bop) ? (VRA)j.5u5
end

(VRB) ;1415

For each integer value i from 0 to 7, do the following.
Signed-integer halfword element i in VRA is
compared to signed-integer halfword element i in
VRB. The smaller of the two values is placed into
halfword element i of VRT.

Special Registers Altered:
None

Vector Minimum Signed Word VX-form

vminsw VRT,VRA,VRB

do 1=0 to 127 by 16

aop €< EXTZ((VRA);.i,15)

bop € EXTZ((VRB);,;415)

VRT; 5415 € (0P <yj bop) 2 (VRA); 545
end

(VRB) 13415

For each integer value i from 0 to 7, do the following.
Unsigned-integer halfword element i in VRA is
compared to unsigned-integer halfword element i
in VRB. The smaller of the two values is placed
into halfword element i of VRT.

Special Registers Altered:
None

Vector Minimum Unsigned Word VX-form

vminuw VRT,VRA,VRB

4 VRT VRA VRB 898
0 6 1t 16 21 31

4 VRT VRA VRB 642
0 6 1 16 2 31

do i=0 to 127 by 32

aop € EXTS((VRA);.i.31)

bop € EXTS((VRB);,;.91)

VRT; 5431 € (80P < bop) ? (VRA)j .54y
end

(VRB)3.1431

For each integer value i from 0 to 3, do the following.
Signed-integer word element i in VRA s
compared to signed-integer word element i in
VRB. The smaller of the two values is placed into
word element i of VRT.

Special Registers Altered:
None

do i=0 to 127 by 32

aop € EXTZ((VRA);.i431)

bop € EXTZ((VRB);,;.31)

VRT; ;031 € (@aop <y; bop) ? (VRA); 5437 ¢
end

(VRB) 3.3431

For each integer value i from 0 to 3, do the following.
Unsigned-integer word element i in VRA is
compared to unsigned-integer word element i in
VRB. The smaller of the two values is placed into
word element i of VRT.

Special Registers Altered:
None

Chapter 6. Vector Facility [Category: Vector] 279

Version 2.07 B

6.9.2 Vector Integer Compare Instructions

The Vector Integer Compare instructions compare two
Vector Registers element by element, interpreting the
elements as unsigned or signed-integers depending on
the instruction, and set the corresponding element of
the target Vector Register to all 1s if the relation being
tested is true and to all Os if the relation being tested is
false.

If Rc=1 CR Field 6 is set to reflect the result of the
comparison, as follows.

Bit Description

0 The relation is true for all element pairs
(i.e., VRT is set to all 1s)

10

2 The relation is false for all element pairs
(i.e., VRT is set to all 0s)

3 0

Programming Note
vcmpequb[.], vempequh[.], vempequw[.], and
vcmpequd[.] can be used for unsigned or
signed-integers.

Vector Compare Equal To Unsigned Byte
VC-form

Vector Compare Equal To Unsigned
Halfword VC-form

vempequb VRT,VRA,VRB (Rc=0) vecmpequh VRT,VRA,VRB (Rc=0)
vempequb. VRT,VRA,VRB (Rc=1) vcmpequh. VRT,VRA,VRB (Rc=1)
4 VRT VRA VRB (R 6 4 VRT VRA VRB (Re 70

0 6 1 16 21122 3

0 6 il 16 21(22 3

do 1=0 to 127 by 8
VRTj, 507 € ((VRA)j 507 Zine (VRB)35) 2 °L 2 %0
end
if Re=1 then do
t € (VRT=1%81)
£ & (vrRT=1%80)
CR6 € t || 0bO || £ || 0bO
end

For each integer value i from 0 to 15, do the following.
Unsigned-integer byte element i in VRA is
compared to unsigned-integer byte element i in
VRB. Byte element i in VRT is set to all 1s if
unsigned-integer byte element i in VRA is equal to
unsigned-integer byte element i in VRB, and is set
to all Os otherwise.

Special Registers Altered:
CRfield6o, (if Rc=1)

do 1=0 to 127 by 16
VRT; 415 € ((VRR) 31015 =ine (VRB)j,5005) 2 11
end
if Rec=1 then do
t « (vRr=1%%1)
£ € (vrT=1%80)
CR6 € t || 0bO || £ || 0bO
end

160

For each integer value i from 0 to 7, do the following.
Unsigned-integer halfword element i in VRA is
compared to unsigned-integer halfword element
element i in VRB. Halfword element i in VRT is set
to all 1s if unsigned-integer halfword element i in
VRA is equal to unsigned-integer halfword
elementiin VRB, and is set to all Os otherwise.

Special Registers Altered:
CRfield 6. ... (if Rc=1)

280 Power ISA™ - Book |

Version 2.07 B

Vector Compare Equal To Unsigned Word
VC-form

Vector Compare Equal To Unsigned
Doubleword VX-form

vempequw VRT,VRA,VRB (Rc=0) vempequd VRT,VRA,VRB (Rc=0)
vempequw. VRT,VRA,VRB (Rc=1) vcmpequd. VRT,VRA,VRB (Re=1)
4 VRT VRA VRB [Re 134 4 VRT VRA VRB R 199
0 6 il 16 21|22 31 0 6 1" 16 21(22 3
do 1=0 to 127 by 32 doi=0¢tol

VRT; ;431 € ((VRB)3 5,31 =ipe (VRB)3,303q) 2 71 ¢ %0
end
if Re=1 then do

t € (VRr=121)

£« (yrRT=1%80)

CR6 € t || 000 || £ || 0bO
end

For each integer value i from 0 to 3, do the following.
The unsigned integer value in word element i in
VR[VRA] is compared to the unsigned integer value
in word element i in VR[VRB]. Word element i in
VRIVRT] is set to all 1s if unsigned-integer word
element 1 in VR[VRA] is equal to unsigned-integer
word element i in VR[VRB], and is set to all Os
otherwise.

Special Registers Altered:
CRfield6 (if Re=1)

aop « EXTZ(VR[VRA].dword[i])
bop ¢ EXTZ(VR[VRB].dword[1]
if (aop = bop) then do
VR[VRT] .dword[i] ¢« OXFFFF_FFFF_FFFF_FFFF
flag.bit[i] « 0bl
end
else do
VR[VRT] .dword[i] « 0x0000_0000_0000_0000
flag.bit[i] « 0bO
end
end
if Re=1 then do
CR.bit[24] « (flag=0bll
CR.bit[25] « 0b0
CR.bit[26] « (flag=0b00
CR.bit[27] « 0bO
end

For each integer value i from 0 to 1, do the following.
The unsigned integer value in doubleword
element i of VR[VRA] is compared to the unsigned
integer value in doubleword element i of VR[VRB].
Doubleword element i of VR[VRT] is set to all 1s if
the unsigned integer value in doubleword element
i of VR[VRA] is equal to the unsigned integer value
in doubleword element i of VR[VRB], and is set to
all Os otherwise.

Special Registers Altered:
CRfield6........... (if Re=1)

Chapter 6. Vector Facility [Category: Vector] 281

Version 2.07 B

Vector Compare Greater Than Signed
Byte VC-form

Vector Compare Greater Than Signed
Doubleword VX-form

vempgtsb VRT,VRA,VRB (Rc=0) vempgtsd VRT,VRA,VRB (Rc=0)
vempgtsb. VRT,VRA,VRB (Re=1) vempgtsd. VRT,VRA,VRB (Re=1)
4 VRT VRA VRB [Re 774 4 VRT VRA VRB R 967
0 6 il 16 21|22 31 0 6 1" 16 21(22 3
do 1=0 to 127 by 8 doi=0tol

VRT;, 509 € ((VRR)j, 500 >g (VRB)jip) 2 %10 %0
end
if Re=1 then do

t € (vRr=121)

£« (yrRT=1%80)

CR6 € t || 000 || £ || 0bO
end

For each integer value i from 0 to 15, do the following.
The signed integer value in byte element i in
VR[VRA] is compared to the signed integer value in
byte element i in VR[VRB]. Byte element i in
VR[VRT] is set to all 1s if signed-integer byte
element i in VR[VRA] is greater than to
signed-integer byte element i in VR[VRB], and is set
to all Os otherwise.

Special Registers Altered:
CRfield6 (if Re=1)

aop « EXTS(VR[VRA].dword[i])
bop ¢ EXTS(VR[VRB].dword[1])
if (aop >g; bop) then do
VR[VRT] .dword[i] ¢« OXFFFF_FFFF_FFFF_FFFF
flag.bit[i] « 0bl
end
else do
VR[VRT] .dword[i] « 0x0000_0000_0000_0000
flag.bit[i] « 0bO
end
end
if “vempgtsd.” then do
CR.bit[24] « (flag=0bll)
CR.bit[25] « 0b0
CR.bit[26] « (flag=0b00)
CR.bit[27] « 0bO
end

For each integer value i from 0 to 1, do the following.
The signed integer value in doubleword element i
of VR[VRA] is compared to the signed integer value
in doubleword element i of VR[VRB]. Doubleword
element 1 of VR[VRT] is set to all 1s if the signed
integer value in doubleword element i of VR[VRA]
is greater than the signed integer value in
doubleword element 1 of VR[VRB], and is set to all
Os otherwise.

Special Registers Altered:
CRfield6........... oo, (if Re=1)

282 Power ISA™ - Book |

Version 2.07 B

Vector Compare Greater Than Signed
Halfword VC-form

Vector Compare Greater Than Signed
Word VC-form

vempgtsh VRT,VRA,VRB (Rc=0) vempgtsw VRT,VRA,VRB (Rc=0)

vempgtsh. VRT,VRA,VRB (Re=1) vempgtsw. VRT,VRA,VRB (Re=1)
4 VRT VRA VRB [Re 838 4 VRT VRA VRB R 902

0 6 il 16 21|22 31 0 6 1" 16 21(22 3

do 1=0 to 127 by 16
VRT, 5015 € ((VRR) 1,305 >s (VRB)giu05) 2 1010 20
end
if Re=1 then do
t € (VRr=121)
£« (yrRT=1%80)
CR6 € t || 000 || £ || 0bO
end

For each integer value i from 0 to 7, do the following.
Signed-integer halfword element i in VRA is
compared to signed-integer halfword element i in
VRB. Halfword element i in VRT is set to all 1s if
signed-integer halfword element i in VRA is
greater than signed-integer halfword element i in
VRB, and is set to all Os otherwise.

Special Registers Altered:
CR field 6

do i=0 to 127 by 32
VRT; 5030 € ((VRA) 3,31 >s; (VRB)ggp31) 2 210 220
end
if Re=1 then do
t € (vRr='%%1)
£« (VRT=1%0)
CRE € t || 0b0 || £ || ObO
end

For each integer value i from 0 to 3, do the following.
Signed-integer word element i in VRA is
compared to signed-integer word element i in
VRB. Word element i in VRT is set to all 1s if
signed-integer word element i in VRA is greater
than signed-integer word element i in VRB, and is
set to all Os otherwise.

Special Registers Altered:
CRfield6.......................... (if Rc=1)

Chapter 6. Vector Facility [Category: Vector]

283

Version 2.07 B

Vector Compare Greater Than Unsigned
Byte VC-form

Vector Compare Greater Than Unsigned
Doubleword VX-form

vempgtub VRT,VRA,VRB (Rc=0) vempgtud VRT,VRA,VRB (Rc=0)
vempgtub. VRT,VRA,VRB (Re=1) vempgtud. VRT,VRA,VRB (Rc=1)
4 VRT VRA VRB [Re 518 4 VRT VRA VRB R 711
0 6 il 16 21|22 31 0 6 1" 16 21(22 3
do 1=0 to 127 by 8 doi=0tol

VRT;, 509 € ((VRR)j, 500 >y (VRB)jip) 2 %10 %0
end
if Re=1 then do

t € (vRr=121)

£« (yrRT=1%80)

CR6 € t || 000 || £ || 0bO
end

For each integer value i from 0 to 15, do the following.
Unsigned-integer byte element i in VRA is
compared to unsigned-integer byte element i in
VRB. Byte element i in VRT is set to all 1s if
unsigned-integer byte element i in VRA is greater
than to unsigned-integer byte element i in VRB,
and is set to all Os otherwise.

Special Registers Altered:
CRfield6 (if Re=1)

aop « EXTZ(VR[VRA].dword[i])
bop ¢ EXTZ(VR[VRB].dword[1])
if (ExtendZero(aop) >,; ExtendZero(bop)) then do
VR[VRT] .dword[i] ¢« OXFFFF_FFFF_FFFF_FFFF
flag.bit[i] « 0bl
end
else do
VR[VRT] .dword[i] « 0x0000_0000_0000_0000
flag.bit[i] « 0bl
end
end
if “vempgtud.” then do
CR.bit[24] « (flag=0bll)
CR.bit[25] « 0b0
CR.bit[26] « (flag=0b00)
CR.bit[27] « 0bO
end

For each integer value i from 0 to 1, do the following.
The unsigned integer value in doubleword
element i of VR[VRA] is compared to the unsigned
integer value in doubleword element i of VR[VRB].
Doubleword element i of VR[VRT] is set to all 1s if
the unsigned integer value in doubleword element
i of VR[VRA] is greater than the unsigned integer
value in doubleword element i of VR[VRB], and is
set to all Os otherwise.

Special Registers Altered:

CR field 6 (if Re=1)

284 Power ISA™ - Book |

Version 2.07 B

Vector Compare Greater Than Unsigned

Vector Compare Greater Than Unsigned

Halfword VC-form Word VC-form

vempgtuh VRT,VRA,VRB (Rc=0) vempgtuw VRT,VRA,VRB (Rc=0)

vempgtuh. VRT,VRA,VRB (Re=1) vempgtuw. VRT,VRA,VRB (Re=1)
4 VRT VRA VRB [Re 582 4 VRT VRA VRB [Re 646

0 6 il 16 21|22 31 0 6 1" 16 21(22 3

do 1=0 to 127 by 16
VRT, 5015 € ((VRR) 3,35 >y (VRB)giu05) 2 1010 20
end
if Re=1 then do
t € (VRr=121)
£« (yrRT=1%80)
CR6 € t || 000 || £ || 0bO
end

For each integer value i from 0 to 7, do the following.
Unsigned-integer halfword element i in VRA is
compared to unsigned-integer halfword element i
in VRB. Halfword element i in VRT is set to all 1s
if unsigned-integer halfword element i in VRA is
greater than to unsigned-integer halfword element
i in VRB, and is set to all Os otherwise.

Special Registers Altered:
CR field 6

do i=0 to 127 by 32
VRT; 5030 € ((VRR) i1 >y (VRB)ggp31) 2 210 220
end
if Re=1 then do
t € (vRr='%%1)
£« (VRT=1%0)
CRE € t || 0b0 || £ || ObO
end

For each integer value i from 0 to 3, do the following.
Unsigned-integer word element i in VRA is
compared to unsigned-integer word element i in
VRB. Word element i in VRT is set to all 1s if
unsigned-integer word element i in VRA is greater
than to unsigned-integer word element i in VRB,
and is set to all Os otherwise.

Special Registers Altered:
CRfield6.......................... (if Rc=1)

Chapter 6. Vector Facility [Category: Vector]

285

Version 2.07 B

6.9.3 Vector Logical Instructions

Extended mnemonics for vector logical opera-
tions

Extended mnemonics are provided that use the Vector
OR and Vector NOR instructions to copy the contents
of one Vector Register to another, with and without
complementing. These are shown as examples with
the two instructions.

Vector Move Register

Several vector instructions can be coded in a way
such that they simply copy the contents of one
Vector Register to another. An extended
mnemonic is provided to convey the idea that no
computation is being performed but merely data
movement (from one register to another).

The following instruction copies the contents of
register Vy to register Vx.

vmr Vx,Vy (equivalentto: vor Vx\Vy,Vy)

Vector Complement Register

The Vector NOR instruction can be coded in a
way such that it complements the contents of one
Vector Register and places the result into another
Vector Register. An extended mnemonic is
provided that allows this operation to be coded
easily.

The following instruction complements the
contents of register Vy and places the result into
register Vx.

vnot Vx,Vy (equivalentto: vnor Vx,Vy,Vy)

Vector Logical AND VX-form

vand VRT,VRA,VRB

Vector Logical Equivalent VX-form

veqv VRT,VRA,VRB

4 VRT VRA VRB 1028
0 6 1t 16 21 31

4 VRT VRA VRB 1668
0 6 1 16 2 31

VRIVRT] & VR[VRA] & VR[VRB]

The contents of VR[VRA] are ANDed with the contents
of VR[VRB] and the result is placed into VR[VRT].

Special Registers Altered:
None

Vector Logical AND with Complement
VX-form

vandc VRT,VRA,VRB

VR[VRT] « VR[VRA] = VR[VRB]

The contents of VR[VRA] are XORed with the contents
of VR[VRB] and the complemented result is placed into
VRLVRT].

Special Registers Altered:
None

Vector Logical NAND VX-form

vnand VRT,VRA,VRB

4 VRT VRA VRB 1092
0 6 1t 16 21 31

4 VRT VRA VRB 1412
0 6 1 16 2 31

VRIVRT] € VR[VRA] & ~VR[VRB]

The contents of VR[VRA] are ANDed with the
complement of the contents of VR[VRB] and the result is
placed into VR[VRT].

Special Registers Altered:
None

if MSR.VEC=0 then VECTOR_UNAVAILABLE()
VR[VRT] « -~(VR[VRA] & VR[VRB])

The contents of VR[VRA] are ANDed with the contents
of VR[VRB] and the complemented result is placed into
VRLVRT].

Special Registers Altered:
None

286 Power ISA™ - Book |

Version 2.07 B

Vector Logical OR with Complement
VX-form

vorc VRT,VRA,VRB

4 VRT VRA VRB 1348
0 6 1t 16 21 31

VRIVRT] « VR[VRA] | -VR[VRB]

The contents of VR[VRA] are ORed with the
complement of the contents of VR[VRB] and the result is
placed into VR[VRT].

Special Registers Altered:
None

Vector Logical OR VX-form

vor VRT,VRA,VRB

4 VRT VRA VRB 1156
0 6 1 16 2 31

VR[VRT] & VR[VRA] | VR[VRB]

The contents of VR[VRA] are ORed with the contents of
VR[VRB] and the result is placed into VR[VRT].

Special Registers Altered:
None

Vector Logical XOR VX-form

Vector Logical NOR VX-form vxor VRT,VRA,VRB
vnor VRT,VRA,VRB 4 VRT | VRA | VRB 1220
0 6 1" 16 21 31
4 VRT | VRA | VRB 1284

0 6 1 16 Al 31

VR[VRT] € =(VR[VRA] | VR[VRB])

The contents of VR[VRA] are ORed with the contents of
VR[VRB] and the complemented result is placed into
VR[VRT].

Special Registers Altered:
None

VR[VRT] ¢ VR[VRA] ® VR[VRB]

The contents of VR[VRA] are XORed with the contents
of VR[VRB] and the result is placed into VR[VRT].

Special Registers Altered:
None

Chapter 6. Vector Facility [Category: Vector] 287

Version 2.07 B

6.9.4 Vector Integer Rotate and Shift Instructions

Vector Rotate Left Byte VX-form

vrib VRT,VRA,VRB

Vector Rotate Left Word VX-form

vrlw VRT,VRA,VRB

4 VRT VRA VRB 4
0 6 1t 16 21 31

4 VRT VRA VRB 132
0 6 1 16 2 31

do i=0 to 127 by 8
sh € (VRB)
VRT

end

145:147

11447 € (VRA)y 549 <<< sh

For each integer value i from 0 to 15, do the following.
Byte element i in VRA is rotated left by the
number of bits specified in the low-order 3 bits of
the corresponding byte element i in VRB.

The result is placed into byte element i in VRT.
Special Registers Altered:

None

Vector Rotate Left Halfword VX-form

vrlh VRT,VRA,VRB

do 1=0 to 127 by 32

sh € (VRB)1497.5431

VRT; 331 € (VRAJ4 5051 <<< sh
end

For each integer value i from 0 to 3, do the following.
Word element i in VRA is rotated left by the
number of bits specified in the low-order 5 bits of
the corresponding word element i in VRB.

The result is placed into word element i in VRT.
Special Registers Altered:

None

Vector Rotate Left Doubleword VX-form

vrid VRT,VRA,VRB

4 VRT VRA VRB 68
0 6 1t 16 21 31

4 VRT VRA VRB 196

0 6 1" 16 21 31

do 1=0 to 127 by 16

sh € (VRB) ;19,1415

VRS 3415 € (VRA); 5435 <<< sh
end

For each integer value i from 0 to 7, do the following.
Halfword element i in VRA is rotated left by the
number of bits specified in the low-order 4 bits of
the corresponding halfword element i in VRB.

The result is placed into halfword element i in
VRT.

Special Registers Altered:
None

doi=0¢tol

sh « VR[VRB].dword[i].bit[58:63]

VR[VRT] .dword[i] « VR[VRA].dword[i] <<< sh
end

For each integer value i from 0 to 1, do the following.
The contents of doubleword element i of VR[VRA]
are rotated left by the number of bits specified in
bits 58:63 of doubleword element i of VR[VRB].

The result is placed into doubleword element i of
VR[VRT].

Special Registers Altered:
None

288 Power ISA™ - Book |

Version 2.07 B

Vector Shift Left Byte VX-form

vslb

VRT,VRA,VRB

Vector Shift Left Word VX-form

vslw

VRT,VRA,VRB

6

VRT

il

VRA

16

VRB

260

4 VRT
0 6

1

VRA

16

VRB

21

388

3

do 1=0 to 127 by 8

sh € (VRB) ;5,549

VRT
end

1:147

& [VRA);,7 << sh

For each integer value i from 0 to 15, do the following.

Byte element i in VRA is shifted left by the number
of bits specified in the low-order 3 bits of byte

elementiin VRB.

— Bits shifted out of bit 0 are lost.

— Zeros are supplied to the vacated bits on the

right.

The result is placed into byte element i of VRT.

Special Registers Altered:

None

Vector Shift Left Halfword VX-form

vslh

VRT,VRA,VRB

do 1=0 to 127 by 32
sh € (VRB)j427.4431
VRTj.j431 € (VRA)j,j431 << sh

end

| For each integer value i from 0 to 3, do the following.
Word element i in VRA is shifted left by the
number of bits specified in the low-order 5 bits of

word element i in VRB.

— Bits shifted out of bit 0 are lost.

— Zeros are supplied to the vacated bits on the

right.

The result is placed into word element i of VRT.

Special Registers Altered:

None

vsld

VRT,VRA,VRB

Vector Shift Left Doubleword VX-form

6

VRT

il

VRA

16

VRB

324

4 VRT
0 6

il

VRA

16

VRB

1476

do 1=0 to 127 by 16
sh € (VRB)419:4415

VRTy.1415 € (VRA)j 5445 << sh

end

For each integer value i from 0 to 7, do the following.

Halfword element i in VRA is shifted left by the
number of bits specified in the low-order 4 bits of
halfword element i in VRB.

— Bits shifted out of bit 0 are lost.

— Zeros are supplied to the vacated bits on the
right.

The result is placed into halfword element i of

VRT.

Special Registers Altered:

None

doi=0¢tol

end

right.

VRLVRT].

None

Special Registers Altered:

sh « VR[VRB].dword[i].bit[58:63]
VR[VRT] .dword[i] ¢ VR[VRA].dword[i] << sh

For each integer value i from 0 to 1, do the following.
The contents of doubleword element 1 of VR[VRA]
are shifted left by the number of bits specified in
bits 58:63 of doubleword element i of VR[VRB].

