// © IBM Corp. 2020 // Licensed under the Apache License, Version 2.0 (the "License"), as modified by // the terms below; you may not use the files in this repository except in // compliance with the License as modified. // You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 // // Modified Terms: // // 1) For the purpose of the patent license granted to you in Section 3 of the // License, the "Work" hereby includes implementations of the work of authorship // in physical form. // // 2) Notwithstanding any terms to the contrary in the License, any licenses // necessary for implementation of the Work that are available from OpenPOWER // via the Power ISA End User License Agreement (EULA) are explicitly excluded // hereunder, and may be obtained from OpenPOWER under the terms and conditions // of the EULA. // // Unless required by applicable law or agreed to in writing, the reference design // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License // for the specific language governing permissions and limitations under the License. // // Additional rights, including the ability to physically implement a softcore that // is compliant with the required sections of the Power ISA Specification, are // available at no cost under the terms of the OpenPOWER Power ISA EULA, which can be // obtained (along with the Power ISA) here: https://openpowerfoundation.org. `timescale 1 ns / 1 ns // *!**************************************************************** // *! FILENAME : tri_256x144_8w_1r1w.v // *! DESCRIPTION : 256 Entry x 144 bit x 8 way array, 9 bit writeable // *! // *!**************************************************************** `include "tri_a2o.vh" module tri_256x144_8w_1r1w( gnd, vdd, vcs, nclk, rd_act, wr_act, sg_0, abst_sl_thold_0, ary_nsl_thold_0, time_sl_thold_0, repr_sl_thold_0, func_sl_force, func_sl_thold_0_b, g8t_clkoff_dc_b, ccflush_dc, scan_dis_dc_b, scan_diag_dc, g8t_d_mode_dc, g8t_mpw1_dc_b, g8t_mpw2_dc_b, g8t_delay_lclkr_dc, d_mode_dc, mpw1_dc_b, mpw2_dc_b, delay_lclkr_dc, wr_abst_act, rd0_abst_act, abist_di, abist_bw_odd, abist_bw_even, abist_wr_adr, abist_rd0_adr, tc_lbist_ary_wrt_thru_dc, abist_ena_1, abist_g8t_rd0_comp_ena, abist_raw_dc_b, obs0_abist_cmp, abst_scan_in, time_scan_in, repr_scan_in, func_scan_in, abst_scan_out, time_scan_out, repr_scan_out, func_scan_out, lcb_bolt_sl_thold_0, pc_bo_enable_2, pc_bo_reset, pc_bo_unload, pc_bo_repair, pc_bo_shdata, pc_bo_select, bo_pc_failout, bo_pc_diagloop, tri_lcb_mpw1_dc_b, tri_lcb_mpw2_dc_b, tri_lcb_delay_lclkr_dc, tri_lcb_clkoff_dc_b, tri_lcb_act_dis_dc, wr_way, wr_addr, data_in0, data_in1, rd_addr, data_out ); parameter addressable_ports = 256; // number of addressable register in this array parameter addressbus_width = 8; // width of the bus to address all ports (2^addressbus_width >= addressable_ports) parameter port_bitwidth = 144; // bitwidth of ports (per way) parameter bit_write_type = 9; // gives the number of bits that shares one write-enable; must divide evenly into array parameter ways = 8; // number of ways // POWER PINS inout gnd; inout vdd; inout vcs; // CLOCK and CLOCKCONTROL ports input [0:`NCLK_WIDTH-1] nclk; input [0:7] rd_act; input [0:7] wr_act; input sg_0; input abst_sl_thold_0; input ary_nsl_thold_0; input time_sl_thold_0; input repr_sl_thold_0; input func_sl_force; input func_sl_thold_0_b; input g8t_clkoff_dc_b; input ccflush_dc; input scan_dis_dc_b; input scan_diag_dc; input g8t_d_mode_dc; input [0:4] g8t_mpw1_dc_b; input g8t_mpw2_dc_b; input [0:4] g8t_delay_lclkr_dc; input d_mode_dc; input mpw1_dc_b; input mpw2_dc_b; input delay_lclkr_dc; // ABIST input wr_abst_act; input rd0_abst_act; input [0:3] abist_di; input abist_bw_odd; input abist_bw_even; input [0:addressbus_width-1] abist_wr_adr; input [0:addressbus_width-1] abist_rd0_adr; input tc_lbist_ary_wrt_thru_dc; input abist_ena_1; input abist_g8t_rd0_comp_ena; input abist_raw_dc_b; input [0:3] obs0_abist_cmp; // SCAN input [0:3] abst_scan_in; input time_scan_in; input repr_scan_in; input [0:3] func_scan_in; output [0:3] abst_scan_out; output time_scan_out; output repr_scan_out; output [0:3] func_scan_out; // BOLT-ON input lcb_bolt_sl_thold_0; input pc_bo_enable_2; // general bolt-on enable input pc_bo_reset; // reset input pc_bo_unload; // unload sticky bits input pc_bo_repair; // execute sticky bit decode input pc_bo_shdata; // shift data for timing write and diag loop input [0:3] pc_bo_select; // select for mask and hier writes output [0:3] bo_pc_failout; // fail/no-fix reg output [0:3] bo_pc_diagloop; input tri_lcb_mpw1_dc_b; input tri_lcb_mpw2_dc_b; input tri_lcb_delay_lclkr_dc; input tri_lcb_clkoff_dc_b; input tri_lcb_act_dis_dc; // FUNCTIONAL PORTS input [0:ways-1] wr_way; input [0:(addressbus_width-1)] wr_addr; input [0:(port_bitwidth-1)] data_in0; input [0:(port_bitwidth-1)] data_in1; input [0:(addressbus_width-1)] rd_addr; output [0:(port_bitwidth*ways-1)] data_out; parameter ramb_base_addr = 16; parameter dataWidth = ((((port_bitwidth - 1)/36) + 1) * 36) - 1; parameter numBytes = (dataWidth/9); parameter addresswidth = addressbus_width; parameter rd_act_offset = 0; parameter data_out_offset = rd_act_offset + ways; parameter scan_right = data_out_offset + (port_bitwidth*ways) - 1; wire [0:dataWidth] data_in0_pad; wire [0:dataWidth] data_in1_pad; wire [0:dataWidth] data_in_swzl[0:ways-1]; wire [0:dataWidth] p0_data_out_pad[0:ways-1]; wire [0:dataWidth] p1_data_out_pad[0:ways-1]; wire [0:(dataWidth-(dataWidth)/9)-1] p0_arr_data_in[0:ways-1]; wire [0:(dataWidth)/9] p0_arr_par_in[0:ways-1]; wire [0:(dataWidth-(dataWidth)/9)-1] p1_arr_data_in[0:ways-1]; wire [0:(dataWidth)/9] p1_arr_par_in[0:ways-1]; wire [0:(dataWidth-(dataWidth)/9)-1] p0_arr_data_out[0:ways-1]; wire [0:(dataWidth)/9] p0_arr_par_out[0:ways-1]; wire [0:(dataWidth-(dataWidth)/9)-1] p1_arr_data_out[0:ways-1]; wire [0:(dataWidth)/9] p1_arr_par_out[0:ways-1]; wire [0:ramb_base_addr-1] ramb_rd_addr; wire [0:ramb_base_addr-1] ramb_wr_addr; wire [0:((((port_bitwidth-1)/36)+1)*4)-1] p0_wayEn[0:ways-1]; wire [0:((((port_bitwidth-1)/36)+1)*4)-1] p1_wayEn[0:ways-1]; wire [0:(port_bitwidth*ways-1)] p0_data_out_swzl; wire [0:(port_bitwidth*ways-1)] p1_data_out_swzl; wire [0:(port_bitwidth*ways-1)] data_out_fix; wire [0:((port_bitwidth-1)/36)] cascadeoutlata; wire [0:((port_bitwidth-1)/36)] cascadeoutlatb; wire [0:((port_bitwidth-1)/36)] cascadeoutrega; wire [0:((port_bitwidth-1)/36)] cascadeoutregb; wire [0:ways-1] rd_act_d; wire [0:ways-1] rd_act_q; wire [0:(port_bitwidth*ways)-1] data_out_d; wire [0:(port_bitwidth*ways)-1] data_out_b_q; wire [0:ways-1] my_d1clk; wire [0:ways-1] my_d2clk; wire [0:`NCLK_WIDTH-1] my_lclk[0:ways-1]; wire tiup; wire [0:scan_right] siv; wire [0:scan_right] sov; (* analysis_not_referenced="true" *) wire unused; generate // Read/Write Port Address Generate assign ramb_rd_addr[11:15] = 5'b0; assign ramb_wr_addr[11:15] = 5'b0; assign rd_act_d = rd_act; assign tiup = 1'b1; genvar bb; genvar way; genvar b; for (bb = 0; bb <= numBytes; bb = bb + 1) begin : swzl for (way = 0; way < ways; way = way + 1) begin : perWay if (way < (ways/2)) begin : fhalf assign data_in_swzl[way][(bb * 8) + bb:(((bb * 8) + 7) + bb)] = {data_in0_pad[bb + (0 * (numBytes + 1))], data_in0_pad[bb + (1 * (numBytes + 1))], data_in0_pad[bb + (2 * (numBytes + 1))], data_in0_pad[bb + (3 * (numBytes + 1))], data_in0_pad[bb + (4 * (numBytes + 1))], data_in0_pad[bb + (5 * (numBytes + 1))], data_in0_pad[bb + (6 * (numBytes + 1))], data_in0_pad[bb + (7 * (numBytes + 1))]}; assign data_in_swzl[way][(((bb * 8) + bb) + 8)] = data_in0_pad[bb + (8 * (numBytes + 1))]; end if (way >= (ways/2)) begin : shalf assign data_in_swzl[way][(bb * 8) + bb:(((bb * 8) + 7) + bb)] = {data_in1_pad[bb + (0 * (numBytes + 1))], data_in1_pad[bb + (1 * (numBytes + 1))], data_in1_pad[bb + (2 * (numBytes + 1))], data_in1_pad[bb + (3 * (numBytes + 1))], data_in1_pad[bb + (4 * (numBytes + 1))], data_in1_pad[bb + (5 * (numBytes + 1))], data_in1_pad[bb + (6 * (numBytes + 1))], data_in1_pad[bb + (7 * (numBytes + 1))]}; assign data_in_swzl[way][(((bb * 8) + bb) + 8)] = data_in1_pad[bb + (8 * (numBytes + 1))]; end end end genvar t; for (t = 0; t < 11; t = t + 1) begin : rambAddrCalc if (t < (11-addresswidth)) begin assign ramb_rd_addr[t] = 1'b0; assign ramb_wr_addr[t] = 1'b0; end if (t >= (11-addresswidth)) begin assign ramb_rd_addr[t] = rd_addr[t - (11 - addresswidth)]; assign ramb_wr_addr[t] = wr_addr[t - (11 - addresswidth)]; end end for (b = 0; b <= dataWidth; b = b + 1) begin : dFixUp if (b < port_bitwidth) begin assign data_in0_pad[b] = data_in0[b]; assign data_in1_pad[b] = data_in1[b]; end if (b >= port_bitwidth) begin assign data_in0_pad[b] = 1'b0; assign data_in1_pad[b] = 1'b0; end end //genvar way; for (way = 0; way < ways; way = way + 1) begin : NwayDatInFix //genvar bb; for (bb = 0; bb <= (dataWidth)/9; bb = bb + 1) begin : dFixUp assign p0_arr_data_in[way][bb * 8:(bb * 8) + 7] = 8'h00; assign p0_arr_par_in[way][bb] = 1'b0; assign p1_arr_data_in[way][bb * 8:(bb * 8) + 7] = data_in_swzl[way][(bb * 8) + bb:(((bb * 8) + 7) + bb)]; assign p1_arr_par_in[way][bb] = data_in_swzl[way][(((bb * 8) + bb) + 8)]; end end //genvar way; for (way = 0; way < ways; way = way + 1) begin : NwayDatOutFix //genvar bb; for (bb = 0; bb <= (dataWidth)/9; bb = bb + 1) begin : dFixUp assign p0_data_out_pad[way][(bb * 8) + bb:(((bb * 8) + 7) + bb)] = p0_arr_data_out[way][bb * 8:(bb * 8) + 7]; assign p0_data_out_pad[way][(((bb * 8) + bb) + 8)] = p0_arr_par_out[way][bb]; assign p1_data_out_pad[way][(