— Bits shifted out of bit 0 are lost.
— Zeros are supplied to the vacated bits on the

The result is placed into doubleword element i of

Chapter 6. Vector Facility [Category: Vector] 289

Version 2.07 B

Vector Shift Right Byte VX-form

vsrb VRT,VRA,VRB

Vector Shift Right Word VX-form

VSIw VRT,VRA,VRB

4 VRT VRA VRB 516
0 6 11 16 21 31

4 VRT VRA VRB 644
0 6 1 16 2 31

do 1=0 to 127 by 8
sh € (VRB) ;5,549
VRT € (VRA)

end

10447 i:i+7 >ui Sh

For each integer value i from 0 to 15, do the following.
Byte element i in VRA is shifted right by the
number of bits specified in the low-order 3 bits of
byte element i in VRB. Bits shifted out of the
least-significant bit are lost. Zeros are supplied to
the vacated bits on the left. The result is placed
into byte element i of VRT.

Special Registers Altered:

None

Vector Shift Right Halfword VX-form

vsrh VRT,VRA,VRB

do 1=0 to 127 by 32

sh € (VRB)j427.4431

VRT 5u31 € (VRR)j 5431 >>y 8D
end

For each integer value i from 0 to 3, do the following.
Word element i in VRA is shifted right by the
number of bits specified in the low-order 5 bits of
word element i in VRB. Bits shifted out of the
least-significant bit are lost. Zeros are supplied to
the vacated bits on the left. The result is placed
into word element i of VRT.

Special Registers Altered:

None

Vector Shift Right Doubleword VX-form

vsrd VRT,VRA,VRB

4 VRT VRA VRB 580
0 6 1t 16 21 31

4 VRT VRA VRB 1732
0 6 1 16 2 31

do 1=0 to 127 by 16

sh € (VRB) 14195415

VRTy i015 € (VRA)3,5405 >>y; Sh
end

For each integer value i from 0 to 7, do the following.
Halfword element i in VRA is shifted right by the
number of bits specified in the low-order 4 bits of
halfword element i in VRB. Bits shifted out of the
least-significant bit are lost. Zeros are supplied to
the vacated bits on the left. The result is placed
into halfword element i of VRT.

Special Registers Altered:
None

doi=0¢tol
sh ¢ VR[VRB].dword[i].bit[58:63]
VR[VRT].dword[i] ¢ VR[VRA].dword[i] >>, sh
end

For each integer value 1 from 0 to 1, do the following.
The contents of doubleword element i of VR[VRA]
are shifted right by the number of bits specified in
bits 58:63 of doubleword element i of VR[VRB].
Zeros are supplied to the vacated bits on the left.

The result is placed into doubleword element i of
VR[VRT].

Special Registers Altered:
None

290 Power ISA™ - Book |

Version 2.07 B

Vector Shift Right Algebraic Byte VX-form

vsrab VRT,VRA,VRB

4 VRT VRA VRB 772
0 6 1 16 21 31

do 1=0 to 127 by 8
sh € (VRB) ;5,549
VRT € (VRA)

end

10447 1147 >>si Sh

For each integer value i from 0 to 15, do the following.
Byte element i in VRA is shifted right by the
number of bits specified in the low-order 3 bits of
the corresponding byte element i in VRB. Bits
shifted out of bit 7 of the byte element are lost. Bit
0 of the byte element is replicated to fill the
vacated bits on the left. The result is placed into
byte element i of VRT.

Special Registers Altered:
None

Vector Shift Right Algebraic Halfword
VX-form

vsrah VRT,VRA,VRB

4 VRT VRA VRB 836
0 6 1t 16 21 31

do 1=0 to 127 by 16

sh € (VRB)j.15:1415

VRTi:i+15 < (VRA)i:i+15 >2si sh
end

For each integer value i from 0 to 7, do the following.
Halfword element i in VRA is shifted right by the
number of bits specified in the low-order 4 bits of
the corresponding halfword element i in VRB. Bits
shifted out of bit 15 of the halfword are lost. Bit O
of the halfword is replicated to fill the vacated bits
on the left. The result is placed into halfword
element i of VRT.

Special Registers Altered:
None

Vector Shift Right Algebraic Word
VX-form

vsraw VRT,VRA,VRB

4 VRT VRA VRB 900
0 6 1 16 2 31

do 1=0 to 127 by 32

sh € (VRB)j,97.5431

VRT 5431 € (VRA)j 5431 >>gp 8D
end

For each integer value i from 0 to 3, do the following.
Word element i in VRA is shifted right by the
number of bits specified in the low-order 5 bits of
the corresponding word element i in VRB. Bits
shifted out of bit 31 of the word are lost. Bit 0 of
the word is replicated to fill the vacated bits on the
left. The result is placed into word element i of
VRT.

Special Registers Altered:
None

Vector Shift Right Algebraic Doubleword
VX-form

vsrad VRT,VRA,VRB
4 VRT VRA VRB 964
0 6 1 16 21 31
doi=0¢tol

sh « VR[VRB].dword[i].bit[58:63]
VR[VRT] .dword[i] « VR[VRA].dword[i] >>5; sh
end

For each integer value i from 0 to 1, do the following.
The contents of doubleword element 1 of VR[VRA]
are shifted right by the number of bits specified in
bits 58:63 of doubleword element i of VR[VRB]. Bit
0 of doubleword element i of VR[VRA] is replicated
to fill the vacated bits on the left.

The result is placed into doubleword element i of
VRIVRT].

Special Registers Altered:
None

Chapter 6. Vector Facility [Category: Vector] 291

Version 2.07 B

6.10 Vector Floating-Point Instruction Set

6.10.1 Vector Floating-Point Arithmetic Instructions

Vector Add Single-Precision VX-form

vaddfp VRT,VRA,VRB

Vector Subtract Single-Precision VX-form

vsubfp VRT,VRA,VRB

4 VRT VRA VRB 10

0 6 1 16 21 3

4 VRT VRA VRB 74
0 6 1 16 2 31

do 1=0 to 127 by 32
VRT;,;,3; ¢ RoundToNearSP((VRA);,i431 +£p (VRB)j.1431)
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRA is
added to single-precision floating-point element i
in VRB. The intermediate result is rounded to the
nearest single-precision floating-point number and
placed into word element i of VRT.

Special Registers Altered:
None

do 1=0 to 127 by 32
VRT;,;,3; < RoundToNearSP((VRA);, 1431 ~gp (VRB)j.1431)
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRB is
subtracted from single-precision floating-point
element i in VRA. The intermediate result is
rounded to the nearest single-precision
floating-point number and placed into word
elementi of VRT.

Special Registers Altered:
None

292 Power ISA™ - Book |

Version 2.07 B

Vector Multiply-Add Single-Precision
VA-form

vmaddfp VRT,VRA,VRC,VRB

Vector Negative Multiply-Subtract
Single-Precision VA-form

vnmsubfp VRT,VRA,VRC,VRB

4 VRT VRA VRB VRC 46
0 6 1t 16 21 2% 31

4 VRT VRA VRB VRC 47
0 6 1 16 2 2% 31

do 1=0 to 127 by 32

prod € (VRA); ji31 Xgp (VRC)j 343

VRT,3,31 € RoundToNearSP(prod +¢y (VRB)j.i431)
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRA is
multiplied by single-precision floating-point
element i in VRC. Single-precision floating-point
element i in VRB is added to the infinitely-precise
product. The intermediate result is rounded to the
nearest single-precision floating-point number and
placed into word element i of VRT.

Special Registers Altered:
None

— Programming Note

To use a multiply-add to perform an IEEE or Java
compliant multiply, the addend must be -0.0. This
is necessary to insure that the sign of a zero result
will be correct when the product is -0.0 (+0.0 + -0.0
> +0.0, and -0.0 + -0.0> -0.0). When the sign of a
resulting 0.0 is not important, then +0.0 can be
used as an addend which may, in some cases,
avoid the need for a second register to hold a -0.0
in addition to the integer O/floating-point +0.0 that
may already be available.

do 1=0 to 127 by 32

prody,ipe € (VRA)j, 5431 Xgp (VRC)jiiugg

VRT;,;,3; € -RoundToNearSP(prody,ins -g, (VRB);,i,31)
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRA is
multiplied by single-precision floating-point
element i in VRC. Single-precision floating-point
element i in VRB is subtracted from the
infinitely-precise product. The intermediate result
is rounded to the nearest single-precision
floating-point number, then negated and placed
into word element i of VRT.

Special Registers Altered:
None

Chapter 6. Vector Facility [Category: Vector] 293

Version 2.07 B

6.10.2 Vector Floating-Point Maximum and Minimum Instructions

Vector Maximum Single-Precision
VX-form

vmaxfp VRT,VRA,VRB

4 VRT VRA VRB 1034

0 6 1 16 21 3

do i=0 to 127 by 32

gt_flag € ((VRA)j.j.31 >gp (VRB)j.ju31)

VRT; 5,31 € gt_flag ? (VRA)j.j.31 ¢ (VRB)j .43
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRA is
compared to single-precision floating-point
element i in VRB. The larger of the two values is
placed into word element i of VRT.

The maximum of +0 and -0 is +0. The maximum of any
value and a NaN is a QNaN.

Special Registers Altered:
None

Vector Minimum Single-Precision VX-form

vminfp VRT,VRA,VRB

4 VRT VRA VRB 1098
0 6 1 16 2 31

do 1=0 to 127 by 32
1t_flag € ((VRA)j.j431 <gp (VRB)j.j431)
VRT;. 3431 € 1t_flag ? (VRA);.ju31 ¢ (VRB)g g1
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRA is
compared to single-precision floating-point
element i in VRB. The smaller of the two values is
placed into word element i of VRT.

The minimum of +0 and -0 is -0. The minimum of any
value and a NaN is a QNaN.

Special Registers Altered:
None

294 Power ISA™ - Book |

Version 2.07 B

6.10.3 Vector Floating-Point Rounding and Conversion Instructions

See Appendix C, “Vector RTL Functions [Category:
Vector]” on page 701, for RTL function descriptions.

Vector Convert To Signed Fixed-Point
Word Saturate VX-form

vctsxs VRT,VRB,UIM

Vector Convert To Unsigned Fixed-Point
Word Saturate VX-form

vctuxs VRT,VRB,UIM

4 VRT uiM VRB 970
0 6 1t 16 21 31

4 VRT UM VRB 906
0 6 1 16 2 31

do 1=0 to 127 by 32
VRT; ;.31 € ConvertSPtoSXWsaturate((VRB);,;,31, UIM)
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point word element i in
VRB is multiplied by 2YM. The product is
converted to a 32-bit signed fixed-point integer
using the rounding mode Round toward Zero.

— If the intermediate result is greater than 23'-1
the result saturates to 231-1.

— If the intermediate result is less than -231 the
result saturates to -23".

The result is placed into word element i of VRT.

Special Registers Altered:
SAT

Extended Mnemonics:
Example of an extended mnemonics for Vector
Convert to Signed Fixed-Point Word Saturate:

Extended: Equivalent to:
vefpsxws VRT,VRB,UIM vctsxs VRT,VRB,UIM

do i=0 to 127 by 32
VRT; ;.37 € ConvertSPtoUXWsaturate((VRB);,;,31, UIM)
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point word element i in
VRB is multiplied by 2YM. The product is
converted to a 32-bit unsigned fixed-point integer
using the rounding mode Round toward Zero.

— If the intermediate result is greater than 232-1
the result saturates to 232-1.

The result is placed into word element i of VRT.

Special Registers Altered:
SAT

Extended Mnemonics:
Example of an extended mnemonics for Vector
Convert to Unsigned Fixed-Point Word Saturate:

Extended: Equivalent to:
vcfpuxws VRT,VRB,UIM vctuxs VRT,VRB,UIM

Chapter 6. Vector Facility [Category: Vector] 295

Version 2.07 B

Vector Convert From Signed Fixed-Point
Word VX-form

vcfsx VRT,VRB,UIM

Vector Convert From Unsigned
Fixed-Point Word VX-form

vcfux VRT,VRB,UIM

4 VRT uiM VRB 842
0 6 1t 16 21 31

4 VRT UM VRB 778
0 6 1 16 2 31

do 1=0 to 127 by 32
VRT;,;,3; € ConvertSXWtoSP((VRB);j,3;) +g, 270
end

For each integer value i from 0 to 3, do the following.
Signed fixed-point word element i in VRB is
converted to the nearest single-precision
floating-point value. Each result is divided by 2Y'™
and placed into word element i of VRT.

Special Registers Altered:
None

Extended Mnemonics:
Examples of extended mnemonics for Vector Convert
from Signed Fixed-Point Word

Extended:
vesxwip

Equivalent to:
VRT,VRB,UIM vcfsx VRT,VRB,UIM

do i=0 to 127 by 32
VRT;,;,3; € ConvertUXWEoSP((VRB);.;,3;) +p, 200
end

For each integer value i from 0 to 3, do the following.
Unsigned fixed-point word element i in VRB is
converted to the nearest single-precision
floating-point value. The result is divided by 2Y'™
and placed into word element i of VRT.

Special Registers Altered:
None

Extended Mnemonics:
Examples of extended mnemonics for Vector Convert
from Unsigned Fixed-Point Word

Extended:
veuxwfp

Equivalent to:
VRT,VRB,UIM vcfux VRTVRB,UIM

296 Power ISA™ - Book |

Version 2.07 B

Vector Round to Single-Precision Integer

toward -Infinity VX-form

Vector Round to Single-Precision Integer
Nearest VX-form

vrfim VRT,VRB vrfin VRT,VRB
4 VRT 7 VRB 714 4 VRT 1 VRB 522
0 6 1 16 21 3 0 6 1 16 2 31
do 1=0 to 127 by 32 do 1=0 to 127 by 32

VRTy.3; € RoundToSPIntFloor((VRB)g.3;)
end

For each integer value i from 0 to 3, do the following.

Single-precision floating-point element i in VRB is
rounded to a single-precision floating-point integer

using the rounding mode Round toward -Infinity.

The result is placed into the corresponding word

elementi of VRT.

Special Registers Altered:
None

—— Programming Note

The Vector Convert To Fixed-Point
instructions support only the
Round toward Zero. A floating-point number can

instruction before the Vector
Fixed-Point Word instruction.

Word
rounding mode

be converted to a fixed-point integer using any of
the other three rounding modes by executing the
appropriate Vector Round to Floating-Point Integer
Convert To

VRTy.3; € RoundToSPIntNear((VRB)g.3;)

end

For each integer value i from 0 to 3, do the following.

Spe

Single-precision floating-point element i in VRB is
rounded to a single-precision floating-point integer
using the rounding mode Round to Nearest.

The result is placed into the corresponding word
elementi of VRT.

cial Registers Altered:
None

Vector Round to Single-Precision Integer
toward +Infinity VX-form

vrfip

VRT,VRB

4 VRT i VRB 650
6 1 16 21 31

—— Programming Note

The fixed-point
Convert instructions can be
consisting of 32-UIM integer bits followed by UIM
fraction bits.

integers used by the Vector
interpreted as

do

i=0 to 127 by 32
VRTp,3; € RoundToSPIntCeil((VRB)g.3q)
end

For each integer value i from 0 to 3, do the following.

Single-precision floating-point element i in VRB is
rounded to a single-precision floating-point integer
using the rounding mode Round toward +Infinity.

The result is placed into the corresponding word
elementi of VRT.

Special Registers Altered:

None

Chapter 6. Vector Facility [Category: Vector]

297

Version 2.07 B

Vector Round to Single-Precision Integer
toward Zero VX-form

vrfiz VRT,VRB

4 VRT mn VRB 586
0 6 1t 16 21 31

do 1=0 to 127 by 32
VRTy.3; € RoundToSPIntTrunc((VRB)g.3;)
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRB is
rounded to a single-precision floating-point integer
using the rounding mode Round toward Zero.

The result is placed into the corresponding word
elementi of VRT.

Special Registers Altered:
None

298 Power ISA™ - Book |

Version 2.07 B

6.10.4 Vector Floating-Point Compare Instructions

The Vector Floating-Point Compare instructions
compare two Vector Registers word element by word
element, interpreting the elements as single-precision
floating-point numbers. With the exception of the
Vector Compare Bounds Floating-Point instruction,
they set the target Vector Register, and CR Field 6 if
Rc=1, in the same manner as do the Vector Integer
Compare instructions; see Section 6.9.2.

The Vector Compare Bounds Floating-Point instruction
sets the target Vector Register, and CR Field 6 if
Rc=1, to indicate whether the elements in VRA are
within the bounds specified by the corresponding
element in VRB, as explained in the instruction
description. A single-precision floating-point value x is
said to be “within the bounds” specified by a
single-precision floating-point value y if -y < x <y.

Vector Compare Bounds Single-Precision
VC-form

vempbfp VRT,VRA,VRB (Rc=0)
vempbfp. VRT,VRA,VRB (Rc=1)
4 VRT VRA VRB R 966

0 6 1 16 21122 3

do i=0 to 127 by 32
le € (VRA)j. 431 Sgp (VRB)yju31)
ge € ((VRA)j,i431 2gp ~(VRB); 503)
VRT, 503 € le || age || 2%
end
if Re=1 then do
ib € (vRT=1%80)
CR6 € 0600 || ib || 0BO
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point word element i in
VRA is compared to single-precision floating-point
word element i in VRB. A 2-bit value is formed that
indicates whether the element in VRA is within the
bounds specified by the element in VRB, as
follows.

— Bit 0 of the 2-bit value is set to 0 if the
element in VRA is less than or equal to the
element in VRB, and is set to 1 otherwise.

— Bit 1 of the 2-bit value is set to 0 if the
element in VRA is greater than or equal to the
negation of the element in VRB, and is set to
1 otherwise.

The 2-bit value is placed into the high-order two
bits of word element i of VRT and the remaining
bits of element i are set to 0.

If Rc=1, CR field 6 is set as follows.

Bit Description
0 SettoO
1 Setto0

Bit Description

2 Set to indicate whether all four elements in VRA
are within the bounds specified by the
corresponding element in VRB, otherwise set to
0.

3 Setto0

Special Registers Altered:
CRfield 6. ... (if Rc=1)

— Programming Note

Each single-precision floating-point word element
in VRB should be non-negative; if it is negative,
the corresponding element in VRA will necessarily
be out of bounds.

One exception to this is when the value of an
element in VRB is -0.0 and the value of the
corresponding element in VRA is either +0.0 or
-0.0. +0.0 and -0.0 compare equal to -0.0.

Chapter 6. Vector Facility [Category: Vector]

299

Version 2.07 B

Vector Compare Equal To
Single-Precision VC-form

Vector Compare Greater Than or Equal To
Single-Precision VC-form

vempeqfp VRT,VRA,VRB (Rc=0) vempgefp VRT,VRA,VRB (Rc=0)

vempeqfp. VRT,VRA,VRB (Re=1) vempgefp. VRT,VRA,VRB (Re=1)
4 VRT VRA VRB [Re 198 4 VRT VRA VRB R 454

0 6 il 16 21|22 31 0 6 1" 16 21(22 3

do 1=0 to 127 by 32
VRT; ;431 € ((VRR)j.5431 =gp (VRB)y5031) 2 21 ¢ 220
end
if Re=1 then do
t € (VRT=1%%1)
£« (VRT=1%8))
CR6 € t || 000 || £ || 0bO
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRA is
compared to single-precision floating-point
element i in VRB. Word element i in VRT is set to
all 1s if single-precision floating-point element i in
VRA is equal to single-precision floating-point
elementiin VRB, and is set to all Os otherwise.

If the source element i in VRA or the source
element i in VRB is a NaN, VRT is set to all Os,
indicating “not equal to”. If the source element i in
VRA and the source element i in VRB are both
infinity with the same sign, VRT is set to all 1s,
indicating “equal to”.

Special Registers Altered:
CRfield6 (if Rc=1)

do i=0 to 127 by 32
VRT 530 € ((VRR) 3,031 25 (VRB)5,5030) 2 P15 P20
end
if Re=1 then do
t € (vrr=1281)
£ e (VRT=1%8))
CRE € t || 0b0 || £ || ObO
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRA is
compared to single-precision floating-point
element i in VRB. Word element i in VRT is set to
all 1s if single-precision floating-point element i in
VRA is greater than or equal to single-precision
floating-point element i in VRB, and is set to all Os
otherwise.

If the source element i in VRA or the source
element i in VRB is a NaN, VRT is set to all Os,
indicating “not greater than or equal to”. If the
source element i in VRA and the source element i
in VRB are both infinity with the same sign, VRT is
set to all 1s, indicating “greater than or equal to”.

Special Registers Altered:
CRfield6............oiiii .. (if Rc=1)

300 Power ISA™ - Book |

Version 2.07 B

Vector Compare Greater Than
Single-Precision VC-form

vempgtfp VRT,VRA,VRB (Rc=0)

vempgtfp. VRT,VRA,VRB (Re=1)
4 VRT VRA VRB [Re 710

0 6 il 16 21|22 31

do 1=0 to 127 by 32
VRT; 500 € ((VRR) 11 >gp (VRB)g 031 2 2210 20
end
if Re=1 then do
t € (VRT=1%%1)
£« (VRT=1%8))
CR6 € t || 000 || £ || 0bO
end

For each integer value i from 0 to 3, do the following.
Single-precision floating-point element i in VRA is
compared to single-precision floating-point
element i in VRB. Word element i in VRT is set to
all 1s if single-precision floating-point element i in
VRA is greater than single-precision floating-point
elementiin VRB, and is set to all Os otherwise.

If the source element i in VRA or the source
element i in VRB is a NaN, VRT is set to all Os,
indicating “not greater than”. If the source element
i in VRA and the source element i in VRB are both
infinity with the same sign, VRT is set to all Os,
indicating “not greater than”.

Special Registers Altered:
CRfield6 (if Rc=1)

Chapter 6. Vector Facility [Category: Vector]

301

Version 2.07 B

6.10.5 Vector Floating-Point Estimate Instructions

Vector 2 Raised to the Exponent Estimate
Floating-Point VX-form

vexptefp VRT,VRB

Vector Log Base 2 Estimate
Floating-Point VX-form

vlogefp VRT,VRB

4 VRT n VRB 394
0 6 1t 16 21 31

4 VRT mn VRB 458
0 6 1 16 2 31

do i=0 to 127 by 32
VRTy ;.37 € Power2EstimateSP((VRB)j.i,31)
end

For each integer value i from 0 to 3, do the following.
The single-precision floating-point estimate of 2
raised to the power of single-precision
floating-point element i in VRB is placed into word
elementi of VRT.

Let x be any single-precision floating-point input value.
Unless x< -146 or the single-precision floating-point
result of computing 2 raised to the power x would be a
zero, an infinity, or a QNaN, the estimate has a relative
error in precision no greater than one part in 16. The
most significant 12 bits of the estimate’s significand
are monotonic. An integral input value returns an
integral value when the result is representable.

The result for various special cases of the source
value is given below.

Value Resulit
- Infinity +0
-0 +1
+0 +1
+Infinity +Infinity
NaN QNaN

Special Registers Altered:
None

do 1=0 to 127 by 32
VRT; ;.31 € LogBase2EstimateSP((VRB);,j,31)
end

For each integer value i from 0 to 3, do the following.
The single-precision floating-point estimate of the
base 2 logarithm of single-precision floating-point
element i in VRB is placed into the corresponding
word element of VRT.

Let x be any single-precision floating-point input value.
Unless | x-1 | is less than or equal to 0.125 or the
single-precision floating-point result of computing the
base 2 logarithm of x would be an infinity or a QNaN,
the estimate has an absolute error in precision
(absolute value of the difference between the estimate
and the infinitely precise value) no greater than 29,
Under the same conditions, the estimate has a relative
error in precision no greater than one part in 8.

The most significant 12 bits of the estimate’s
significand are monotonic. The estimate is exact if
x=2Y, where y is an integer between -149 and +127
inclusive. Otherwise the value placed into the element
of register VRT may vary between implementations,
and between different executions on the same
implementation.

The result for various special cases of the source
value is given below.

Value Result
- Infinity QNaN
<0 QNaN
-0 - Infinity
+0 - Infinity
+Infinity +Infinity
NaN QNaN

Special Registers Altered:
None

302 Power ISA™ - Book |

Version 2.07 B

Vector Reciprocal Estimate
Single-Precision VX-form

vrefp VRT,VRB

Vector Reciprocal Square Root Estimate
Single-Precision VX-form

vrsqrtefp VRT,VRB

4 VRT mn VRB 266
0 6 1t 16 21 31

4 VRT i VRB 330

0 6 1 16 Al 3

do 1=0 to 127 by 32
VRT; ;.37 € ReciprocalEstimateSP((VRB);.i 31)
end

For each integer value i from 0 to 3, do the following.
The single-precision floating-point estimate of the
reciprocal of single-precision floating-point
element i in VRB is placed into word element i of
VRT.

Unless the single-precision floating-point result of
computing the reciprocal of a value would be a zero,
an infinity, or a QNaN, the estimate has a relative error
in precision no greater than one part in 4096.

Note that results may vary between implementations,
and between different executions on the same
implementation.

The result for various special cases of the source
value is given below.

Value Result
- Infinity -0
-0 - Infinity
+0 + Infinity
+Infinity +0
NaN QNaN

Special Registers Altered:
None

do 1=0 to 127 by 32
VRT; ;431 € RecipSquareRootEstimateSP((VRB);.;,31)
end

For each integer value i from 0 to 3, do the following.
The single-precision floating-point estimate of the
reciprocal of the square root of single-precision
floating-point element i in VRB is placed into word
element i of VRT.

Let x be any single-precision floating-point value.
Unless the single-precision floating-point result of
computing the reciprocal of the square root of x would
be a zero, an infinity, or a QNaN, the estimate has a
relative error in precision no greater than one part in
4096.

Note that results may vary between implementations,
and between different executions on the same
implementation.

The result for various special cases of the source
value is given below.

Value Result
- Infinity QNaN
<0 QNaN
-0 - Infinity
+0 + Infinity
+Infinity +0
NaN QNaN

Special Registers Altered:
None

Chapter 6. Vector Facility [Category: Vector] 303

Version 2.07 B

6.11 Vector Exclusive-OR-based Instructions

6.11.1 Vector AES Instructions

This section describes a set of instructions that support
the Federal Information Processing Standards Publica-

tion 197 Advanced Encryption Standard for encryption
and decryption.

Vector AES Cipher VX-form

Vector AES Cipher Last VX-form

[Category:Vector.AES] [Category:Vector.AES]
vcipher VRT,VRA,VRB vcipherlast VRT,VRA,VRB
4 VRT VRA VRB 1288 4 VRT VRA VRB 1289
0 6 il 16 21 3 0 6 1" 16 2 3

State « VR[VRA

RoundKey « VR[VRB]

vtenpl « SubBytes(State)
vtenp2 « ShiftRows(vtenpl)
vtemp3 « M xCol urms(vt enp2)
VRIVRT] « vtenp3 * RoundKey

Let State be the contents of VR[VRA], representing the
intermediate state array during AES cipher operation.

Let RoundKey be the contents of VR[VRB], representing
the round key.

One round of an AES cipher operation is performed on
the intermediate State array, sequentially applying the
transforms, SubBytes(), ShiftRows(), MixColumns(),
and AddRoundKey(), as defined in FIPS-197.

The result is placed into VR[VRT], representing the new
intermediate state of the cipher operation.

Special Registers Altered:
None

State « VR[VRA

RoundKey « VR VR]

vtenpl « SubBytes(State)
vtenp2 « ShiftRows(vtenpl)
VRVRT] « vtemp2 * RoundKey

Let State be the contents of VR[VRA], representing the
intermediate state array during AES cipher operation.

Let RoundKey be the contents of VR[VRB], representing
the round key.

The final round in an AES cipher operation is
performed on the intermediate State array,
sequentially applying the transforms, SubBytes(),
ShiftRows(), AddRoundKey(), as defined in FIPS-197.

The result is placed into VR[VRT], representing the final
state of the cipher operation.

Special Registers Altered:
None

304 Power ISA™ - Book |

Version 2.07 B

Vector AES Inverse Cipher VX-form
[Category:Vector.AES]

vncipher VRT,VRA,VRB

Vector AES Inverse Cipher Last VX-form
[Category:Vector.AES]

vncipherlast VRT,VRA,VRB

4 VRT VRA VRB 1352
0 6 1t 16 21 31

4 VRT VRA VRB 1353
0 6 1 16 2 31

State « VRIVRA

RoundKey « VR[VRB]

vtenpl « InvShiftRows(State)
vtemp2 « |nvSubBytes(vtenpl)
vtenp3 « vtenmp2 * RoundKey
VRIVRT] « InvM xCol ums(vt enp3)

Let State be the contents of VR[VRA], representing the
intermediate state array during AES inverse cipher
operation.

Let RoundKey be the contents of VR[VRB], representing
the round key.

One round of an AES inverse cipher operation is
performed on the intermediate State array,
sequentially applying the transforms, InvShiftRows(),
InvSubBytes(), AddRoundKey(), and InvMixColumns(),
as defined in FIPS-197.

The result is placed into VR[VRT], representing the new
intermediate state of the inverse cipher operation.

Special Registers Altered:
None

State « VRIVRA

RoundKey « VR VRB]

vtenpl « InvShiftRows(State)
vtenp2 « | nvSubBytes(vtenpl)
VRIVRT] « vtemp2 * RoundKey

Let State be the contents of VR[VRA], representing the
intermediate state array during AES inverse cipher
operation.

Let RoundKey be the contents of VR[VRB], representing
the round key.

The final round in an AES inverse cipher operation is
performed on the intermediate State array,
sequentially applying the transforms, InvShiftRows(),
InvSubBytes(), and AddRoundKey(), as defined in
FIPS-197.

The result is placed into VR[VRT], representing the final
state of the inverse cipher operation.

Special Registers Altered:
None

Vector AES SubBytes VX-form
[Category:Vector.AES]

vsbox VRT,VRA

4 VRT VRA 7 1480
0 6 1 16 2 31

State « VRIVRA
VRIVRT] « SubBytes(State)

Let State be the contents of VR[VRA], representing the
intermediate state array during AES cipher operation.

The result of applying the transform, SubBytes() on
State, as defined in FIPS-197, is placed into VR[VRT].

Special Registers Altered:
None

Chapter 6. Vector Facility [Category: Vector] 305

Version 2.07 B

6.11.2 Vector SHA-256 and SHA-512 Sigma Instructions

This section describes a set of instructions that support
the Federal Information Processing Standards Publica-

tion 180-3 Secure Hash Standard.

Vector SHA-512 Sigma Doubleword
VX-form

Vector SHA-256 Sigma Word VX-form

[Category:Vector.SHAZ2]
vshasigmad VRT,VRA,ST,SIX
4 VRT VRA [§T} SIX 1730
6 il 1617 21 3

doi =0tol

src « VR VRA]. doubl eword[i]
if ST=0 & SIX bit[2xi]=0 then // SHA-512 o0 function
VRIVRT] . dword[i] « (src >>> 1) A
(src >> 8)
(src > 1)
if ST=0 & SIX. hit[2xi]=1 then [/ SHA-512 o1 function
VRIVRT] . dword[i] « (src >>> 19) A
(src >> 61) ~
(src > 6)
if ST=1 & SIX bit[2xi]=0 then [/ SHA-512 X0 function
VRIVRT] . dword[i] « (src >>> 28) »
(src >> 34) 7
(src >>> 39)
if ST=1 & SIX bit[2xi]=1 then // SHA-512 %1 function
VRIVRT] . dword[i] « (src >>> 14) *
(src >>> 18) *
(src >>> 41)

For each integer value i from 0 to 1, do the following.

When ST=0 and bit 2xi of SIX is 0, a SHA-512 0
function is performed on the contents of
doubleword element i of VR[VRA] and the result is
placed into doubleword element 1 of VR[VRT].

When ST=0 and bit 2xi of SIX is 1, a SHA-512 &1
function is performed on the contents of
doubleword element i of VR[VRA] and the result is
placed into doubleword element 1 of VR[VRT].

When ST=1 and bit 2xi of SIX is 0, a SHA-512 20
function is performed on the contents of
doubleword element i of VR[VRA] and the result is
placed into doubleword element 1 of VR[VRT].

When ST=1 and bit 2xi of SIX is 1, a SHA-512 31
function is performed on the contents of
doubleword element i of VR[VRA] and the result is
placed into doubleword element 1 of VR[VRT].

Bits 1 and 3 of SIX are reserved.

Special Registers Altered:
None

[Category:Vector.SHA2]
vshasigmaw VRT,VRA,ST,SIX
4 VRT VRA [§T] SIX 1666
0 6 1" 1617 21 3
doi =0to3

end

src « VRIVRA] . word[i]
if ST=0 & SIX.bit[i]=0 then // SHA-256 o0 function
VRVRT].word[i] « (src>> 7) 7
(src >> 18) *
(src > 3)
if ST=0 & SIX.bit[i]=1 then // SHA-256 o1 function
VRIVRT] .word[i] « (src >> 17) A
(src >>> 19) A
(src > 10)
if ST=1 & SIX.bit[i]=0 then // SHA-256 X0 function
VRIVRT] .word[i] « (src >>> 2) 7
(srec >»> 13) »
(src >>> 22)
if ST=1 & SIX.bit[i]=1 then // SHA-256 %1 function
VRIVRT] . word[i] « (src >>> 6) *
(src >>> 11) A
(src >>> 25)

For each integer value i from 0 to 3, do the following.

Spe

When ST=0 and bit i of SIX is 0, a SHA-256 <0
function is performed on the contents of word
element 1 of VR[VRA] and the result is placed into
word element i of VR[VRT].

When ST=0 and bit i of SIX is 1, a SHA-256 o1
function is performed on the contents of word
element 1 of VR[VRA] and the result is placed into
word element i of VR[VRT].

When ST=1 and bit i of SIX is 0, a SHA-256 X0
function is performed on the contents of word
element 1 of VR[VRA] and the result is placed into
word element i of VR[VRT].

When ST=1 and bit i of SIX is 1, a SHA-256 X1
function is performed on the contents of word
element 1 of VR[VRA] and the result is placed into
word element i of VR[VRT].

cial Registers Altered:
None

306 Power ISA™ - Book |

Version 2.07 B

| 6.11.3 Vector Binary Polynomial Multiplication Instructions

This section describes a set of binary polynomial multi-
ply-sum instructions. Corresponding elements are mul-
tiplied and the exclusive-OR of each even-odd pair of

products sum, useful for a variety of finite field arith-
metic operations.

Vector Polynomial Multiply-Sum Byte
VX-form

vpmsumb VRT,VRA,VRB

Vector Polynomial Multiply-Sum
Doubleword VX-form

vpmsumd VRT,VRA,VRB

4 VRT VRA VRB 1032
0 6 1t 16 21 31

4 VRT VRA VRB 1224
0 6 1 16 2 31

if MSR VEC=0 then Vector_Unavail abl e()
doi =0to15
prod[i].bit[0:14] « 0
srcA « VRIVRA]. byte[i]
srcB « VRIVRB]. byte[i]
doj=0to7
dok=0to]j
gbit « srcAbit[k] &srcB.hit[j-k]
prod[i].bit[j] « prod[i].bit[j] * gbit
end
end
doj =8to 14
dok=j-7to7
gbit « (srcAbit[k] & srcBhit[j-k])
prod[i].bit[j] « prod[i].bit[j] * gbit
end
end
end
doi =0to7
VRIVRT] . hword[i] « 0b0 || (prod[2xi] * prod[2xi+1])
end

For each integer value i from 0 to 15, do the following.
Let prod[i] be the 15-bit result of a binary
polynomial multiplication of the contents of byte
element i1 of VR[VRA] and the contents of byte
element i of VR[VRB].

For each integer value i from 0 to 7, do the following.
The exclusive-OR of prod[2xi] and prod[2xi+1] is
placed in bits 1:15 of halfword element i of
VR[VRT]. Bit O of halfword element i of VR[VRT] is
set to 0.

Special Registers Altered:
None

if MBR VEC=0 then Vector_Unavail abl e()
doi =0tol
prod[i].bit[0:126] « 0
SrcA « VR VRA]. doubl eword[i]
srcB « VR VRB] . doubl ewor d[i]
doj =0to 63
dok=0to]
ghit « srcAbit[k] & srcB.bit[j-k]
prod[i].bit[j] « prod[i].bit[j] » ghit
end
end
doj =64to 126
do k = j-63 to 63
ghit « (srcAbit[k] &srcB.hit[j-k])
prod[i].bit[j] « prod[i].bit[j] * ghit
end
end
end

VRIVRT] « 0b0 || (prod[0] " prod[1])

Let prod[0] be the 127-bit result of a binary polynomial
multiplication of the contents of doubleword element 0
of VR[VRA] and the contents of doubleword element 0
of VR[VRB].

Let prod[1] be the 127-bit result of a binary polynomial
multiplication of the contents of doubleword element 1
of VR[VRA] and the contents of doubleword element 1
of VR[VRB].

The exclusive-OR of prod[0] and prod[1] is placed in
bits 1:127 of VR[VRT]. Bit 0 of VR[VRT] is set to 0.

Special Registers Altered:
None

Chapter 6. Vector Facility [Category: Vector] 307

Version 2.07 B

Vector Polynomial Multiply-Sum Halfword
VX-form

vpmsumh VRT,VRA,VRB

Vector Polynomial Multiply-Sum Word
VX-form

vpmsumw VRT,VRA,VRB

4 VRT VRA VRB 1096
0 6 1t 16 21 31

4 VRT VRA VRB 1160
0 6 1 16 2 31

doi =0to7
prod. bit[0:30] « 0
srcA « VRIVRA]. hal fword[i]
srcB « VRIVRB]. hal fword[i]
doj =0to 15
dok=0to]j
gbit « srcAbit[k] &srcB.hit[j-k]
prod[i].bit[j] « prod[i].bit[j] * gbit
end
end
doj =16 to 30
dok =j-15t0 15
gbit « (srcAbit[k] & srcBhit[j-k])
prod[i].bit[j] « prod[i].bit[j] * gbit
end
end
end
VR VRT] . word[0] « OhO |

| (prod[0] ~ prod[1]
VR VRT] . word[1] « Ob0 ||

|

|

(

(prod[2] * prod[3]
(prod[4] * prod[5]
(prod[6] ~ prod[7]

VR VRT]. word[2] « 000 |
VR VRT]. word[3] « 0b0 |

For each integer value i from 0 to 7, do the following.
Let prod[i] be the 31-bit result of a binary
polynomial multiplication of the contents of
halfword element i of VR[VRA] and the contents of
halfword element i of VR[VRB].

For each integer value i from 0 to 3, do the following.
The exclusive-OR of prod[2xi] and prod[2xi+1] is
placed in bits 1:31 of word element i1 of VR[VRT].
Bit 0 of word element i of VR[VRT] is set to O.

Special Registers Altered:
None

doi =0to3
prod[i].bit[0:62] « 0
SrcA « VR VRA]. word[i]
srcB « VR VRB]. word[i]
doj =0to 31
dok=0to]
ghit « srcAbit[k] & srcB.bit[j-k]
prod[i].bit[j] « prod[i].bit[j] ghit
end
end
doj =32to 62
do k =j-31to 31
ghit « (srcAbit[k] &srcB.hit[j-k])
prod[i].bit[j] « prod[i].bit[j] ghit
end
end
end
VR{VRT] . dword[0] « ObO || (prod[0] " prod[1])
VRIVRT] . dword[1] « 0bO || (prod[2] " prod[3])

For each integer value i from 0 to 3, do the following.
Let prod[i] be the 63-bit result of a binary
polynomial multiplication of the contents of word
element i of VR[VRA] and the contents of word
element i of VR[VRB].

For each integer value i from 0 to 1, do the following.
The exclusive-OR of prod[2xi] and prod[2xi+1] is
placed in bits 1:63 of doubleword element i of
VR[VRT]. Bit O of doubleword element i of VR[VRT]
is set to 0.

Special Registers Altered:
None

308 Power ISA™ - Book |

Version 2.07 B

| 6.11.4 Vector Permute and Exclusive-OR Instruction

Vector Permute and Exclusive-OR

VA-form
[Category:Vector.RAID]
vpermxor VRT,VRA,VRB,VRC
4 VRT VRA VRB VRC 45
0 6 il 16 21 26 3
doi =0to 15

indexA « VRIVRC]. byte[i].bit[0:3]
indexB « VRIVRC]. byte[i].bit[4:7]
srcl « VRIVRA. byte[indexA]
src2 « VRIVRB].byte[indexB]
VSR{VRT] . byte[i] « srcl * src2

For each integer value i from 0 to 15, do the following.

Let indexA be the contents of bits 0:3 of byte
element 1 of VR[VRC].
Let indexB be the contents of bits 4:7 of byte
element 1 of VR[VRC].

The exclusive OR of the contents of byte element
indexA of VR[VRA] and the contents of byte
element indexB of VR[VRB] is placed into byte
element 1 of VR[VRT].

Special Registers Altered:

None

Chapter 6. Vector Facility [Category: Vector] 309

Version 2.07 B

6.12 Vector Gather Instruction

Vector Gather Bits by Bytes by
Doubleword VX-form

vgbbd VRT,VRB

4 VRT m VRB 1292
0 6 1 16 21 31

doi=0tol
doj=0¢to7
dok=0to?7
b « VSR[VRB].dword[i].byte[k].bit[]]
VSR[VRT].dword[i].byte[]].bit[k] « b
end
end
end

Let src be the contents of VR[VRB], composed of two
doubleword elements numbered 0 and 1.

Let each doubleword element be composed of eight
bytes numbered 0 through 7.

An 8-bit x 8-bit bit-matrix transpose is performed on
the contents of each doubleword element of VR[VRB]
(see Figure 108).

For each integer value i from 0 to 1, do the following,
The contents of bit 0 of each byte of doubleword
element i of VR[VRB] are concatenated and placed
into byte 0 of doubleword element i of VR[VRT].

The contents of bit 1 of each byte of doubleword
element 1 of VR[VRB] are concatenated and placed
into byte 1 of doubleword element i of VR[VRT].

The contents of bit 2 of each byte of doubleword
element 1 of VR[VRB] are concatenated and placed
into byte 2 of doubleword element i of VR[VRT].

The contents of bit 3 of each byte of doubleword
element 1 of VR[VRB] are concatenated and placed
into byte 3 of doubleword element i of VR[VRT].

The contents of bit 4 of each byte of doubleword
element 1 of VR[VRB] are concatenated and placed
into byte 4 of doubleword element i of VR[VRT].

The contents of bit 5 of each byte of doubleword
element 1 of VR[VRB] are concatenated and placed
into byte 5 of doubleword element i of VR[VRT].

The contents of bit 6 of each byte of doubleword
element 1 of VR[VRB] are concatenated and placed
into byte 6 of doubleword element i of VR[VRT].

The contents of bit 7 of each byte of doubleword
element 1 of VR[VRB] are concatenated and placed
into byte 7 of doubleword element i of VR[VRT].

Special Registers Altered:
None

‘‘‘‘‘‘‘

e

VRIVRT] (IIIH] (DI (Y NN (A

[VRB] ([T
VR[VRB [[I]-\\ [[I_[H- O m mmg

1 AL RS,

N e

Figure 108.Vector Gather Bits by Bytes by Doubleword

310 Power ISA™ - Book |

Version 2.07 B

6.13 Vector Count Leading Zeros Instructions

Vector Count Leading Zeros Byte VX-form

vclzb VRT,VRB

4 VRT i VRB 1794
0 6 1 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0tol5
n«o0
do while n < 8
if VR[VRB].byte[i].bit[n] = 0bl then leave
néen+l
end
VSR[VRT] .byte[i] « n
end

For each integer value i from 0 to 15, do the following.
A count of the number of consecutive zero bits
starting at bit 0 of byte element i1 of VR[VRB] is
placed into byte element 1 of VR[VRT]. This
number ranges from 0 to 8, inclusive.

Special Registers Altered:
None

Vector Count Leading Zeros Halfword
VX-form

vclzh VRT,VRB

Vector Count Leading Zeros Word
VX-form

vclzw VRT,VRB

4 VRT n VRB 1922
0 6 1 16 2 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0to3
n «0
do while n < 32
if VR[VRB].word[i].bit[n] = Obl then leave
n «<n+l
end
VSR[VRT] .word[i] ¢« n
end

For each integer value i from 0 to 3, do the following.
A count of the number of consecutive zero bits
starting at bit 0 of word element i of VR[VRB] is
placed into word element i of VR[VRT]. This
number ranges from 0 to 32, inclusive.

Special Registers Altered:
None

Vector Count Leading Zeros Doubleword

velzd VRT,VRB

4 VRT 1 VRB 1858
0 6 1 16 21 31

4 VRT 7 VRB 1986
0 6 1 16 2 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0¢to7
n «0
do while n < 16
if VR[VRB].hword[i].bit[n] = Obl then leave
n «n+l
end
VSR[VRT] .hword[i] « n
end

For each integer value i from 0 to 7, do the following.
A count of the number of consecutive zero bits
starting at bit O of halfword element 1 of VR[VRB] is
placed into halfword element i of VR[VRT]. This
number ranges from 0 to 16, inclusive.

Special Registers Altered:
None

if MSR.VEC=0 then Vector_Unavailable()

doi=0¢tol
neo
do while (n<64) & (VR[VRB].dword[i].bit[n]=0b0)
néen+l
end
VSR[VRT] .dword[i] ¢ n
end

For each integer value i from 0 to 1, do the following.
A count of the number of consecutive zero bits
starting at bit 0 of doubleword element i of
VR[VRB] is placed into doubleword element i of
VR[VRT]. This number ranges from 0 to 64,
inclusive.

Special Registers Altered:

None

Chapter 6. Vector Facility [Category: Vector]

311

Version 2.07 B

6.14 Vector Population Count Instructions

Vector Population Count Byte

vpopcntb VRT,VRB

Vector Population Count Halfword

vpopcnth VRT,VRB

4 VRT i VRB 1795
0 6 1 16 21 31

4 VRT 1 VRB 1859
0 6 1t 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0tol5
n«o0
doj=0¢to7
n « n + VR[VRB].byte[i].bit[j]
end
VSRIVRT] .byte[i] « n
end

For each integer value i from 0 to 15, do the following.
A count of the number of bits set to 1 in byte
element i of VR[VRB] is placed into byte element i
of VR[VRT]. This number ranges from 0 to 8,
inclusive.

Special Registers Altered:
None

Vector Population Count Doubleword

vpopcntd VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

doi=0to7
n«o0
doj=0tol5
n < n + VR[VRB].hword[i].bit[]]
end
VSR[VRT] .hword[i] « n
end

For each integer value i from 0 to 7, do the following.
A count of the number of bits set to 1 in halfword
element i of VR[VRB] is placed into halfword
element i of VR[VRT]. This number ranges from 0

to 16, inclusive.

Special Registers Altered:
None

Vector Population Count Word

vpopcntw VRT,VRB

4 VRT i VRB 1987
0 6 1 16 21 31

4 VRT 1 VRB 1923
0 6 1t 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0tol
n«o0
doj=0to63
n ¢ n + VR[VRB].dword[i].bit[j]
end
VSR[VRT] .dword[i] ¢« n
end

For each integer value i from 0 to 1, do the following.
A count of the number of bits set to 1 in
doubleword element i of VR[VRB] is placed into
doubleword element i of VR[VRT]. This number
ranges from 0 to 64, inclusive.

Special Registers Altered:
None

if MSR.VEC=0 then Vector_Unavailable()

doi=0to3
n«o0
doj =0 to3l
n ¢ n + VR[VRB].word[i].bit[j]
end
VSR[VRT] .word[i] « n
end

For each integer value i from 0 to 3, do the following.
A count of the number of bits set to 1 in word
element 1 of VR[VRB] is placed into word element i
of VR[VRT]. This number ranges from 0 to 32,
inclusive.

Special Registers Altered:
None

312 Power ISA™ - Book |

Version 2.07 B

| 6.15 Vector Bit Permute Instruction

Vector Bit Permute Quadword VX-form

vbpermq VRT,VRA,VRB

4 VRT VRA VRB 1356
0 6 1 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0tol5
index « VR[VRB].byte[i]
if index < 128 then
perm.bit[i] « VR[VRA].bit[index]
else
perm.bit[i] « 0
end
VR[VRT].dword[0] < Chop(EXTZ(perm),64)
VR[VRT] .dword[1] « 0x0000_0000_0000_0000

For each integer value i from 0 to 15, do the following.

Let index be the contents of byte element i of
VR[VRB].

If index is less than 128, then the contents of bit
index of VR[VRA] are placed into bit 48+i of double-
word element i of VR[VRT]. Otherwise, bit 48+i of
doubleword element i of VR[VRT] is set to 0.

The contents of bits 0:47 of VR[VRT] are set to 0.
The contents of bits 64:127 of VR[VRT] are set to 0.

Special Registers Altered:
None

—— Programming Note

The fact that the permuted bit is 0 if the
corresponding index value exceeds 127 permits
the permuted bits to be selected from a 256-bit
quantity, using a single index register. For
example, assume that the 256-bit quantity Q, from
which the permuted bits are to be selected, is in
registers v2 (high-order 128 bits of Q) and v3
(low-order 128 bits of Q), that the index values are
in register v1, with each byte of vl containing a
value in the range 0:255, and that each byte of
register v4 contains the value 128. The following
code sequence selects eight permuted bits from Q
and places them into the low-order byte of v6.

vbpermgq v6,v1,v2 # select from high-order half

of Q
vxor v0,vl,v4 # adjust index values
vbpermq v5,v0,v3 # select from low-order half
of Q
vor v6,v6,v5 # merge the two selections

Chapter 6. Vector Facility [Category: Vector] 313

Version 2.07 B

6.16 Decimal Integer Arithmetic Instructions

The Decimal Integer Arithmetic instructions operate on
decimal integer values only in signed packed decimal
format. Signed packed decimal format consists of 31
4-bit base-10 digits of magnitude and a trailing 4-bit
sign code. Operations are performed as
sign-magnitude, and produce a decimal result placed
in a Vector Register (i.e., bcdadd, bcdsub).

A valid encoding of a decimal integer value requires
the following properties.
— Each of the 31 4-bit digits of the operand’s
magnitude (bits 0:123) must be in the range 0-9.
— The sign code (bits 124:127) must be in the range
10-15.

Source operands with sign codes of 0b1010, 0b1100,
0b1110, and 0b1111 are interpreted as positive values.

Source operands with sign codes of 0b1011 and 0b1101
are interpreted as negative values.

Positive and zero results are encoded with a either
sign code of 0b1100 or 0bl1ll, depending on the
preferred sign (indicated as an immediate operand).

Negative results are encoded with a sign code of
0Ob1101.

314 Power ISA™ - Book |

Version 2.07 B

Decimal Add Modulo VX-form

bcdadd. VRT,VRA,VRB,PS

Decimal Subtract Modulo VX-form

bcdsub. VRT,VRA,VRB,PS

4 VRT VRA VRB [1[P§ 1

0 6 1 16 21122(23 3

4 VRT VRA VRB |1 65
0 6 1 16 21|22 31

if MSR.VEC=0 then Vector_Unavailable()

VR[VRT] ¢« Signed_BCD_Add(VR[VRA],VR[VRB],PS)

CR.bit[56] « inv_flag ? 0b0 : 1t_flag
CR.bit[57] ¢« inv_flag ? 0b0 : gt_flag
CR.bit[58] « inv_flag ? 0b0 : eq flag
CR.bit[59] ¢ ox_flag | inv_flag

Let srcl be the decimal integer value in VR[VRA].
Let src2 be the decimal integer value in VR[VRB].

srcl is added to src2.

If the unbounded result is equal to zero, do the
following.
If PS=0, the sign code of the result is set to 0b1100.
If PS=1, the sign code of the result is set to Ob1111.

CR field 6 is set to 0b0010.

If the unbounded result is greater than zero, do the
following.
If PS=0, the sign code of the result is set to 0b1100.
If PS=1, the sign code of the result is set to 0b1111.

If the operation overflows, CR field 6 is set to
0b0101. Otherwise, CR field 6 is set to 0b0100.

If the unbounded result is less than zero, do the
following.
The sign code of the result is set to 0b1101.

If the operation overflows, CR field 6 is set to
0b1001. Otherwise, CR field 6 is set to 0b1000.

The low-order 31 digits of the magnitude of the result
are placed in bits 0:123 of VR[VRT].

The sign code is placed in bits 124:127 of VR[VRT].
If either srcl or src2 is an invalid encoding of a 31-digit
signed decimal value, the result is undefined and CR

field 6 is set to 0b0001.

Special Registers Altered:
CR field 6

if MSR.VEC=0 then Vector_Unavailable()

VRI[VRT] ¢« Signed_BCD_Subtract (VR[VRA],VR[VRB],PS)

CR.bit[56] « inv_flag ? 0b0 : 1t_flag
CR.bit[57] « inv_flag ? 0b0 : gt_flag
CR.bit[58] « inv_flag ? 0b0 : eq flag
CR.bit[59] ¢ ox_flag | inv_flag

Let srcl be the decimal integer value in VR[VRA].
Let src2 be the decimal integer value in VR[VRB].

srcl is subtracted by src2.

If the unbounded result is equal to zero, do the
following.
If PS=0, the sign code of the result is set to 001100.
If PS=1, the sign code of the result is set to 0b1111.

CR field 6 is set to 0b0010.

If the unbounded result is greater than zero, do the
following.
If PS=0, the sign code of the result is set to 0b1100.
If PS=1, the sign code of the result is set to 0b1111.

If the operation overflows, CR field 6 is set to
0b0101. Otherwise, CR field 6 is set to 0b0100.

If the unbounded result is less than zero, do the
following.
The sign code of the result is set to 0b1101.

If the operation overflows, CR field 6 is set to
0b1001. Otherwise, CR field 6 is set to 0b1000.

The low-order 31 digits of the magnitude of the result
are placed in bits 0:123 of VR[VRT].

The sign code is placed in bits 124:127 of VR[VRT].
If either srcl or src2 is an invalid encoding of a 31-digit
signed decimal value, the result is undefined and CR

field 6 is set to 0b0001.

Special Registers Altered:
CR field 6

Chapter 6. Vector Facility [Category: Vector] 315

Version 2.07 B

6.17 Vector Status and Control Register Instructions

Move To Vector Status and Control
Register VX-form

mtvscr VRB

4 m n VRB 1604
0 6 1t 16 21 31

VSCR € (VRB) g4, 157

The contents of word element 3 of VRB are placed into
the VSCR.

Special Registers Altered:
None

Move From Vector Status and Control
Register VX-form

mfvscr VRT

4 VRT i 1 1540
0 6 1t 16 21 31

VRT € *60 || (VSCR)

The contents of the VSCR are placed into word
element 3 of VRT.

The remaining word elements in VRT are set to 0.

Special Registers Altered:
None

316 Power ISA™ - Book |

Version 2.07 B

Chapter 7. Vector-Scalar Floating-Point Operations

[Category: VSX]

7.1 Introduction

7.1.1 Overview of the
Vector-Scalar Extension

Category Vector-Scalar Extension (VSX) provides
facilities supporting vector and scalar binary
floating-point operations. The following VSX features
are provided to increase opportunities for vectorization.

— A unified register file, a set of Vector-Scalar
Registers (VSR), supporting both scalar and
vector operations is provided, eliminating the
overhead of vector-scalar data transfer through
storage.

— Support for word-aligned storage accesses for
both scalar and vector operations is provided.

— Robust support for IEEE-754 for both vector and
scalar floating-point operations is provided.

Combining the Floating-Point Registers (FPR) defined
in Chapter 4. Floating-Point Facility [Category:
Floating-Point] and the Vector Registers (VR) defined
in Chapter 6. Vector Facility [Category: Vector]
provides additional registers to support more
aggressive compiler optimizations for both vector and
scalar operations.

Implementations of VSX must also implement the
Floating-Point (Chapter 4) and Vector (Chapter 6)
categories.

7.1.1.1 Compatibility with Category
Floating-Point and Category Decimal
Floating-Point Operations

The instruction sets defined in Chapter 4.
Floating-Point Facility [Category: Floating-Point] and
Chapter 5. Decimal Floating-Point [Category: Decimal

Floating-Point] retain their definition with one primary
difference. The FPRs are mapped to doubleword
element 0 of VSRs 0-31. The contents of doubleword 1
of the VSR corresponding to a source FPR specified
by an instruction are ignored. The contents of
doubleword 1 of a VSR corresponding to the target
FPR specified by an instruction are undefined.

— Programming Note

Application binary interfaces extended to support
VSX require special care of vector data written to
VSRs 0-31 (i.e., VSRs corresponding to FPRs).
Legacy scalar function calls employ
doubleword-based loads and stores to preserve
the contents of any nonvolatile registers, This has
the adverse effect of not preserving the contents of
doubleword 1 of these VSRs.

7.1.1.2 Compatibility with Category
Vector Operations

The instruction set defined in Chapter 6. Vector Facility
[Category: Vector], retains its definition with one
primary difference. The VRs are mapped to VSRs
32-63.

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 317

Version 2.07 B

7.2 VSX Registers

7.2.1 Vector-Scalar Registers

Sixty-four 128-bit VSRs are provided. See Figure 109
All VSX floating-point computations and other data
manipulation are performed on data residing in
Vector-Scalar Registers, and results are placed into a
VSR.

Depending on the instruction, the contents of a VSR
are interpreted as a sequence of equal-length
elements (words or doublewords) or as a quadword.
Each of the elements is aligned within the VSR, as
shown in Figure 109. Many instructions perform a

given operation in parallel on all elements in a VSR.
Depending on the instruction, a word element can be
interpreted as a signed integer word (SW), an
unsigned integer word (UW), a logical mask value
(MW), or a single-precision floating-point value (SP); a
doubleword element can be interpreted as a
doubleword signed integer (SD), a doubleword
unsigned integer (UD), a doubleword mask (DM), or a
double-precision floating-point value (DP). In the
instructions descriptions, phrases like signed integer
word element are used as shorthand for word element,
interpreted as a signed integer.

Load and Store instructions are provided that transfer
a byte, halfword, word, doubleword, or quadword
between storage and a VSR.

VSR[0]
VSR[1]
VSR[62]
VSR[63]
0 127
Figure 109.Vector-Scalar Registers
SD/UD/MD/DP 0 SD/UD/MD/DP 1
SW/UW/MW/SP 0 SW/UW/MW/SP 1 SW/UW/MW/SP 2 SW/UW/MW/SP 3
0 32 64 96 127
Figure 110.Vector-Scalar Register Elements
7.2.1.1 Floating-Point Registers
Chapter 4. Floating-Point Facility = [Category:
Floating-Point] provides 32 64-bit FPRs. Chapter 5.
Decimal Floating-Point [Category: Decimal
Floating-Point] also employs FPRs in decimal
floating-point (DFP) operations. When VSX is

implemented, the 32 FPRs are mapped to doubleword
0 of VSRs 0-31. For example, FPRI[O] is located in
doubleword element 0 of VSR[0], FPR[1] is located in
doubleword element 0 of VSR[1], and so forth.

All instructions that operate on an FPR are redefined
to operate on doubleword element 0 of the
corresponding VSR. The contents of doubleword
element 1 of the VSR corresponding to a source FPR
or FPR pair for these instructions are ignored and the
contents of doubleword element 1 of the VSR
corresponding to the target FPR or FPR pair for these
instructions are undefined.

318 Power ISA™ - Book |

Version 2.07 B

VSRI0]
VSRI[1]

VSR[30]
VSR[31]
VSR[32]
VSR[33]

VSR[62]
VSR[63]

Figure 111.Floating-Point Registers as part of VSRs

FPR[O]

FPR[1]

FPR[30]

FPR[31]

0

63

127

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 319

Version 2.07 B

7.2.1.2 Vector Registers

Chapter 6. Vector Facility [Category: Vector] provides
32 128-bit VRs. When VSX is implemented, the 32
VRs are mapped to VSRs 32-63. For example, VR[0]
is located in VSR[32], VR[1] is located in VSR[33], and
so forth.

All instructions that operate on a VR are redefined to

operate on the corresponding VSR.

VSR[0]

VSR[1]
VSR[30]
VSR[31]
VSRI[32] VRI[0]
VSRI[33] VR[]
VSRI[62] VR[30]
VSR[63] VR[31]

0

Figure 112.Vector Registers as part of VSRs

127

320 Power ISA™ - Book |

Version 2.07 B

7.2.2 Floating-Point Status and Control Register

The Floating-Point Status and Control Register
(FPSCR) controls the handling of floating-point
exceptions and records status resulting from the
floating-point operations. Bits 0:19 and 32:55 are
status bits. Bits 56:63 are control bits.

The exception status bits in the FPSCR (bits 35:44,
53:55) are sticky; that is, once set to 1 they remain set
to 1 until they are set to 0 by an mcrfs, mtfsfi, mtfsf,
or mtfsbO instruction. The exception summary bits in
the FPSCR (FX, FEX, and VX, which are bits 32:34)
are not considered to be “exception status bits”, and
only FXis sticky.

Programming Note

Access to Move To FPSCR and Move From
FPSCR instructions requires FP=1.

FEX and VX are simply the ORs of other FPSCR bits.
Therefore these two bits are not listed among the
FPSCR bits affected by the various instructions.

The bit definitions for the FPSCR are as follows.
Bits Definition
0:28 Decimal Floating-Point

Control (DRN)
This field is not used by VSX instructions.

Rounding

32 Floating-Point Exception Summary (FX)
Every floating-point instruction, except mifsfi
and mitfsf, implicitly sets FX to 1 if that
instruction causes any of the floating-point
exception bits in the FPSCR to change from 0
to 1. merfs, mtfsfi, mtfsf, mifsb0, and
mtifsb1 can alter FX explicitly.

— Programming Note

FX is defined not to be altered implicitly
by mtfsfi and mtfsf because permitting
these instructions to alter FX implicitly can
cause a paradox. An example is an mtfsfi
or mtfsf instruction that supplies 0 for FX
and 1 for OX, and is executed when
OX=0. See also the Programming Notes

with the definition of these two
instructions.
33 Floating-Point Enabled Exception

Summary (FEX)

This bit is the OR of all the floating-point
exception bits masked by their respective
enable bits. merfs, mtfsfi, mtfsf, mitfsb0, and
mtfsb1 cannot alter FEX explicitly.

Bits

34

35

36

37

38

Definition

Floating-Point Invalid Operation Exception
Summary (VX)

This bit is the OR of all the Invalid Operation
exception bits. merfs, mitfsfi, mifsf, mtfsbo,
and mtfsb1 cannot alter VX explicitly.

Floating-Point Overflow Exception (OX)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic, VSX Vector
Floating-Point Arithmetic, VSX Scalar DP-SP
Conversion or VSX Vector DP-SP Conversion
class instruction causes an Overflow
exception. See Section 7.4.3 , “Floating-Point
Overflow Exception” on page 349.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

Floating-Point Underflow Exception (UX)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic, VSX Vector
Floating-Point Arithmetic, VSX Scalar DP-SP
Conversion or VSX Vector DP-SP Conversion
class instruction causes an Underflow
exception. See Section 7.4.4 , “Floating-Point
Underflow Exception” on page 351.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

Floating-Point Zero Divide Exception (ZX)
This bit is set to 1 when a VSX Scalar
Floating-Point ~Arithmetic or VSX Vector
Floating-Point Arithmetic class instruction
causes an Zero Divide exception. See
Section 7.4.2 , “Floating-Point Zero Divide
Exception” on page 347.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

Floating-Point Inexact Exception (XX)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic, VSX Vector
Floating-Point Arithmetic, VSX Scalar Integer
Conversion, VSX Vector Integer Conversion,
VSX Scalar Round to Floating-Point Integer,
or VSX Vector Round to Floating-Point Integer
class instruction causes an Inexact exception.
See Section 7.4.5 , “Floating-Point Inexact
Exception” on page 354.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 321

Version 2.07 B

Bits

39

40

41

42

Definition

Floating-Point Invalid Operation Exception
(SNAN) (VXSNAN)

This bit is set to 1 when a VSX Scalar
Floating-Point and VSX Vector Floating-Point
class instruction causes an SNaN type Invalid
Operation exception. See Section 7.4.1 ,
“Floating-Point Invalid Operation Exception”
on page 341.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

Floating-Point Invalid Operation Exception
(Inf-Inf) (VXISI)

This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic and VSX Vector
Floating-Point Arithmetic class instruction
causes an Infinity — Infinity type Invalid
Operation exception. See Section 7.4.1 ,
“Floating-Point Invalid Operation Exception”
on page 341.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

Floating-Point Invalid Operation Exception
(Inf+Inf) (VXIDI)

This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic and VSX Vector
Floating-Point Arithmetic class instruction
causes an Infinity + Infinity type Invalid
Operation exception. See Section 7.4.1 ,
“Floating-Point Invalid Operation Exception”
on page 341.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

Floating-Point Invalid Operation Exception
(Zero+Zero) (VXZDZ)

This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic and VSX Vector
Floating-Point Arithmetic class instruction
causes a Zero + Zero type Invalid Operation
exception. See Section 7.4.1 , “Floating-Point
Invalid Operation Exception” on page 341.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

Bits

43

44

45

46

Definition

Floating-Point Invalid Operation Exception
(InfxZero) (VXIMZ)

This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic and VSX Vector
Floating-Point Arithmetic class instruction
causes a Infinity x Zero type Invalid Operation
exception. See Section 7.4.1 , “Floating-Point
Invalid Operation Exception” on page 341.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

Floating-Point Invalid Operation Exception
(Invalid Compare) (VXVC)

This bit is set to 1 when a VSX Scalar
Compare Double-Precision, VSX Vector
Compare Double-Precision, or VSX Vector
Compare Single-Precision class instruction
causes an Invalid Compare type Invalid
Operation exception. See Section 7.4.1 ,
“Floating-Point Invalid Operation Exception”
on page 341.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

Floating-Point Fraction Rounded (FR)
This bit is set to 0 or 1 by VSX Scalar
Floating-Point Arithmetic, VSX Scalar Integer
Conversion, and VSX Scalar Round to
Floating-Point Integer class instructions to
indicate whether or not the fraction was
incremented during rounding. See Section
7.3.2.6 , “Rounding” on page 333. This bit is
not sticky.

Floating-Point Fraction Inexact (Fl)

This bit is set to 0 or 1 by VSX Scalar
Floating-Point Arithmetic, VSX Scalar Integer
Conversion, and VSX Scalar Round to
Floating-Point Integer class instructions to
indicate whether or not the rounded result is
inexact or the instruction caused a disabled
Overflow exception. See Section 7.3.2.6 on
page 333. This bit is not sticky.

See the definition of XX, above, regarding the
relationship between Fl and XX.

322

Power ISA™ - Book |

Version 2.07 B

Bits

47:51

47

48:51

48

49

50

51

Definition

Floating-Point Result Flags (FPRF)

VSX Scalar Floating-Point Arithmetic, VSX
Scalar DP-SP Conversion, VSX Scalar
Convert Integer to Double-Precision, and
VSX Scalar Round to Double-Precision
Integer class instructions set this field based
on the result placed into the target register
and on the target precision, except that if any
portion of the result is undefined then the
value placed into FPRF is undefined.

For VSX Scalar Convert Double-Precision to
Integer class instructions, the value placed
into FPRF is undefined.

Additional details are as follows.

Floating-Point Result Class
Descriptor (C)

VSX Scalar Floating-Point Arithmetic, VSX
Scalar DP-SP Conversion, VSX Scalar
Convert Integer to Double-Precision, and
VSX Scalar Round to Double-Precision
Integer class instructions set this bit with the
FPCC bits, to indicate the class of the result
as shown in Table 2, “Floating-Point Result

Flags,” on page 325.

Floating-Point Condition Code (FPCC)
VSX Scalar Compare Double-Precision
instruction sets one of the FPCC bits to 1 and
the other three FPCC bits to 0 based on the
relative values of the operands being
compared.

VSX Scalar Floating-Point Arithmetic, VSX
Scalar DP-SP Conversion, VSX Scalar
Convert Integer to Double-Precision, and
VSX Scalar Round to Double-Precision
Integer class instructions set the FPCC bits
with the C bit, to indicate the class of the
result as shown in Table 2, “Floating-Point
Result Flags,” on page 325. Note that in this
case the high-order three bits of the FPCC
retain their relational significance indicating
that the value is less than, greater than, or
equal to zero.

Floating-Point Less Than or
Negative (FL)
Floating-Point Greater Than or

Positive (FG)
Floating-Point Equal or Zero (FE)

Floating-Point Unordered or NaN (FU)

Bits

52

53

54

55

56

Definition
Reserved

Floating-Point Invalid Operation Exception
(Software-Defined Condition) (VXSOFT)
This bit can be altered only by merfs, mifsfi,
mtfsf, mtfsb0, or mtfsb1. See Section
7.4.1 , ‘“Floating-Point Invalid Operation
Exception” on page 341.

— Programming Note

VXSOFT can be used by software to
indicate the occurrence of an arbitrary,
software-defined, condition that is to be
treated as an Invalid Operation exception.
For example, the bit could be set by a
program that computes a base 10
logarithm if the supplied input is negative.

Floating-Point Invalid Operation Exception
(Invalid Square Root) (VXSQRT)

This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic or VSX Vector
Floating-Point Arithmetic class instruction
causes a Invalid Square Root type Invalid
Operation exception. See Section 7.4.1 ,
“Floating-Point Invalid Operation Exception”
on page 341.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

Floating-Point Invalid Operation Exception
(Invalid Integer Convert) (VXCVI)

This bit is set to 1 when a VSX Scalar
Convert Double-Precision to Integer, VSX
Vector Convert Double-Precision to Integer, or
VSX Vector Convert Single-Precision to
Integer class instruction causes a Invalid
Integer Convert type Invalid Operation
exception. See Section 7.4.1 , “Floating-Point
Invalid Operation Exception” on page 341.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

Floating-Point Invalid Operation Exception
Enable (VE)

This bit is used by VSX Scalar Floating-Point
and VSX Vector Floating-Point class
instructions to enable trapping on Invalid
Operation exceptions. See Section 7.4.1 ,
“Floating-Point Invalid Operation Exception”
on page 341.

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX]

323

Version 2.07 B

Bits

57

58

59

60

61

Definition
Floating-Point Overflow
Enable (OE)

This bit is used by VSX Scalar Floating-Point
and VSX Vector Floating-Point class
instructions to enable trapping on Overflow
exceptions. See Section 7.4.3 ,
“Floating-Point Overflow Exception” on page
349.

Exception

Floating-Point Underflow
Enable (UE)

This bit is used by VSX Scalar Floating-Point
and VSX Vector Floating-Point class
instructions to enable trapping on Underflow
exceptions. See Section 744 |
“Floating-Point Underflow Exception” on page

351.

Exception

Floating-Point Zero Divide
Enable (ZE)

This bit is used by VSX Scalar Floating-Point
and VSX Vector Floating-Point class
instructions to enable trapping on Zero Divide
exceptions. See Section 7.4.2 ,
“Floating-Point Zero Divide Exception” on

page 347.

Exception

Floating-Point Inexact
Enable (XE)

This bit is used by VSX Scalar Floating-Point
and VSX Vector Floating-Point class
instructions to enable trapping on Inexact
exceptions. See Section 745 ,
“Floating-Point Inexact Exception” on page

354.

Exception

Floating-Point Non-IEEE Mode (NI)
Floating-point non-IEEE mode is optional. If
floating-point non-IEEE mode is not
implemented, this bit is treated as reserved,
and the remainder of the definition of this bit
does not apply.

If floating-point non-IEEE mode is
implemented, this bit has the following
meaning.

0 The processor is not in floating-point
non-IEEE mode (i.e., all floating-point
operations conform to the IEEE
standard).

1 The processor is in
non-IEEE mode.

floating-point

Bits

62:63

Definition
Floating-Point Non-IEEE Mode (NI)
(continued)
When the processor is in floating-point

non-IEEE mode, the remaining FPSCR bits is
permitted to have meanings different from
those given in this document, and
floating-point operations need not conform to
the IEEE standard. The effects of executing a
given floating-point instruction with NI=1, and

any additional requirements for using
non-lEEE mode, are
implementation-dependent. The results of

executing a given instruction in non-IEEE
mode is permitted to vary between
implementations, and between different
executions on the same implementation.

— Programming Note

When the processor is in floating-point
non-IEEE mode, the results of
floating-point operations is permitted to be
approximate, and performance for these
operations might be better, more
predictable, or less data-dependent than
when the processor is not in non-IEEE
mode. For example, in non-IEEE mode
an implementation is permitted to return 0
instead of a denormalized number and
return a large number instead of an
infinity.

Floating-Point Rounding Control (RN)

This field is used by VSX Scalar
Floating-Point and VSX Vector Floating-Point
class instructions that round their result and
the rounding mode is not implied by the
opcode.

This bit can be explicitly set or reset by a new
Move To FPSCR class instruction.

See Section 7.3.2.6
333.

, “Rounding” on page

00 Round to Nearest Even
01 Round toward Zero

10 Round toward +Infinity
11 Round toward -Infinity

324

Power ISA™ - Book |

Version 2.07 B

Result Flags

Result Value Class
C |FL|FG|FE|FU
1100 (0]1 Quiet NaN
0110|071 1] - Infinity
0| 1]10]0]| 0] - Normalized Number
111(10] 00| - Denormalized Number
11010} 1]0]| - Zero
00|00 (1] 0] +Zero
110 (1] 0|0]| +Denormalized Number
00| 1] 0] 0| +Normalized Number
0101 1]01] 1] +Infinity

Table 2. Floating-Point Result Flags

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 325

Version 2.07 B

7.3 VSX Operations

7.3.1 VSX Floating-Point Arith-
metic Overview

This section describes the floating-point arithmetic and
exception model supported by category Vector-Scalar
Extension. Except for extensions to support 32-bit
single-precision floating-point vector operations, the
models are identical to that described in Chapter 4.
Floating-Point Facility [Category: Floating-Point].

The processor (augmented by appropriate software
support, where required) implements a floating-point
system compliant with the ANSI/IEEE Standard
754-1985, |EEE Standard for Binary Floating-Point
Arithmetic (hereafter referred to as the IEEE standard).
That standard defines certain required "operations"
(addition, subtraction, and so on). Herein, the term,
floating-point operation, is used to refer to one of these
required operations and to additional operations
defined (e.g., those performed by Multiply-Add or
Reciprocal Estimate instructions). A Non-IEEE mode is
also provided. This mode, which is permitted to
produce results not in strict compliance with the IEEE
standard, allows shorter latency.

Instructions are provided to perform arithmetic,
rounding, conversion, comparison, and other
operations in VSRs; to move floating-point data
between storage and these registers.

These instructions are divided into two categories.
— computational instructions

The computational instructions are those that
perform addition, subtraction, multiplication,
division, extracting the square root, rounding,
conversion, comparison, and combinations of
these operations. These instructions provide the
floating-point operations. There are two forms of
computational instructions, scalar, which perform
a single floating-point operation, and vector, which
perform either two double-precision floating-point
operations or four single-precision operations.
Computational instructions place status
information into the Floating-Point Status and
Control Register. They are the instructions
described in Sections 7.6.1.3 through 7.6.1.7.2.

— noncomputational instructions

The noncomputational instructions are those that
perform loads and stores, move the contents of a
VSR to another floating-point register possibly
altering the sign, and select the value from one of
two VSRs based on the value in a third VSR. The

operations performed by these instructions are not
considered floating-point operations. These
instructions do not alter the Floating-Point Status
and Control Register. They are the instructions
listed in Sections 7.6.1.1, 7.6.1.2.1, and 7.6.1.8
through 7.6.1.9.

A floating-point number consists of a signed exponent
and a signed significand. The quantity expressed by
this number is the product of the significand and the
number 28XPO"eNt Encodings are provided in the data
format to represent finite numeric values, +Infinity, and
values that are “Not a Number’ (NaN). Operations
involving infinities produce results obeying traditional
mathematical conventions. NaNs have no
mathematical interpretation. Their encoding permits a
variable diagnostic information field. NaNs might be
used to indicate such things as uninitialized variables
and can be produced by certain invalid operations.

There is one class of exceptional events that occur
during instruction execution that is unique to
categories Vector-Scalar Extension and Floating-Point:
the Floating-Point Exception. Floating-point exceptions
are signaled with bits set in the FPSCR. They can
cause the system floating-point enabled exception
error handler to be invoked, precisely or imprecisely, if
the proper control bits are set.

Floating-Point Exceptions

The following floating-point exceptions are detected by
the processor:

— Invalid Operation exception (VX)
SNaN (VXSNAN)
Infinity- Infinity (VXISI)
Infinity+Infinity (VXIDI)
Zero+Zero (VXZDZ)

InfinityxZero

Invalid Compare
Software-Defined Condition (VXSOFT)
Invalid Square Root VXSQRT)

(VXIMZ)
(
E
Invalid Integer Convert (VXCVI)
(
(
(
(

VXVC)

Overflow exception OX)
Underflow exception
Inexact exception

Zero Divide exception ZX)
u

X)
X)

Each floating-point exception, and each category of
Invalid Operation exception, has an exception bit in the
FPSCR. In addition, each floating-point exception has
a corresponding enable bit in the FPSCR. See
Section 7.2.2, “Floating-Point Status and Control
Register” on page 321 for a description of these
exception and enable bits, and Section 7.3.3 , “VSX
Floating-Point Execution Models” on page 335 for a
detailed discussion of floating-point exceptions,
including the effects of the enable bits.

X

326 Power ISA™ - Book |

Version 2.07 B

7.3.2 VSX Floating-Point Data

7.3.2.1 Data Format

This architecture defines the representation of a
floating-point value in two different binary fixed-length
formats, 32-bit single-precision format and 64-bit
double-precision format. The single-precision format is
used for SP data in storage and registers. The
double-precision format is used for DP data in storage
and registers.

The lengths of the exponent and the fraction fields
differ between these two formats. The structure of the
single-precision and double-precision formats is shown
below.

Values in floating-point format are composed of three
fields:

S sign bit
EXP exponent+bias
FRACTION fraction

Representation of numeric values in the floating-point
formats consists of a sign bit (S), a biased exponent
(EXP), and the fraction portion (FRACTION) of the
significand. The significand consists of a leading
implied bit concatenated on the right with the
FRACTION. This leading implied bit is 1 for normalized
numbers and 0 for denormalized numbers and is
located in the unit bit position (that is, the first bit to the
left of the binary point). Values representable within
the two floating-point formats can be specified by the
parameters listed in Table 3.

‘s‘ EXP ‘ FRACTION
0 9 31

Figure 113. Floating-point single-precision format

‘s‘ EXP ‘

FRACTION

01 12

Figure 114.Floating-point double-precision format

63

Single-Precision Format

Double-Precision Format

Exponent Bias +127 +1023
Maximum Exponent (Emax) +127 +1023
Minimum Exponent (Emin) - 126 - 1022
Widths (bits):Format 32 64

Sign 1 1
Exponent 8 11

Fraction 23 52
Significand 24 53

Nmax (1-2%x 21283 4 x 10%8 (1-2793) x 210241 g x 10308
Nmin 1.0x2%:1.2x10%8 1.0x 271022222 x 10308
Dmin 1.0x2™M%:1.4x 10% 1.0x 2710744, x 10324

~ Value is approximate

DminSmallest (in magnitude) representable denormalized number.
NmaxLargest (in magnitude) representable number.
NminSmallest (in magnitude) representable normalized number.

Table 3. IEEE floating-point fields

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX]

327

Version 2.07 B

7.3.2.2 Value Representation

This architecture defines numeric and nonnumeric
values representable within each of the two supported
formats. The numeric values are approximations to the
real numbers and include the normalized numbers,
denormalized numbers, and zero values. The
nonnumeric values representable are the infinities and
the Not a Numbers (NaNs). The infinities are adjoined
to the real numbers, but are not numbers themselves,
and the standard rules of arithmetic do not hold when
they are used in an operation. They are related to the
real numbers by order alone. It is possible however to
define restricted operations among numbers and
infinities as defined below. The relative location on the
real number line for each of the defined entities is
shown in Figure 115.

Figure 115.Approximation to real numbers

4-INF! -NOR !-DEN !—o!+o! +DEN! +NOR !+INF;

The NaNs are not related to the numeric values or
infinities by order or value but are encodings used to
convey diagnostic information such as the
representation of uninitialized variables.

The following is a description of the different
floating-point values defined in the architecture:

Binary floating-point numbers
Machine representable values used as
approximations to real numbers. Three categories
of numbers are supported: normalized numbers,
denormalized numbers, and zero values.

Normalized numbers (tNOR)
These are values that have a biased exponent
value in the range:

1 to 254 in single-precision format
1 to 2046 in double-precision format

They are values in which the implied unit bit is 1.
Normalized numbers are interpreted as follows:

NOR = (-1)8 x 2E x (1.fraction)

where s is the sign, E is the unbiased exponent,
and 1.fraction is the significand, which is
composed of a leading unit bit (implied bit) and a
fraction part.

Zero values (+0)
These are values that have a biased exponent
value of zero and a fraction value of zero. Zeros
can have a positive or negative sign. The sign of

zero is ignored by comparison operations (that is,
comparison regards +0 as equal to - 0).

Denormalized numbers (+DEN)
These are values that have a biased exponent
value of zero and a nonzero fraction value. They
are nonzero numbers smaller in magnitude than
the representable normalized numbers. They are
values in which the implied unit bit is O.
Denormalized numbers are interpreted as follows:

DEN = (1) x 2EMin x (0.fraction)

where Emin is the minimum representable
exponent value (- 126 for single-precision, - 1022
for double-precision).

Infinities (£INF)
These are values that have the maximum biased
exponent value:

255 in single-precision format
2047 in double-precision format

and a zero fraction value. They are used to
approximate values greater in magnitude than the
maximum normalized value.

Infinity arithmetic is defined as the limiting case of
real arithmetic, with restricted operations defined
among numbers and infinities. Infinities and the
real numbers can be related by ordering in the
affine sense:

-Infinity < every finite number < +Infinity

Arithmetic on infinities is always exact and does
not signal any exception, except when an
exception occurs due to the invalid operations as
described in Section 7.4.1 , “Floating-Point Invalid
Operation Exception” on page 341.

For comparison operations, +Infinity compares
equal to +Infinity and -Infinity compares equal to
-Infinity.

Not a Numbers (NaNs)
These are values that have the maximum biased
exponent value and a nonzero fraction value. The
sign bit is ignored (that is, NaNs are neither
positive nor negative). If the high-order bit of the
fraction field is 0, the NaN is a Signaling NaN;
otherwise it is a Quiet NaN.

Signaling NaNs are used to signal exceptions
when they appear as operands of computational
instructions.

328 Power ISA™ - Book |

Version 2.07 B

Quiet NaNs are used to represent the results of
certain invalid operations, such as invalid
arithmetic operations on infinities or on NaNs,
when Invalid Operation exception is disabled
(VE=0). Quiet NaNs propagate through all
floating-point operations except ordered
comparison and conversion to integer. Quiet
NaNs do not signal exceptions, except for ordered
comparison and conversion to integer operations.
Specific encodings in QNaNs can thus be
preserved through a sequence of floating-point
operations, and used to convey diagnostic
information to help identify results from invalid
operations.

Assume the following generic arithmetic
templates.
f(srcl,src3, src2)
ex: result = (srcl x src3) - src2

f(srcl,src2)
ex: result = srcl x src2
ex: result = srcl + src2
f(srcl)

ex: result = f(srcl)

When a QNaN is the result of a floating-point
operation because one of the operands is a NaN
or because a QNaN was generated due to a
trap-disabled Invalid Operation exception, the
following rule is applied to determine the NaN with
the high-order fraction bit set to 1 that is to be
stored as the result.

if srcl is a NaN
then result = Quiet(srcl)
else if src2 is a NaN (if there is a src2)
then result = Quiet(src2)
else if src3 is a NaN (if there is a src3)
then result = Quiet(src3
else if disabled invalid operation exception
then result = generated QNaN

where Quiet(x) means x if x is a QNaN and x
converted to a QNaN if x is an SNaN. Any
instruction that generates a QNaN as the result of
a disabled Invalid Operation exception generates
the value Ox7FF8_0000_0000_0000 for
double-precision and 0x7FC0_0000 for
single-precision.

Note that the M-form multiply-add-type
instructions use the B source operand to specify
src3 and the T target operand to specify src2,
whereas A-form multiply-add-type instructions use
the B source operand to specify src2 and the T
target operand to specify src3.

A double-precision NaN is considered to be
representable in single-precision format if and only
if the low-order 29 bits of the double-precision
NaN’s fraction are zero.

7.3.2.3 Sign of Result

The following rules govern the sign of the result of an
arithmetic, rounding, or conversion operation, when
the operation does not yield an exception. They apply
even when the operands or results are zeros or
infinities.

— The sign of the result of an add operation is the
sign of the operand having the larger absolute
value. If both operands have the same signs, the
sign of the result of an add operation is the same
as the sign of the operands. The sign of the result
of the subtract operation x-y is the same as the
sign of the result of the add operation x+(- y).

When the sum of two operands with opposite sign,
or the difference of two operands with the same
signs, is exactly zero, the sign of the result is
positive in all rounding modes except Round
toward - Infinity, in which mode the sign is
negative.

— The sign of the result of a multiply or divide
operation is the Exclusive OR of the signs of the
operands.

— The sign of the result of a Square Root or
Reciprocal Square Root Estimate operation is
always positive, except that the square root of - 0
is -0 and the reciprocal square root of -0 is
- Infinity.

— The sign of the result of a Convert From Integer or
Round to Floating-Point Integer operation is the
sign of the operand being converted.

For the Multiply-Add instructions, the rules given above
are applied first to the multiply operation and then to
the add or subtract operation (one of the inputs to the
add or subtract operation is the result of the multiply
operation).

7.3.2.4 Normalization and
Denormalization

The intermediate result of an arithmetic instruction can
require normalization and/or denormalization as
described below. Normalization and denormalization
do not affect the sign of the result.

When an arithmetic or rounding instruction produces
an intermediate result which carries out of the

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 329

Version 2.07 B

significand, or in which the significand is nonzero but
has a leading zero bit, it is not a normalized number
and must be normalized before it is stored. For the
carry-out case, the significand is shifted right one bit,
with a one shifted into the leading significand bit, and
the exponent is incremented by one. For the
leading-zero case, the significand is shifted left while
decrementing its exponent by one for each bit shifted,
until the leading significand bit becomes one. The
Guard bit and the Round bit (see Section 7.3.3.1, “VSX
Execution Model for IEEE Operations” on page 335)
participate in the shift with zeros shifted into the Round
bit. The exponent is regarded as if its range were
unlimited.

After normalization, or if normalization was not
required, the intermediate result can have a nonzero
significand and an exponent value that is less than the
minimum value that can be represented in the format
specified for the result. In this case, the intermediate
result is said to be “Tiny” and the stored result is
determined by the rules described in Section 7.4.4 ,
“Floating-Point Underflow Exception” on page 351.
These rules can require denormalization.

A number is denormalized by shifting its significand
right while incrementing its exponent by 1 for each bit
shifted, until the exponent is equal to the format's
minimum value. If any significant bits are lost in this
shifting process, “Loss of Accuracy” has occurred (See
Section 7.4.4 | “Floating-Point Underflow Exception”
on page 351) and Underflow exception is signaled.

Engineering Note

When denormalized numbers are operands of
multiply, divide, and square root operations, some
implementations might prenormalize the operands
internally before performing the operations.

7.3.2.5 Data Handling and Precision

Scalar double-precision floating-point data is
represented in double-precision format in VSRs and
storage.

Vector double-precision floating-point data s
represented in double-precision format in VSRs and
storage.

Scalar single-precision floating-point data is
represented in double-precision format in VSRs and in
single-precision format in storage.

Vector single-precision floating-point data is
represented in single-precision format in VSRs and
storage.

Double-precision operands may be used as input for
double-precision scalar arithmetic operations.

Double-precision operands may be used as input for
single-precision scalar arithmetic operations when
trapping on overflow and underflow exceptions is
disabled.

Single-precision operands may be used as input for
double-precision and single-precision scalar arithmetic
operations.

Double-precision operands may be used as input for
double-precision vector arithmetic operations.

Single-precision operands may be used as input for
single-precison vector arithmetic operations.

Instructions are also provided for manipulations which
do not require double-precision or single-precision. In
addition, instructions are provided to access an integer
representation in GPRs.

Single-Precision Operands

For single-precision scalar data, a conversion from
single-precision format to double-precision format is
performed when loading from storage into a VSR and
a conversion from double-precision format to
single-precision format is performed when storing from
a VSR to storage. No floating-point exceptions are
caused by these instructions.

Instructions are provided to convert between
single-precision and double-precision formats for
scalar and vector data in VSRs.

An instruction is provided to explicitly convert a double
format operand in a VSR to single-precision. Scalar
single-precision floating-point is enabled with six types
of instruction.

1. Load Scalar Single-Precision

This form of instruction accesses a floating-point
operand in single-precision format in storage,
converts it to double-precision format, and loads it
into a VSR. No floating-point exceptions are
caused by these instructions.

2. Scalar Round to Single-Precision

xsrsp rounds a double-precision operand to
single-precision, checking the exponent for
single-precision range and handling any
exceptions according to respective enable bits,
and places that operand into a VSR in
double-precision format. For results produced by
single-precision arithmetic instructions,
single-precision loads, and other instances of

330 Power ISA™ - Book |

Version 2.07 B

Xsrsp, xsrsp does not alter the value. Values
greater in magnitude than 2%1° when Overflow is
enabled (0E=1) produce undefined results because
the value cannot be scaled back into the
normalized range. Values smaller in magnitude
than 27318 when Underflow is enabled (UE=1)
produce undefined results because the value
cannot be scaled back into the normalized range.

Scalar Convert Single-Precision to
Double-Precision

xscvspdp accesses a floating-point operand in
single-precision format from word element 0 of the
source VSR, converts it to double-precision format,
and places it into doubleword element 0 of the
target VSR.

Scalar Convert Double-Precision to
Single-Precision

xscvdpsp rounds the double-precision
floating-point value in doubleword element 0 of the
source VSR to single-precision, and places the
result into word element 0 of the target VSR in
single-precision format. This function would be
used to port scalar floating-point data to a format
compatible for single-precision vector operations.
Values greater in magnitude than 2°° when
Overflow is enabled (0E=1) produce undefined
results because the value cannot be scaled back
into the normalized range. Values smaller in
magnitude than 27318 when Underflow is enabled
(UE=1) produce undefined results because the
value cannot be scaled back into the normalized
range.

VSX Scalar Single-Precision Arithmetic

This form of instruction takes operands from the
VSRs in double format, performs the operation as
if it produced an intermediate result having infinite
precision and unbounded exponent range, and
then coerces this intermediate result to fit in
single-precision format. Status bits, in the FPSCR
and optionally in the Condition Register, are set to
reflect the single-precision result. The result is
then placed into the target VSR in double-precision
format. The result lies in the range supported by
the single format.

If any input value is not representable in
single-precision format and either OE=1 or UE=1, the

1.

VSX Scalar Single-Precision Arithmetic instructions:

result placed into the target VSR and the setting of
status bits in the FPSCR are undefined.

For xsresp or xsrsqrtesp, if the input value is
finite and has an unbiased exponent greater than
+127, the input value is interpreted as an Infinity.

6. Store VSX Scalar Single-Precision

stxsspx converts a single-precision value that is
in double-precision format to single-precision
format and stores that operand into storage. No
floating-point exceptions are caused by stxsspx.
(The value being stored is effectively assumed to
be the result of an instruction of one of the
preceding five types.)

When the result of a Load VSX Scalar Single-Precision
(Ixsspx), a VSX Scalar Round to Single-Precision
(xsrsp), or a VSX Scalar Single-Precision Arithmeticl']
instruction is stored in a VSR, the low-order 29 bits of
FRACTION are zero.

—— Programming Note

VSX Scalar Round to Single-Precision (xsrsp) is
provided to allow value conversion from
double-precision to single-precision with
appropriate exception checking and rounding.
xsrsp should be used to convert double-precision
floating-point values to single-precision values
prior to storing them into single format storage
elements or using them as operands for
single-precision arithmetic instructions. Values
produced by single-precision load and arithmetic
instructions are already single-precision values
and can be stored directly into single format
storage elements, or used directly as operands for
single-precision arithmetic instructions, without
preceding the store, or the arithmetic instruction,

by an xsrsp.

xsaddsp, xsdivsp, xsmulsp, xsresp, xssubsp, xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp, xsnmaddasp, xsnmaddmsp,

xsnmsubasp, xsnmsubmsp

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 331

Version 2.07 B

— Programming Note

double-precision scalar arithmetic operations.

Except for
double-precision value can be
single-precision scalar arithmetic operations when
OE=0 and UE=0. When OE=1 or UE=1, or if the
instruction is xsresp or xsrsqrtesp, source
operands must be
single-precision format.

Some implementations may
single-precision arithmetic instructions faster than
double-precision arithmetic instructions. Therefore,
if double-precision accuracy is not required,
single-precision data and instructions should be
used.

single-precision value can be wused in

xsresp or xsrsqrtesp, any

used in

respresentable in

execute

Integer-Valued Operands

Instructions are provided to round floating-point
operands to integer values in floating-point format. To
facilitate exchange of data between the floating-point
and integer processing, instructions are provided to

convert

between floating-point double and

single-precision format and integer word and
doubleword format in a VSR. Computation on
integer-valued operands can be performed using
arithmetic instructions of the required precision. (The
results might not be integer values.) The three groups

of

instructions provided specifically to support

integer-valued operands are described below.

VSX Scalar Round to Double-Precision Integerm
instructions round a double-precision operand to
an integer value in double-precision format.

VSX Vector Round to Double-Precision Integer[2]
instructions round each double-precision vector
operand element to an integer value in

VSX Scalar Round to Double-Precision Integer instructions:
VSX Vector Round to Double-Precision Integer instructions:

VSX Vector Round to Single-Precision Integer instructions:

VSX Vector Round to Single-Precision Integer[3]
instructions round each single-precision vector
operand element to an integer value in
single-precision format.

Except for xsrdpic, xvrdpic, and xvrspic,
rounding is performed using the rounding mode
specified by the opcode. For xsrdpic, xvrdpic,
and xvrspic, rounding is performed using the
rounding mode specified by RN.

Integer[4]
Operation

VSX Round to Floating-Point
instructions can cause Invalid
(VXSNAN) exceptions.

xsrdpic, xvrdpic, and xvrspic can also cause
Inexact exception.

See Sections 7.3.2.6 and 7.3.3.1 for more
information about rounding.

Converting floating-point format to integer format

VSX Scalar Double-Precision to Integer Format
Conversion®! instructions convert a
double-precision operand to 32-bit or 64-bit signed
or unsigned integer format.

VSX Vector Double-Precision to Integer Format
Conversionl®! instructions convert either
double-precision or single-precision vector
operand elements to 32-bit or 64-bit signed or
unsigned integer format.

VSX Vector Single-Precision to Integer
Doubleword Format Conversionl”] instructions
converts the single-precision value in each
odd-numbered word element of the source vector
operand to a 64-bit signed or unsigned integer
format.

VSX Vector Single-Precision to Integer Word
Format Conversion(® instructions converts the
single-precision value in each word element of the
source vector operand to either a 32-bit signed or
unsigned integer format.

xsrdpi, xsrdpip, xsrdpim, xsrdpiz, xsrdpic, xvrdpi, xvrdpip, xvrdpim, xvrdpiz, xvrdpic, xvrspi, xvrspip, xvrspim, xvrspiz, and xvrspic

VSX Scalar Double-Precision to Integer Format Conversion instructions:

xscvdpsxds, xscvdpsxws, xscvdpuxds, xscvdpuxws

VSX Vector Double-Precision to Integer Format Conversion instructions:

xvevdpsxds, xvevdpsxws, xvevdpuxds, Xvevdpuxws

VSX Vector Single-Precision to Integer Doubleword Format Conversion instructions:

1. Rounding to a floating-point integer
double-precision format.
1.
xsrdpi, xsrdpip, xsrdpim, xsrdpiz, xsrdpic
2.
xvrdpi, xvrdpip, xvrdpim, xvrdpiz, xvrdpic
3.
XVISPi, XVISpip, XVrspim, Xvrspiz, xvrspic
4. VSX Round to Floating-Point Integer instructions:
5.
6.
7.
xvecvspsxds, xvevspuxds
8.

VSX Vector Single-Precision to Integer Word Format Conversion instructions:

XVCVSPSXWS, XVCVSPUXWS

332 Power ISA™ - Book |

Version 2.07 B

Rounding is performed using Round Towards
Zero rounding mode. These instructions can
cause Invalid Operation (VXSNAN, VXCVI) and
Inexact exceptions.

Converting integer format to floating-point format

VSX Scalar Integer Doubleword to
Double-Precision Format Conversionl']
instructions convert a 64-bit signed or unsigned
integer to a double-precision floating-point value
and returns the result in double-precision format.

VSX Scalar Integer Doubleword to
Single-Precision Format Conversion[?l instructions
converts a 64-bit signed or unsigned integer to a
single-precision floating-point value and returns
the result in double-precision format.

VSX Vector Integer Doubleword to
Double-Precision Format Conversionl®!
instructions converts the 64-bit signed or unsigned
integer in each doubleword element in the source
vector operand to double-precision floating-point
format.

VSX Vector Integer Word to Double-Precision
Format Conversion¥] instructions converts the
32-bit signed or unsigned integer in each
odd-numbered word element in the source vector
operand to double-precision floating-point format.

VSX Vector Integer Doubleword to
Single-Precision Format Conversion!®! instructions
convert the 64-bit signed or unsigned integer in
each doubleword element in the source vector
operand to single-precision floating-point format.

VSX Vector Integer Word to Single-Precision
Format Conversion!®l instructions convert the
32-bit signed or unsigned integer in each word
element in the source vector operand to
single-precision floating-point format.

Rounding is performed using the rounding mode
specificed in RN. Because of the limitations of the
source format, only an Inexact exception can be
generated.

7.3.2.6 Rounding

The material in this section applies to operations that
have numeric operands (that is, operands that are not
infinities or NaNs). Rounding the intermediate result of
such an operation can cause an Overflow exception,
an Underflow exception, or an Inexact exception. The
remainder of this section assumes that the operation
causes no exceptions and that the result is numeric.
See Section7.3.2.2, “Value Representation” and
Section 7.4, “VSX Floating-Point Exceptions” for the
cases not covered here.

The floating-point arithmetic, and rounding and
conversion instructions round their intermediate
results. With the exception of the estimate instructions,
these instructions produce an intermediate result that
can be regarded as having unbounded precision and
exponent range. All but two groups of these
instructions normalize or denormalize the intermediate
result prior to rounding and then place the final result
into the target element of the target VSR in either
double or single-precision format.

The scalar round to double-precision integer, vector
round to double-precision integer, and convert
double-precision to integer instructions with biased
exponents ranging from 1022 through 1074 are
prepared for rounding by repetitively shifting the
significand right one position and incrementing the
biased exponent until it reaches a value of 1075.
(Intermediate results with biased exponents 1075 or
larger are already integers, and with biased exponents
1021 or less round to zero.) After rounding, the final
result for round to double-precision integer instructions
is normalized and put in double-precision format, and,
for the convert double-precision to integer instructions,
is converted to a signed or unsigned integer.

The vector round to single-precision integer and vector
convert single-precision to integer instructions with
biased exponents ranging from 126 through 178 are
prepared for rounding by repetitively shifting the
significand right one position and incrementing the
biased exponent until it reaches a value of 179.
(Intermediate results with biased exponents 179 or
larger are already integers, and with biased exponents
125 or less round to zero.) After rounding, the final
result for vector round to single-precision integer is
normalized and put in double-precision format, and for

VSX Scalar Integer Doubleword to Double-Precision Format Conversion instructions:

xscvsxddp, xscvuxddp

VSX Scalar Integer Doubleword to Single-Precision Format Conversion instructions:

xscvsxdsp, xscvuxdsp

VSX Vector Integer Doubleword to Double-Precision Format Conversion instructions:

xscvsxddp, xscvuxddp

VSX Vector Integer Word to Double-Precision Format Conversion instructions:

xscvsxwdp, xscvuxwdp

VSX Vector Integer Doubleword to Single-Precision Format Conversion instructions:

xscvsxdsp, xscvuxdsp

VSX Vector Integer Word to Single-Precision Format Conversion instructions:

XSCVSXWSP, XSCVUXWSPp

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 333

Version 2.07 B

vector convert single-precision to integer is converted
to a signed or unsigned integer.

FR and FI generally indicate the results of rounding.
Each of the scalar instructions which rounds its
intermediate result sets these bits. There are no vector
instructions that modify FR and FI. If the fraction is
incremented during rounding, FR is set to 1, otherwise
FR is set to 0. If the result is inexact, Fl is set to 1,
otherwise Fl is set to zero. The scalar round to
double-precision integer instructions are exceptions to
this rule, setting FR and FlI to 0. The scalar
double-precision estimate instructions set FR and Fl to
undefined values. The remaining scalar floating-point
instructions do not alter FR and FI.

Four user-selectable rounding modes are provided
through the Floating-Point Rounding Control field in
the FPSCR. See Section 7.2.2, “Floating-Point Status
and Control Register” on page 321. These are
encoded as follows.

RN Rounding Mode

00 Round to Nearest Even
01 Round towards Zero

10 Round towards +Infinity
11 Round towards -Infinity

A fifth rounding mode is provided in the round to
floating-point integer instructions (Section 7.6.1.7.2 on
page 366), Round to Nearest Away.

Let Z be the intermediate arithmetic result or the
operand of a convert operation. If Z can be
represented exactly in the target format, the result in
all rounding modes is Z as represented in the target
format. If Z cannot be represented exactly in the target
format, let Z1 and Z2 bound Z as the next larger and
next smaller numbers representable in the target
format. Then Z1 or Z2 can be used to approximate the
result in the target format.

Figure 116 shows the relation of Z, Z1, and Z2 in this
case. The following rules specify the rounding in the
four modes.

See Section 7.3.3.1, “VSX Execution Model for IEEE
Operations” on page 335 for a detailed explanation of
rounding.

Figure 116 also summarizes the rounding actions for
floating-point intermediate result for all supported
rounding modes.

I

By Incrementing the least-significant bit of Z
Infinitely-Precise Value
By Truncating after the least-significant bit

1l

| | |
N
Negative values
Round to Nearest Away
one that is furthest away from 0.

Round to Nearest Even

Round toward Zero
Round toward +Infinity
Choose Z1.

Round toward - Infinity
Choose Z2.

<«

Z|2£ %1 >

Positive values

Choose the value that is closer to Z (Z1 or Z2). In case of a tie, choose the

Choose the value that is closer to Z (Z1 or Z2). In case of a tie, choose the
one that is even (least significant bit is 0).

Choose the smaller in magnitude (Z1 or Z2).

Figure 116.Selection of Z1 and 22

334 Power ISA™ - Book |

Version 2.07 B

7.3.3 VSX Floating-Point Execution Models

All implementations of this architecture must provide
the equivalent of the following execution models to
ensure that identical results are obtained.

Special rules are provided in the definition of the
computational instructions for the infinities,
denormalized numbers and NaNs. The material in the
remainder of this section applies to instructions that
have numeric operands and a numeric result (that is,
operands and result that are not infinities or NaNs),
and that cause no exceptions. See Section 7.3.2.2 and
Section 7.3.3 for the cases not covered here.

Although the double-precision format specifies an
11-bit exponent, exponent arithmetic makes use of two
additional bits to avoid potential transient overflow and
underflow conditions. One extra bit is required when
denormalized double-precision numbers are
prenormalized. The second bit is required to permit the
computation of the adjusted exponent value in the
following cases when the corresponding exception
enable bit is 1:

— Underflow during
denormalized operand.

multiplication using a

— Overflow during division using a denormalized
divisor.

— Undeflow during division using denormalized
dividend and a large divisor.

The IEEE standard includes 32-bit and 64-bit
arithmetic. The standard requires that single-precision
arithmetic be provided for single-precision operands.

VSX defines both scalar and vector double-precision
floating-point operations to operate only on
double-precision operands. VSX also defines vector
single-precision floating-point operations to operate
only on single-precision operands.

7.3.3.1 VSX Execution Model for IEEE
Operations

The following description uses 64-bit arithmetic as an
example. 32-bit arithmetic is similar except that the
FRACTION is a 23-bit field, and the single-precision
Guard, Round, and Sticky bits (described in this
section) are logically adjacent to the 23-bit FRACTION
field.

IEEE-conforming significand arithmetic is considered
to be performed with a floating-point accumulator

having the following format, where bits 0:55 comprise
the significand of the intermediate result.

FRACTION | G | R | X |

53 54 55

[sle]
0 1

Figure 117.IEEE floating-point execution model
The S bit is the sign bit.

The C bit is the carry bit, which captures the carry out
of the significand.

The L bit is the leading unit bit of the significand, which
receives the implicit bit from the operand.

The FRACTION is a 52-bit field that accepts the
fraction of the operand.

The Guard (G), Round (R), and Sticky (X) bits are
extensions to the low-order bits of the accumulator.
The G and R bits are required for postnormalization of
the result. The G, R, and X bits are required during
rounding to determine if the intermediate result is
equally near the two nearest representable values.
The X bit serves as an extension to the G and R bits
by representing the logical OR of all bits that appear to
the low-order side of the R bit, resulting from either
shifting the accumulator right or to other generation of
low-order result bits. The G and R bits participate in
the left shifts with zeros being shifted into the R bit.
Table 4 shows the significance of the G, R, and X bits
with respect to the intermediate result (IR), the
representable number next lower in magnitude (NL),
and the representable number next higher in
magnitude (NH).

G|R|X Interpretation

0| 0| 0 |IRisexact

0| 0] 1 |IRclosertoNL

0|10

0 1|1

11 0| 0 |[IRmidway between NL and NH
110 | 1 |IRclosertoNH

11110

11111

Table 4. Interpretation of G, R, and X bits

Table 5 shows the positions of the Guard, Round, and
Sticky bits for double-precision and single-precision

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 335

Version 2.07 B

floating-point numbers relative to the accumulator
illustrated in Figure 117.

Format | Guard | Round Sticky

Double G bit R bit X bit

Single 24 25 OR of bits 26:52, G, R, X

Table 5. Location of the Guard, Round, and Sticky
bits in the IEEE execution model

The significand of the intermediate result is prepared
for rounding by shifting its contents right, if required,
until the least significant bit to be retained is in the
low-order bit position of the fraction.

Four user-selectable rounding modes are provided
through RN as described in Section 7.3.2.6,
“Rounding” on page 333. The rules for rounding in
each mode are as follows.

— Round to Nearest Even

Guard bit=0
The result is truncated.

Guard bit=1
Depends on Round and Sticky bits:

Case a
If the Round or Sticky bit is 1 (inclusive), the
result is incremented.

Caseb

If the Round and Sticky bits are 0 (result
midway between closest representable
values), if the low-order bit of the result is 1,
the result is incremented. Otherwise (the
low-order bit of the result is 0), the result is
truncated. This is the case of a tie rounded to
even.

— Round toward Zero
Choose the smaller in magnitude of Z1 or Z2. If
the Guard, Round, or Sticky bit is nonzero, the
result is inexact.
The result is truncated.

— Round toward +Infinity
If positive, the result is incremented.
If negative, the result is truncated.

— Round toward - Infinity
If positive, the result is truncated.
If negative, the result is incremented.

A fifth rounding mode is provided in the VSX Round to
Floating-Point Integer instructions (Section 7.6.1.7.2
on page 366) with the rules for rounding as follows.

— Round to Nearest Away

Guard bit=0
The result is truncated.

Guard bit=1
The result is incremented.

If any of the Guard, Round, or Sticky bits is nonzero,
the result is also inexact.

If rounding results in a carry into C, the significand is
shifted right one position and the exponent is
incremented by one. This yields an inexact result, and
possibly also exponent overflow. Fraction bits are
stored to the target VSR.

7.3.3.2 VSX Execution Model for
Multiply-Add Type Instructions

This architecture provides a special form of instruction
that performs up to three operations in one instruction
(a multiplication, an addition, and a negation). With this
added capability comes the special ability to produce a
more exact intermediate result as input to the rounder.
32-bit arithmetic is similar, except that the FRACTION
field is smaller.

Multiply-add significand arithmetic is considered to be
performed with a floating-point accumulator having the

following format, where bits 0:106 comprise the
significand of the intermediate result.

[sle]L]
01 2 3

Figure 118.Multiply-add 64-bit execution model

FRACTION |X’ |
106

The first part of the operation is a multiplication. The
multiplication has two 53-bit significands as inputs,
which are assumed to be prenormalized, and produces
a result conforming to the above model. If there is a
carry out of the significand (into the C bit), the
significand is shifted right one position, shifting the L
bit (leading unit bit) into the most significant bit of the
FRACTION and shifting the C bit (carry out) into the L
bit. All 106 bits (L bit, the FRACTION) of the product
take part in the add operation. If the exponents of the
two inputs to the adder are not equal, the significand of
the operand with the smaller exponent is aligned
(shifted) to the right by an amount that is added to that
exponent to make it equal to the other input's
exponent. Zeros are shifted into the left of the
significand as it is aligned and bits shifted out of bit
105 of the significand are ORed into the X’ bit. The add

336 Power ISA™ - Book |

Version 2.07 B

operation also produces a result conforming to the
above model with the X' bit taking part in the add
operation.

The result of the addition is then normalized, with all
bits of the addition result, except the X bit,
participating in the shift. The normalized result serves
as the intermediate result that is input to the rounder.

For rounding, the conceptual Guard, Round, and
Sticky bits are defined in terms of accumulator bits.
Figure 6 shows the positions of the Guard, Round, and
Sticky bits for double-precision and single-precision
floating-point numbers in the multiply-add execution
model.

Format | Guard | Round Sticky
Double 53 54 OR of 55:105, X’
Single 24 25 OR of 26:105, X

Table 6. Location of the Guard, Round, and Sticky
bits in the multiply-add execution model

The rules for rounding the intermediate result are the
same as those given in Section 7.3.3.1.

If the instruction is a negative multiply-add or negative
multiply-subtract type instruction, the final result is
negated.

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 337

Version 2.07 B

7.4 VSX Floating-Point Exceptions

This architecture defines the following floating-point
exceptions under the IEEE-754 exception model:

— Invalid Operation exception

SNaN

Infinity- Infinity
Infinity+Infinity

Zero+Zero

InfinityxZero

Invalid Compare
Software-Defined Condition
Invalid Square Root

Invalid Integer Convert

Zero Divide exception
Overflow exception
Underflow exception
Inexact exception

These exceptions, other than Invalid Operation
exception resulting from a Software-Defined Condition,
can occur during execution of computational
instructions. An Invalid Operation exception resulting
from a Software-Defined Condition occurs when a
Move To FPSCR instruction sets VXSOFT to 1.

Each floating-point exception, and each category of
Invalid Operation exception, has an exception bit in the
FPSCR. In addition, each floating-point exception has
a corresponding enable bit in the FPSCR. The
exception bit indicates the occurrence of the
corresponding exception. If an exception occurs, the
corresponding enable bit governs the result produced
by the instruction and, in conjunction with the FEO and
FE1 bits (see page 339), whether and how the system
floating-point enabled exception error handler is
invoked. In general, the enabling specified by the
enable bit is of invoking the system error handler, not
of permitting the exception to occur. The occurrence of
an exception depends only on the instruction and its
inputs, not on the setting of any control bits. The only
deviation from this general rule is that the occurrence
of an Underflow exception depends on the setting of
the enable bit.

A single instruction, other than mtfsfi or mtfsf, can set
more than one exception bit only in the following
cases:

— An Inexact exception can be set with an Overflow
exception.

— An Inexact exception can be set with an
Underflow exception.

— An Invalid Operation exception (SNaN) is set with
an Invalid Operation exception (Infinityx0) for
multiply-add class instructions for which the
values being multiplied are infinity and zero and
the value being added is an SNaN.

— An Invalid Operation exception (SNaN) can be set
with an Invalid Operation exception (Invalid
Compare) for ordered comparison instructions.

— An Invalid Operation exception (SNaN) can be set
with an Invalid Operation exception (Invalid
Integer Convert) for convert to integer instructions.

When an exception occurs, the writing of a result to the
target register can be suppressed, or a result can be
delivered, depending on the exception.

The writing of a result to the target register is
suppressed for the certain kinds of exceptions, based
on whether the instruction is a vector or a scalar
instruction, so that there is no possibility that one of the
operands is lost. For other kinds of exceptions and
also depending on whether the instruction is a vector
or a scalar instruction, a result is generated and written
to the destination specified by the instruction causing
the exception. The result can be a different value for
the enabled and disabled conditions for some of these
exceptions. Table 7 lists the types of exceptions and
indicates whether a result is written to the target VSR
or suppressed.

Scalar Vector
On exception type... Instruction | Instruction

Results Results
Enabled Invalid Operation | suppressed suppressed
Enabled Zero Divide suppressed suppressed
Enabled Overflow written suppressed
Enabled Underflow written suppressed
Enabled Inexact written suppressed
Disabled Invalid Operation written written

Table 7. Exception Types Result Suppression

338 Power ISA™ - Book |

Version 2.07 B

Scalar Vector
On exception type... Instruction | Instruction
Results Results
Disabled Zero Divide written written
Disabled Overflow written written
Disabled Underflow written written
Disabled Inexact written written

Table 7. Exception Types Result Suppression

The subsequent sections define each of the
floating-point exceptions and specify the action that is
taken when they are detected.

The IEEE standard specifies the handling of
exceptional conditions in terms of traps and trap
handlers. In this architecture, an FPSCR exception
enable bit of 1 causes generation of the result value
specified in the IEEE standard for the trap enabled
case; the expectation is that the exception is detected
by software, which revises the result. An FPSCR
exception enable bit of 0 causes generation of the
default result value specified for the trap disabled (or
no trap occurs or trap is not implemented) case. The
expectation is that the exception is not detected by
software, which uses the default result. The result to
be delivered in each case for each exception is
described in the following sections.

The IEEE default behavior when an exception occurs
is to generate a default value and not to notify
software. In this architecture, if the IEEE default
behavior when an exception occurs is required for all
exceptions, all FPSCR exception enable bits must be
set to 0, and Ignore Exceptions Mode (see below)
should be used. In this case, the system floating-point
enabled exception error handler is not invoked, even if
floating-point exceptions occur: software can inspect
the FPSCR exception bits, if necessary, to determine
whether exceptions have occurred.

In this architecture, if software is to be notified that a
given kind of exception has occurred, the
corresponding FPSCR exception enable bit must be
set to 1, and a mode other than Ignore Exceptions
Mode must be used. In this case, the system
floating-point enabled exception error handler is
invoked if an enabled floating-point exception occurs.
The system floating-point enabled exception error
handler is also invoked if a Move To FPSCR instruction
causes an exception bit and the corresponding enable
bit both to be 1. The Move To FPSCR instruction is
considered to cause the enabled exception.

The FEO and FE1 bits control whether and how the
system floating-point enabled exception error handler
is invoked if an enabled floating-point exception
occurs. The location of these bits and the requirements

for altering them are described in Book Ill. The system
floating-point enabled exception error handler is never
invoked because of a disabled floating-point exception.
The effects of the four possible settings of these bits
are as follows.

FEO FE1 Description

0 0 Ignore Exceptions Mode
Floating-point exceptions do not cause the
system floating-point enabled exception
error handler to be invoked.

Imprecise Nonrecoverable Mode

The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused the
enabled exception. It may not be possible
to identify the excepting instruction or the
data that caused the exception. Results
produced by the excepting instruction might
have been used by or might have affected
subsequent instructions that are executed
before the error handler is invoked.

1 0 Imprecise Recoverable Mode

The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused the
enabled exception. Sufficient information is
provided to the error handler for it to identify
the excepting instruction, the operands, and
correct the result. No results produced by
the excepting instruction have been used
by or affected subsequent instructions that
are executed before the error handler is
invoked.

1 1 Precise Mode
The system floating-point enabled excep-
tion error handler is invoked precisely at the
instruction that caused the enabled excep-
tion.

In all cases, the question of whether a floating-point
result is stored, and what value is stored, is governed
by the FPSCR exception enable bits, as described in
subsequent sections, and is not affected by the value
of the FEO and FE1 bits.

In all cases in which the system floating-point enabled
exception error handler is invoked, all instructions
before the instruction at which the system
floating-point enabled exception error handler is
invoked have been completed, and no instruction after
the instruction at which the system floating-point
enabled exception error handler is invoked has begun
execution. The instruction at which the system
floating-point enabled exception error handler is
invoked has completed if it is the excepting instruction,

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 339

Version 2.07 B

and there is only one such instruction. Otherwise, it
has not begun execution, or has been partially
executed in some cases, as described in Book .

—— Programming Note

In any of the three non-Precise modes, a
Floating-Point Status and Control Register
instruction can be used to force any exceptions,
because of instructions initiated before the
Floating-Point Status and Control Register
instruction, to be recorded in the FPSCR. (This
forcing is superfluous for Precise Mode.)

In both Imprecise modes, a Floating-Point Status
and Control Register instruction can be used to
force any invocations of the system floating-point
enabled exception error handler that result from
instructions initiated before the Floating-Point
Status and Control Register instruction to occur.
This forcing has no effect in Ignore Exceptions
Mode, and is superfluous for Precise Mode.

The last sentence of the paragraph preceding this
Programming Note can apply only in the Imprecise
modes, or if the mode has just been changed from
Ignore Exceptions Mode to some other mode. It
always applies in the latter case.

To obtain the best performance across the widest
range of implementations, the programmer should
obey the following guidelines.

— If the IEEE default results are acceptable to the
application, Ignore Exceptions Mode should be
used with all FPSCR exception enable bits set to
0.

— If the IEEE default results are not acceptable to
the application, Imprecise Nonrecoverable Mode
should be used, or Imprecise Recoverable Mode if
recoverability is needed, with FPSCR exception
enable bits set to 1 for those exceptions for which
the system floating-point enabled exception error
handler is to be invoked.

— Ignore Exceptions Mode should not, in general, be
used when any FPSCR exception enable bits are
setto 1.

— Precise Mode can degrade performance in some
implementations, perhaps substantially, and
therefore should be used only for debugging and
other specialized applications.

340 Power ISA™ - Book |

Version 2.07 B

7.4.1 Floating-Point Invalid Operation Exception

7.4.1.1 Definition

An Invalid Operation exception occurs when an
operand is invalid for the specified operation. The
invalid operations are:

SNaN
Any floating-point operation on a Signaling NaN.

Infinity—Infinity
Magnitude subtraction of infinities.

Infinity+Infinity
Floating-point division of infinity by infinity.

Zero+Zero
Floating-point division of zero by zero.

Infinity x Zero
Floating-point multiplication of infinity by zero.

Invalid Compare
Floating-point ordered comparison involving a
NaN.

Invalid Square Root
Floating-point square root or reciprocal square
root of a nonzero negative number.

Invalid Integer Convert
Floating-point-to-integer convert involving a
number too large in magnitude to be represented
in the target format, or involving an infinity or a
NaN.

An Invalid Operation exception also occurs when an
mtfsfi, mtfsf, or mtfsb1l instruction is executed that
sets VXSOFT to 1 (Software-Defined Condition).

The action to be taken depends on the setting of the
Invalid Operation Exception Enable bit of the FPSCR.

7.4.1.2 Action for VE=1

When Invalid Operation exception is enabled (VE=1)
and an Invalid Operation exception occurs, the
following actions are taken:

For VSX Scalar Floating-Point Arithmetic, VSX
Scalar DP-SP Conversion, VSX Scalar Convert
Floating-Point to Integer, and VSX Scalar Round
to Floating-Point Integer instructions:

1. One or two of the following Invalid Operation

exceptions are set to 1.

VXSNAN (if SNaN)

VXISI (if Infinity—Infinity)

VXIDI (if Infinity=Infinity)
VXzZbz (if Zero+Zero)

VXIMZ (if InfinityxZero)

VXSQRT (if Invalid Square Root)
VXCVI (if Invalid Integer Convert)

2. Update of VSR[XT] is suppressed.
3. FRand Fl are set to zero.
4. FPRF is unchanged.

For VSX Scalar Floating-Point Compare
instructions:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXVC (if Invalid Compare)

2. FR, Fl, and C are unchanged.
3. FPCC is set to reflect unordered.

For VSX Vector Floating-Point Arithmetic, VSX
Vector Floating-Point Compare, VSX Vector
DP-SP Conversion, VSX Vector Convert
Floating-Point to Integer, and VSX Vector Round
to Floating-Point Integer instructions:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)

VXISI (if Infinity — Infinity)

VXIDI (if Infinity + Infinity)
VXzZDz (if Zero + Zero)

VXIMZ (if Infinity x Zero)

VXVC (if Invalid Compare)
VXSQRT (if Invalid Square Root)
VXCVI (if Invalid Integer Convert)

2. Update of VSR[XT] is suppressed for all
vector elements.

3. FRand Fl are unchanged.

4. FPRF is unchanged.

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 341

Version 2.07 B

7.4.1.3 Action for VE=0

When Invalid Operation exception is disabled (VE=0) and an Invalid Operation exception occurs, the following

actions are taken:

For the VSX Scalar round and Convert
Double-Precision to Single-Precision format
(xscvdpsp) instruction:

1. VXSNAN is set to 1.

2. The single-precision representation of a Quiet
NaN is placed into word element 0 of
VSR[XT]. The contents of word elements 1-3
of VSR[XT] are undefined.

3. FRand Fl are set to 0.

4. FPREF is set to indicate the class of the result
(Quiet NaN).

For the VSX Vector Single-Precision Arithmetic
instructions, VSX Vector Single-Precision
Maximum/Minimum instructions, the VSX Vector
round and Convert Double-Precision to
Single-Precision format (xvcvdpsp) instruction,
and the VSX Vector Round to Single-Precision
Integer instructions:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)

VXISI (if Infinity — Infinity)
VXIDI (if Infinity + Infinity)
VXzZDzZ (if Zero + Zero)
VXIMZ (if Infinity x Zero)

VXSQRT (if Invalid Square Root)

2. The single-precision representation of a Quiet
NaN is placed into its respective word
element of VSR[XT].

3. FR, Fl, and FPRF are not modified.

For the VSX Scalar Double-Precision Arithmetic
instructions, VSX Scalar Double-Precision
Maximum/Minimum instructions, the VSX Scalar
Convert Single-Precision to Double-Precision
format (xscvspdp) instruction, and the VSX
Scalar Round to Double-Precision Integer
instructions:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)

VXISI (if Infinity — Infinity)
VXIDI (if Infinity + Infinity)
VXzZDZ (if Zero + Zero)
VXIMZ (if Infinity x Zero)

VXSQRT (if Invalid Square Root)

2. The double-precision representation of a
Quiet NaN is placed into doubleword element
0 of VSR[XT]. The contents of doubleword
element 1 of VSR[XT] are undefined.

3. FRandFl are setto 0.

4. FPREF is set to indicate the class of the result
(Quiet NaN).

For the VSX Vector Double-Precision Arithmetic
instructions, VSX Vector Double-Precision
Maximum/Minimum instructions, the VSX Vector
Convert Single-Precision to Double-Precision
format (xvcvspdp) instruction, and the VSX
Vector Round to Double-Precision Integer
instructions:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)

VXISI (if Infinity — Infinity)
VXIDI (if Infinity = Infinity)
VXzZDZ (if Zero + Zero)
VXIMZ (if Infinity x Zero)

VXSQRT (if Invalid Square Root)

2. The double-precision representation of a
Quiet NaN is placed into its respective
doubleword element of VSR[XT].

3. FR, Fl, and FPRF are not modified.

342 Power ISA™ - Book |

Version 2.07 B

For the VSX Scalar Convert Double-Precision to
Signed Integer Doubleword (xscvdpsxd)
instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. Ox7FFF_FFFF_FFFF_FFFF is placed into
doubleword element 0 of VSR[XT] if the
double-precision operand in doubleword
element 0 of VSR[XB] is a positive number or
+Infinity.

0x8000_0000_0000_0000 is placed into
doubleword element 0 of VSR[XT] if the
double-precision operand in doubleword
element 0 of VSR[XB] is a negative number,
- Infinity, or NaN.

The contents of doubleword element 1 of
VSR[XT] are undefined.

3. FRandFlaresettoO.

4. FPREF is undefined.

For the VSX Scalar Convert Double-Precision to
Unsigned Integer Doubleword (xscvdpuxd)

instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. OxFFFF_FFFF_FFFF_FFFF is placed into
doubleword element 0 of VSR[XT] if the
double-precision operand in doubleword
element 0 of VSR[XB] is a positive number or
+Infinity.

0x0000_0000_0000_0000 is placed into
doubleword element 0 of VSR[XT] if the
double-precision operand in doubleword
element 0 of VSR[XB] is a negative number,
- Infinity, or NaN.

The contents of doubleword element 1 of
VSR[XT] are undefined.

3. FRandFlare setto 0.

4. FPREF is undefined.

For the VSX Scalar Convert Double-Precision to
Signed Integer Word (xscvdpsxw) instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. OX7FFF_FFFF is placed into word element 1
of VSR[XT] if the double-precision operand in
doubleword element 0 of VSR[XB] is a
positive number or +Infinity.

0x8000_0000 is placed into word element 1
of VSR[XT] if the double-precision operand in
doubleword element 0 of VSR[XB] is a
negative number, - Infinity, or NaN.

The contents of word elements 0, 2, and 3 of
VSR[XT] are undefined.

3. FRandFlaresetto0.
4. FPRF is undefined.

For the VSX Scalar Convert Double-Precision to
Unsigned Integer Word (xscvdpuxw) instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. OXFFFF_FFFF is placed into word element 1
of VSR[XT] if the double-precision operand in
doubleword element 0 of VSR[XB] is a
positive number or +Infinity.

0x0000_0000 is placed into word element 1
of VSR[XT] if the double-precision operand in
doubleword element 0 of VSR[XB] is a
negative number, - Infinity, or NaN.

The contents of word elements 0, 2, and 3 of
VSR[XT] are undefined.

3. FRandFlaresetto0.

4. FPRF is undefined.

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX]

343

Version 2.07 B

For the VSX Vector Convert Double-Precision to
Signed Integer Doubleword (xvcvdpsxd)
instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. Ox7FFF_FFFF_FFFF_FFFF is placed into
doubleword element i of VSR[XT] if the
double-precision operand in the
corresponding doubleword element of
VSR[XB] is a positive number or +Infinity.

0x8000_0000_0000_0000 is placed into its
respective doubleword element i of VSR[XT]
if the double-precision operand in the
corresponding doubleword element of
VSR[XB] is a negative number, - Infinity, or
NaN.

3. FR, Fl, and FPRF are not modified.
For the VSX Vector Convert Double-Precision to
Unsigned Integer Doubleword (xvcvdpuxd)

instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. OxFFFF_FFFF_FFFF_FFFF is placed into
doubleword element i of VSR[XT] if the
double-precision operand in doubleword
element i of VSR[XB] is a positive number or
+Infinity.

0x0000_0000_0000_0000 is placed into
doubleword element i of VSR[XT] if the
double-precision operand in doubleword
element i of VSR[XB] is a negative number,
- Infinity, or NaN.

3. FR, Fl, and FPRF are not modified.

For the VSX Vector Convert Double-Precision to
Signed Integer Word (xvcvdpsxw) instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. Ox7FFF_FFFF is placed intoword element ix2
of VSR[XT] if the double-precision operand in

doubleword element i of VSR[XB] is a positive
number or +Infinity.

0x8000_0000 is placed into word element
ix2 of VSR[XT] if the double-precision
operand in doubleword element i of VSR[XB]
is a negative number, - Infinity, or NaN.

The contents of word element ix2+1 of
VSR[XT] are undefined.

3. FR, Fl, and FPRF are not modified.

For the VSX Vector Convert Double-Precision to
Unsigned Integer Word (xvcvdpuxw) instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. OxFFFF_FFFF is placed into word element
ix2 of VSR[XT] if the double-precision
operand in doubleword element i of VSR[XB]
is a positive number or +Infinity.

0x0000_0000 is placed into word element
ix2 of VSR[XT] if the double-precision
operand in doubleword element i of VSR[XB]
is a negative number, - Infinity, or NaN.

The contents of word element ix2+1 of
VSR[XT] are undefined.

3. FR, Fl, and FPRF are not modified.

For the VSX Vector Convert Single-Precision to
Signed Integer Doubleword (xvcvspsxd)
instruction:

One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. Ox7FFF_FFFF_FFFF_FFFF is placed into
doubleword element i of VSR[XT] if the
single-precision operand in word element ix2
of VSR[XB] is a positive number or +Infinity.

0x8000_0000_0000_0000 is placed into
doubleword element i of VSR[XT] if the
single-precision operand in word element ix2
of VSR[XB] is a negative number, - Infinity, or
NaN.

3. FR, Fl, and FPRF are not modified.

344 Power ISA™ - Book |

Version 2.07 B

For the VSX Vector Convert Single-Precision to
Unsigned Integer Doubleword (xvcvspuxd)
instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. OxFFFF_FFFF_FFFF_FFFF is placed into
doubleword element i of VSR[XT] if the
single-precision operand in word element ix2
of VSR[XB] is a positive number or +Infinity.

0x0000_0000_0000_0000 is placed into
doubleword element i of VSR[XT] if the
single-precision operand in word element ix2
of VSR[XB] is a negative number, - Infinity, or
NaN.

3. FR, Fl, and FPRF are not modified.

For the VSX Vector Convert Single-Precision to
Signed Integer Word (xvcvspsxw) instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. Ox7FFF_FFFF is placed into word element i
of VSR[XT] if the single-precision operand in
word element i of VSR[XB] is a positive
number or +Infinity.

0x8000_0000 is placed into word element i
of VSR[XT] if the single-precision operand in
word element i of VSR[XB] is a negative
number, - Infinity, or NaN.

The contents of word element ix2+1 of
VSR[XT] are undefined.

3. FR, Fl, and FPRF are not modified.

For the VSX Vector Convert Single-Precision to
Unsigned Integer Word (xvcvspuxw) instruction:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. OxFFFF_FFFF is placed into word element i
of VSR[XT] if the single-precision operand in
the corresponding word element ix2 of
VSR[XB] is a positive number or +Infinity.
0x0000_0000 is placed into word element i
of VSR[XT] if the single-precision operand in
word element i ix2 of VSR[XB] is a negative
number, - Infinity, or NaN.

The contents of word element ix2+1 of
VSR[XT] are undefined.

3. FR, Fl, and FPRF are not modified.

For the VSX Scalar Floating-Point Compare
instructions:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. FR, Fl and C are unchanged.
3. FPCC is set to reflect unordered.

For the VSX Vector Compare Single-Precision
instructions:

1. One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0x0000_0000 is placed into its respective
word element of VSR[XT].

3. FR, Fl, and FPRF are not modified.

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 345

Version 2.07 B

For

the vector double-precision compare

instructions:

1.

One or two of the following Invalid Operation
exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

0x0000_0000_0000_0000 is placed into its
respective doubleword element of VSR[XT].

FR, FI, and FPRF are not modified.

346

Power ISA™ - Book |

Version 2.07 B

7.4.2 Floating-Point Zero Divide Exception

7.4.2.1 Definition

A Zero Divide exception occurs when a VSX
Floating-Point Dividel'l instruction is executed with a
zero divisor value and a finite nonzero dividend value.

A Zero Divide exception also occurs when a VSX
Floating-Point Reciprocal Estimatel?! instruction or a
VSX Floating-Point Reciprocal Square Root
Estimatel! instruction is executed with an operand
value of zero.

The action to be taken depends on the setting of the
Zero Divide Exception Enable bit of the FPSCR.

1. VSX Floating-Point Divide instructions:
xsdivdp, xsdivsp, xvdivdp, xvdivsp

2. VSX Floating-Point Reciprocal Estimate instructions:
xsredp, xsresp, xvredp, xvresp

3. VSX Floating-Point Reciprocal Square Root Estimate instructions:
xsrsqrtedp, xsrsqrtesp, xvrsqrtedp, xvrsqrtesp

4. VSX Scalar Floating-Point Divide instructions:
xsdivdp, xsdivsp

5. VSX Scalar Floating-Point Reciprocal Estimate instructions:
xsredp, xsresp

6. VSX Scalar Floating-Point Reciprocal Square Root Estimate instructions:

xsrsqrtedp, xsrsqrtesp

7. VSX Vector Floating-Point Divide instructions:
xvdivdp, xvdivsp

8. VSX Vector Floating-Point Reciprocal Estimate instructions:
xvredp, xvresp

9. VSX Vector Floating-Point Reciprocal Square Root Estimate instructions:

xvrsqrtedp, xvrsqrtesp

7.4.2.2 Action for ZE=1

When Zero Divide exception is enabled (ZE=1) and a
Zero Divide exception occurs, the following actions are
taken:

For VSX Scalar Floating-Point Dividel*!
instructions, VSX Scalar Floating-Point
Reciprocal Estimatel® instructions, and VSX
Scalar Floating-Point Reciprocal Square Root
Estimatel®! instructions, do the following.

1. ZXissetto 1.

2. Update of VSR[XT] is suppressed.

3. FRandFl are setto 0.

4. FPRF is unchanged.

For VSX Vector Floating-Point Dividel’]
instructions, VSX Vector Floating-Point
Reciprocal Estimatel®! instructions, and VSX
Vector Floating-Point Reciprocal Square Root
Estimatel®! instructions, do the following.

1. ZXissetto 1.

2. Update of VSR[XT] is suppressed for all
vector elements.

3. FRand Fl are unchanged.

4. FPRF is unchanged.

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 347

Version 2.07 B

7.4.2.3 Action for ZE=0

When Zero Divide exception is disabled (ZE=0) and a
Zero Divide exception occurs, the following actions are
taken:

For VSX Scalar Floating-Point Dividel"
instructions, do the following.

1. ZXissetto 1.

2. An Infinity, having a sign determined by the
XOR of the signs of the source operands, is
placed into doubleword element 0 of VSR[XT]
in double-precision format. The contents of
doubleword element 1 of VSR[XT] are
undefined.

3. FRandFlare setto 0.

4. FPREF is set to indicate the class and sign of
the result (+ Infinity).

| For VSX Vector Divide Double-Precision
(xvdivdp), do the following.

1. ZXissetto 1.

2. For each vector element causing a Zero

| Divide exception, an Infinity, having a sign

determined by the XOR of the signs of the

source operands, is placed into its respective

doubleword element of VSR[XT] in
double-precision format.

3. FR, Fl, and FPRF are not modified.

| For VSX Vector Divide Single-Precision
(xvdivsp), do the following.

1. ZXissetto 1.

2. For each vector element causing a Zero
| Divide exception, an Infinity, having a sign
determined by the XOR of the signs of the
source operands, is placed into its respective
word element of VSR[XT] in single-precision
format.

3. FR, Fl, and FPRF are not modified.

1. VSX Scalar Floating-Point Divide instructions:
xsdivdp, xsdivsp

2. VSX Scalar Floating-Point Reciprocal Estimate instructions:
xsredp, xsresp

3. VSX Scalar Floating-Point Reciprocal Square Root Estimate instructions:

xsrsqrtedp, xsrsqrtesp

For VSX Scalar Floating-Point Reciprocal
Estimate®?l instructions and VSX Scalar
Floating-Point Reciprocal Square Root Estimatels]
instructions, do the following.

1. ZXissetto 1.

2. An Infinity, having the sign of the source
operand, is placed into doubleword element 0
of VSR[XT] in double-precision format. The
contents of doubleword element 1 of VSR[XT]
are undefined.

3. FRandFl are setto 0.

4. FPREF is set to indicate the class and sign of
the result (£ Infinity).

For the VSX Vector Reciprocal Estimate
Double-Precision (xvredp) and VSX Vector
Reciprocal Square Root Estimate
Double-Precision (xvrsqrtedp) instructions:

1. ZXissetto 1.

2. For each vector element causing a Zero
Divide exception, an Infinity, having the sign
of the source operand, is placed into its
respective doubleword element of VSR[XT] in
double-precision format.

3. FR, Fl, and FPRF are not modified.

For the VSX Vector Reciprocal Estimate
Single-Precision (xvresp) and VSX Vector
Reciprocal Square Root Estimate Single-Precision
(xvrsgrtesp) instructions:

1. ZXissetto 1.

2. For each vector element causing a Zero
Divide exception, an Infinity, having the sign
of the source operand, is placed into its
respective word element of VSR[XT] in
single-precision format.

3. FR, Fl, and FPRF are not modified.

348 Power ISA™ - Book |

Version 2.07 B

7.4.3 Floating-Point Overflow Exception

7.4.3.1 Definition

An Overflow exception occurs when the magnitude of
what would have been the rounded result if the
exponent range were unbounded exceeds that of the
largest finite number of the specified result precision.

The action to be taken depends on the setting of the
Overflow Exception Enable bit of the FPSCR.

7.4.3.2 Action for OE=1

When Overflow exception is enabled (OE=1) and an
Overflow exception occurs, the following actions are
taken:

For the VSX Vector round and Convert
Double-Precision to Single-Precision format
(xscvdpsp) instruction:

1. OXissetto1.

2. If the unbiased exponent of the normalized
intermediate result is less than or equal to
318 (Emax+192), the exponent is adjusted by
subtracting 192. Otherwise the result is
undefined.

3. The adjusted rounded result is placed into
word element 0 of VSR[XT] in
single-precision format. The contents of word
elements 1-3 of VSR[XT] are undefined.

4. Unless the result is undefined, FPRF is set to
indicate the class and sign of the result
(xtNormal Number).

1. VSX Scalar Double-Precision Arithmetic instructions:

For VSX Scalar Double-Precision Arithmeticl!l
instructions, do the following.

1. OXissetto 1.

2. The exponent of the normalized intermediate
result is adjusted by subtracting 1536.

3. The adjusted rounded result is placed into
doubleword element 0 of VSR[XT] in
double-precision format. The contents of
doubleword element 1 of VSR[XT] are
undefined.

4. FPREF is set to indicate the class and sign of
the result (+Normal Number).

For VSX Scalar Single-Precision Arithmetic(?]
instructions, do the following.

1. OXissetto1.
2. The exponent is adjusted by subtracting 192.

3. The adjusted and rounded result is placed
into doubleword element 0 of VSR[XT] in
double-precision format. The contents of
doubleword element 1 of VSR[XT] are
undefined.

4. FPREF is set to indicate the class and sign of
the result (+Normal Number).

For VSX Vector Double-Precision Arithmetict®!
instructions, VSX Vector Single-Precision
Arithmetic®! instructions, and VSX Vector round
and Convert Double-Precision to Single-Precision
format instruction (xvcvdpsp), do the following.

1. OXissetto1.

2. Update of VSR[XT] is suppressed for all
vector elements.

3. FR, Fl, and FPRF are not modified.

xsadddp, xsdivdp, xsmuldp, xsredp, xssubdp, xsmaddadp, xsmaddmdp, xsmsubadp, xsmsubmdp, xsnmaddadp, xsnmaddmdp,

xsnmsubadp, xsnmsubmdp
2. VSX Scalar Single-Precision Arithmetic instructions:

xsaddsp, xsdivsp, xsmulsp, xsresp, xssubsp, xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp, xsnmaddasp, xsnmaddmsp,

xsnmsubasp, xsnmsubmsp
3. VSX Vector Double-Precision Arithmetic instructions:

xvadddp, xvdivdp, xvmuldp, xvredp, xvsubdp, xvmaddadp, xsmaddmdp, xvmsubadp, xvmsubmdp, xvnmaddadp, xvnmaddmdp,

xvnmsubadp, xvnmsubmdp
4. VSX Vector Single-Precision Arithmetic instructions:

xvaddsp, xvdivsp, xvmulsp, xvresp, xvsubsp, xvmaddasp, xvmaddmsp, xvsmsubasp, xymsubmsp, xvnmaddasp, xvnmaddmsp,

xvnmsubasp, xvnmsubmsp

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 349

Version 2.07 B

7.4.3.3 Action for OE=0

When Overflow exception is disabled (OE=0) and an
Overflow exception occurs, the following actions are
taken:

1. OXand XX are set to 1.

2. The result is determined by the rounding
mode (RN) and the sign of the intermediate
result as follows:

Round to Nearest Even
For negative overflow, the result is
- Infinity.
For positive overflow, the result is
+Infinity.

Round toward Zero
For negative overflow, the result is the
format’s most negative finite number.
For positive overflow, the result is the
format’s most positive finite number.

Round toward +Infinity
For negative overflow, the result is the
format’s most negative finite number.
For positive overflow, the result is
+Infinity.

Round toward - Infinity
For negative overflow, the result is
- Infinity.
For positive overflow, the result is the
format’s most positive finite number.

For VSX Scalar round and Convert
Double-Precision to Single-Precision format
(xscvdpsp):

3. The result is placed into word element 0 of
VSR[XT] as a single-precision value. The
contents of word elements 1-3 of VSR[XT]
are undefined.

4. FRis undefined.

1. VSX Scalar Double-Precision Arithmetic instructions:

5. Flissetto1.

6. FPREF is set to indicate the class and sign of
the result.

For VSX Scalar Double-Precision Arithmeticl!]
instructions and VSX Scalar Single-Precision
Arithmeticl?! instructions, do the following.

3. The result is placed into doubleword element
0 of VSR[XT] as a double-precision value.
The contents of doubleword element 1 of
VSR[XT] are undefined.

4. FRis undefined.
5. Flissetto1.

6. FPREF is set to indicate the class and sign of
the result.

For VSX Vector Double-Precision Arithmeticls!
instructions, do the following.

3. For each vector element causing an Overflow
exception, the result is placed into its
respective doubleword element of VSR[XT] in
double-precision format.

4. FR, Fl, and FPRF are not modified.

For VSX Vector Single-Precision Arithmeticl*]
instructions and VSX Vector round and Convert
Double-Precision to Single-Precision format
(xvcvdpsp), do the following.

3. For each vector element causing an Overflow
exception, the result is placed into its
respective word element of VSR[XT] in
single-precision format.

4. FR, Fl, and FPRF are not modified.

xsadddp, xsdivdp, xsmuldp, xsredp, xssubdp, xsmaddadp, xsmaddmdp, xsmsubadp, xsmsubmdp, xsnmaddadp, xsnmaddmdp,

xsnmsubadp, xsnmsubmdp
2. VSX Scalar Single-Precision Arithmetic instructions:

xsaddsp, xsdivsp, xsmulsp, xsresp, xssubsp, xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp, xsnmaddasp, xsnmaddmsp,

xsnmsubasp, xsnmsubmsp
3. VSX Vector Double-Precision Arithmetic instructions:

xvadddp, xvdivdp, xvmuldp, xvredp, xvsubdp, xvmaddadp, xvmaddmdp, xvmsubadp, xvmsubmdp, xvnmaddadp, xvnmaddmdp,

xvnmsubadp, xvnmsubmdp
4. VSX Vector Single-Precision Arithmetic instructions:

xvaddsp, xvdivsp, xvmulsp, xvresp, xvsubsp, xvmaddasp, xvmaddmsp, xvmsubasp, xvmsubmsp, xvnmaddasp, xvnmaddmsp,

xvnmsubasp, xvnmsubmsp

350 Power ISA™ - Book |

Version 2.07 B

7.4.4 Floating-Point Underflow Exception

7.4.4.1 Definition

Underflow exception is defined separately for the
enabled and disabled states:

Enabled:
Underflow occurs when the intermediate
result is “Tiny”.

Disabled:
Underflow occurs when the intermediate
result is “Tiny” and there is “Loss of
Accuracy”.

A tiny result is detected before rounding, when a
nonzero intermediate result computed as though both
the precision and the exponent range were unbounded
would be less in magnitude than the smallest
normalized number.

If the intermediate result is tiny and Underflow
exception is disabled (UE=0), the intermediate result is
denormalized (see Section 7.3.2.4 , “Normalization
and Denormalization” on page 329) and rounded (see
Section 7.3.2.6 , “Rounding” on page 333) before
being placed into the target VSR.

Loss of accuracy is detected when the delivered result
value differs from what would have been computed
were both the precision and the exponent range
unbounded.

The action to be taken depends on the setting of the
Underflow Exception Enable bit of the FPSCR.

I 1. VSX Scalar Double-Precision Arithmetic instructions:

7.4.4.2 Action for UE=1

When Underflow exception is enabled (UE=1) and an
Underflow exception occurs, the following actions are
taken:

For VSX Scalar round and
Double-Precision to Single-Precision
(xscvdpsp), do the following.

Convert
format

1. UXissetto1.

2. If the unbiased exponent of the normalized
intermediate result is greater than or equal to
-319 (Emin-192), the exponent is adjusted by
adding 192. Otherwise the result is undefined.

3. The adjusted rounded result is placed into
word element 0 of VSR[XT] in
single-precision format. The contents of word
elements 1-3 of VSR[XT] are undefined.

4. Unless the result is undefined, FPREF is set to
indicate the class and sign of the result
(xNormal Number).

For VSX Scalar Double-Precision Arithmeticl!]
instructions and VSX Scalar Double-Precision
Reciprocal Estimate (xsredp), do the following.

1. UXissetto 1.

2. The exponent of the normalized intermediate
result is adjusted by adding 1536.

3. The adjusted rounded result is placed into
doubleword element 0 of VSR[XT] in
double-precision format. The contents of
doubleword element 1 of VSR[XT] are
undefined.

4. FPREF is set to indicate the class and sign of
the result (tNormal Number).

xsadddp, xsdivdp, xsmuldp, xssubdp, xsmaddadp, xsmaddmdp, xsmsubadp, xsmsubmdp, xsnmaddadp, xsnmaddmdp, xsnmsubadp,

xsnmsubmdp

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 351

Version 2.07 B

For VSX Scalar Single-Precision Avrithmeticl'!
instructions and VSX Scalar Single-Precision
Reciprocal Estimate (xsresp), do the following.

7.4.4.3 Action for UE=0

When Underflow exception is disabled (UE=0) and an

Underflow exception occurs, the following actions are
1. UXis set to 1. taken:

2. The exponent is adjusted by adding 192.

3. The adjusted rounded result is placed into
doubleword element 0 of VSR[XT] in
double-precision format. The contents of
doubleword element 1 of VSR[XT] are
undefined.

4. FPREF is set to indicate the class and sign of
the result (tNormal Number).

—— Programming Note

The FR and FI bits are provided to allow the
system floating-point enabled exception error
handler, when invoked because of an
Underflow exception, to simulate a “trap
disabled” environment. That is, the FR and Fl
bits allow the system floating-point enabled
exception error handler to unround the result,
thus allowing the result to be denormalized
and correctly rounded.

For VSX Vector Floating-Point Arithmetic?!
instructions, VSX Vector Floating-Point Reciprocal
Estimatel®! instructions, and VSX Vector round
and Convert Double-Precision to Single-Precision
format (xvcvdpsp), do the following.

1. UXissetto 1.

For VSX Scalar round and Convert
Double-Precision to Single-Precision format
(xscvdpsp), do the following.

1. UXissetto1.

2. The result is placed into word element O of
VSR[XT] in single-precision format. The
contents of word elements 1-3 of VSR[XT]
are undefined.

3. FPREF is set to indicate the class and sign of
the result.

For VSX Scalar Floating-Point Arithmetic]
instructions and VSX Scalar Reciprocal
Estimatel®! instructions, do the following.

1. UXissetto1.

2. The result is placed into doubleword element
0 of VSR[XT] in double-precision format. The
contents of doubleword element 1 of VSR[XT]
are undefined.

3. FPREF is set to indicate the class and sign of
the result.

For VSX Vector Double-Precision Arithmeticl®!
instructions and VSX Vector Reciprocal Estimate

Double-Precision (xvredp), do the following.

2. Update of VSR[XT] is suppressed for all

vector elements. 1. UXissetto1.

2. For each vector element causing an
Underflow exception, the result is placed into
its respective doubleword element of
VSR[XT] in double-precision format.

3. FR, Fl, and FPRF are not modified.

3. FR, Fl, and FPRF are not modified.

1. VSX Scalar Single-Precision Arithmetic instructions:
xsaddsp, xsdivsp, xsmulsp, xssubsp, xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp, xsnmaddasp, xsnmaddmsp, xsnmsubasp,
xsnmsubmsp

2. VSX Vector Arithmetic instructions:
xvadddp, xvdivdp, xvmuldp, xvsubdp, xvaddsp, xvdivsp, xvmulsp, xvsubsp, xvmaddadp, xvmaddmdp, xvmsubadp, xvmsubmdp,
xvnmaddadp, xvnmaddmdp, xvnmsubadp, xvnmsubmdp, xvmaddasp, xvmaddmsp, xvmsubasp, xvmsubmsp, xvnmaddasp,
xvnmaddmsp, xvnmsubasp, xvnmsubmsp

3. VSX Vector Floating-Point Reciprocal Estimate instructions:
xvredp, xvresp

4. VSX Scalar Floating-Point Arithmetic instructions:
xsadddp, xsdivdp, xsmuldp, xssubdp, xsaddsp, xsdivsp, xsmulsp, xssubsp, xsmaddadp, xsmaddmdp, xsmsubadp, xsmsubmdp,
xsnmaddadp, xsnmaddmdp, xsnmsubadp, xsnmsubmdp, xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp, xsnmaddasp,
xsnmaddmsp, xsnmsubasp, xsnmsubmsp

5. VSX Scalar Reciprocal Estimate instructions:
xsredp, xsresp

6. VSX Vector Double-Precision Arithmetic instructions:
xvadddp, xvdivdp, xvmuldp, xvsubdp, xvmaddadp, xvmaddmdp, xvmsubadp, xvmsubmdp, xvnmaddadp, xvnmaddmdp, xvnmsubadp,
xvnmsubmdp

352 Power ISA™ - Book |

Version 2.07 B

For VSX Vector Single-Precision Avrithmeticl']
instructions, VSX Vector Reciprocal Estimate
Single-Precision (xvresp), and VSX Vector round
and Convert Double-Precision to Single-Precision
format (xvcvdpsp), do the following.

1. UXissetto1.

2. For each vector element causing an
Underflow exception, the result is placed into
its respective word element of VSR[XT] in
single-precision format.

3. FR, Fl, and FPRF are not modified.

1. VSX Vector Single-Precision Arithmetic instructions:
xvaddsp, xvdivsp, xvmulsp, xvsubsp, xvmaddasp, xvmaddmsp, xvmsubasp, xvmsubmsp, xvnmaddasp, xvnmaddmsp, xvnmsubasp,
xvnmsubmsp

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 353

Version 2.07 B

7.4.5 Floating-Point Inexact Exception

7.45.1 Definition

An Inexact exception occurs when one of two
conditions occur during rounding:

1. The rounded result differs from the intermediate
result assuming both the precision and the
exponent range of the intermediate result to be
unbounded. In this case the result is said to be
inexact. (If the rounding causes an enabled
Overflow exception or an enabled Underflow
exception, an Inexact exception also occurs only if
the significands of the rounded result and the
intermediate result differ.)

2. The rounded result overflows and Overflow
exception is disabled.

The action to be taken depends on the setting of the
Inexact Exception Enable bit of the FPSCR.

7.4.5.2 Action for XE=1

Programming Note

In some implementations, enabling Inexact
exceptions can degrade performance more than
does enabling other types of floating-point
exception.

When Inexact exception is enabled (UE=1) and an
Inexact exception occurs, the following actions are
taken:

For the VSX Vector round and Convert
Double-Precision to Single-Precision format
(xscvdpsp) instruction:

1. XXissetto1.

2. The result is placed into word element 0 of
VSR[XT] in single-precision format. The
contents of word elements 1-3 of VSR[XT]
are undefined.

3. FPREF is set to indicate the class and sign of
the result.

1. VSX Scalar Floating-Point Arithmetic instructions:

For VSX Scalar Floating-Point Arithmeticl']
instructions, VSX Scalar Round to
Double-Precision Integer Exact using Current
rounding mode (xsrdpic), and VSX Scalar Integer
to Floating-Point Format Conversion?!
instructions, do the following.

1. XXissetto 1.

2. The result is placed into doubleword element
0 of VSR[XT] in double-precision format. The
contents of doubleword element 1 of VSR[XT]
are undefined.

3. FPREF is set to indicate the class and sign of
the result.

For VSX Scalar Floating-Point to Integer Word
Format Conversiont®l instructions, do the
following.

1. XXissetto 1.

2. The result is placed into word element 1 of
VSRI[XT]. The contents of word elements 0, 2,
and 3 of VSR[XT] are undefined.

3. FPREF is set to indicate the class and sign of
the result.

For VSX Vector Floating-Point Arithmetict
instructions, VSX Vector Floating-Point Reciprocal
Estimatel® instructions, VSX Vector round and
Convert Double-Precision to Single-Precision
format (xvcvdpsp), VSX Vector Double-Precision
to Integer Format Conversionl®! instructions, and
VSX Vector Integer to Floating-Point Format
Conversion!’l instructions, do the following.

1. XXissetto 1.

2. Update of VSR[XT] is suppressed for all
vector elements.

3. FR, Fl, and FPRF are not modified.

xsadddp, xsdivdp, xsmuldp, xssubdp, xsaddsp, xsdivsp, xsmulsp, xssubsp, xsmaddadp, xsmaddmdp, xsmsubadp, xsmsubmdp,
xsnmaddadp, xsnmaddmdp, xsnmsubadp, xsnmsubmdp, xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp, xsnmaddasp,

xsnmaddmsp, xsnmsubasp, xsnmsubmsp

2. VSX Scalar Integer to Floating-Point Format Conversion instructions:

xscvsxddp, xscvuxddp, xscvsxdsp, xscvuxdsp

3. VSX Scalar Floating-Point to Integer Word Format Conversion instructions:

XScvdpsxws, Xscvdpuxws
4. VSX Vector Floating-Point Arithmetic instructions:

xvadddp, xvdivdp, xvmuldp, xvsubdp, xsaddsp, xvdivsp, xvmulsp, xvsubsp, xvmaddadp, xvmaddmdp, xvmsubadp, xvmsubmdp,
xvnmaddadp, xvnmaddmdp, xvnmsubadp, xvnmsubmdp, xvmaddasp, xvmaddmsp, xvmsubasp, xvmsubmsp, xvnmaddasp,

xvnmaddmsp, xvnmsubasp, xvnmsubmsp

354 Power ISA™ - Book |

Version 2.07 B

7.45.3 Action for XE=0

When Inexact exception is disabled (XE=0) and an
Inexact exception occurs, the following actions are
taken:

For VSX Scalar Convert Double-Precision To
Integer Word format with Saturate instructions,
do the following.

1. XXissetto 1.

For VSX Scalar round and Convert 2. The result is placed into word element 1 of

Double-Precision to Single-Precision format VSRIXT]. The contents of word elements 0, 2,

(xscvdpsp), do the following. and 3 of VSR[XT] are undefined.

1. XXissetto1. 3. FPREF is set to indicate the class and sign of
the result.

2. The result is placed into word element 0 of

VSR[XT] as a Sing|e_precision value. The | For VSX Vector DOUbIe-PreciSiOn Arlthmet|c[5]
contents of word elements 1-3 of VSR[XT] instructions, do the following.
are undefined.
1. XXissetto1.
3. FPRF is set to indicate the class and sign of
the result. 2. For each vector element causing an Inexact
| exception, the result is placed into its
For VSX Scalar Double-Precision Arithmeticl'] respective doubleword element of VSR[XT] in
instructions, VSX Scalar Single-Precision double-precision format.
Arithmetic!?! instructions, VSX Scalar Round to
Single-Precision (xsrsp), the VSX Scalar Round 3. FR, Fl, and FPRF are not modified.
to Double-Precision Integer Exact using Current . . . - [6]
rounding mode (xsrdpic), and VSX Scalar Integer | For VSX Vector Single-Precision Arithmetic
to Double-Precision Format Conversionl®! instructions, do the following.
instructions, do the following. 1 XXis setto 1.
1. XXissetto 1. | 2. For each vector element causing an Inexact
2. The result is placed into doubleword element exception, the result is placed into its

respective word element of VSR[XT] in

0 of VSR[XT] as a double-precision value. X o
single-precision format.

The contents of doubleword element 1 of
VSRIXT] are undefined. 3. FR, Fl, and FPRF are not modified.
3. FPREF is set to indicate the class and sign of

the result.

VSX Vector Floating-Point Reciprocal Estimate instructions:
xvredp, xvresp

VSX Vector Double-Precision to Integer Format Conversion instructions:
xvevdpsxds, xvevdpsxws, xvevdpuxds, xvevdpuxws

VSX Vector Integer to Floating-Point Format Conversion instructions:
xvevsxddp, xvevuxddp, xvevsxdsp, Xvevuxdsp, XVCVSXWSP, XVCVUXWSP

VSX Scalar Double-Precision Arithmetic instructions:
xsadddp, xssubdp, xsmuldp, xsdivdp, xssqrtdp, xsmaddadp, xsmaddmdp, xsmsubadp, xsmsubmdp, xsnmaddadp, xsnmaddmdp,
xsnmsubadp, xsnmsubmdp

VSX Scalar Single-Precision Arithmetic instructions:
xsaddsp, xssubsp, xsmulsp, xsdivsp, xssqrtsp, xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp, xsnmaddasp, xsnmaddmsp,
xsnmsubasp, xsnmsubmsp

VSX Scalar Integer to Double-Precision Format Conversion instructions:
xscvsxddp, xscvuxddp

VSX Scalar Convert Double-Precision To Integer Word format with Saturate instructions:
xscvdpsxws, xscvdpuxws

VSX Vector Double-Precision Arithmetic instructions:
xsadddp, xssubdp, xsmuldp, xsdivdp, xssqrtdp, xsmaddadp, xsmaddmdp, xvmsubadp, xvmsubmdp, xvnmaddadp, xvnmaddmdp,
xvnmsubadp, xvnmsubmdp

VSX Vector Single-Precision Arithmetic instructions:
xvaddsp, xvsubsp, xvmulsp, xvdivsp, xvsqrtsp, xvmaddasp, xvmaddmsp, xvmsubasp, xvmsubmsp, xvnmaddasp, xvnmaddmsp,
xvnmsubasp, xvnmsubmsp

Chapter 7. Vector-Scalar Floating-Point Operations [Category: VSX] 355

Version 2.07 B

7.5 VSX Storage Access Operations

The VSX Storage Access instructions compute the
effective address (EA) of the storage to be accessed
as described in Power ISA Book I.

7.5.1 Accessing Aligned Storage Operands

The following quadword-aligned array, AH, consists of
8 halfwords.

short AW[4] = { 0x0001_0203,
0x0405_0607,
0x0809_0A0B,
0x0COD_OEQF };

Figure 119 illustrates the Big-Endian storage image of
array AW.

0x0000: |00 01 02 03|04 05 06 07(08 09 OA 0B|0C 0D OE OF
| | |

0x0010:

I TN N T N A N N TR N TR N A
0123 45¢6 78 9 ABCDEFTF

Figure 119.Big-Endian storage image of array AW

Figure 120 illustrates the Little-Endian storage image
of array AW.

0x0000: (03 02 01 00|07 06 05 04/0B 0A 09 08|0F OE 0D 0C
| 1 1

0x0010:

11

L1
01 2 3

1 1 1 1 1 | 1 1 | 1 1
456789 ABCDESTF
Figure 120.Little-Endian storage image of array AW

Figure 121 shows the result of loading that quadword
into a VSR or, equivalently, shows the contents that
must be in a VSR if storing that VSR is to produce the
storage contents shown in Figure 119 for Big-Endian.
Note that Figure shows the effect of loading the
quadword from both Big-Endian storage and
Little-Endian storage.

VSR contents when accessing aligned quadword in
Big-Endian storage from Figure 119

Vt, Vs 10001 02 03|04 05 06 07|08 09 OA 0B|0C 0D OE OF

| 1 | 1 | | | | 1 | |
0123 4567389 ABCODEF
VSR contents when accessing aligned quadword in
Little-Endian storage from Figure 120

Vt, Vs 100 01 02 03|04 05 06 07|08 09 OA 0B|0C 0D OE OF

11 L1 [[
0123 45678 9 ABCDEFTF

Figure 121.Vector-Scalar Register contents for
aligned quadword Load or Store VSX
Vector

356 Power ISA™ - Book |

Version 2.07 B

7.5.2 Accessing Unaligned Storage Operands

The following array, B, consists of 5 word elements.

int BI5];
B[0] = 0x01234567;
B[1] = 0x00112233;
B[2] = 0x44556677;
B[3] = 0x8899AABB;
B[4] = 0xCCDDEEFF;
Figure 122 illustrates both Big-Endian and

Little-Endian storage images of array B.
Big-Endian storage image of array B

0x0000: (0123 45 67|00 11 22 33|44 55 66 77|88 99 AABB
1

1 1 |
0x0010: (CCDDEEFF
| |

I YT N T M N N
0123 45678 9 ABCDEFTF

Little-Endian storage image of array B

0x0000: |67 4523 01|33 22 11 00|77 66 55 44[BBAA 99 88
|

0x0010:

| 1 |
FFEEDDCC
|

1 | 1 | | 1 | | 1 | | | |
0123 45¢6 72829 ABCDESTF
Figure 122.Storage images of array B

Though this example shows the array starting at a
quadword-aligned address, if the subject data of
interest are elements 1 through 4, accessing elements
1 through 4 of array B involves an unaligned quadword
storage access that spans two aligned quadwords.

Loading an Unaligned Quadword from Big-Endian
Storage

Loading elements from elements 1 through 4 of B (see
Figure 122) into VR[VT] involves an unaligned
quadword storage access.

VSX supports word-aligned vector and scalar storage
accesses using Big-Endian byte ordering.

Big-Endian storage image of array B

0x0000: |01 23 45 67|00 11 22 33|44 55 66 77|88 99 AABB
| |

| | Il
0x0010: (CCDDEEFF

AN T T T T T YT T Y Y N
00123 45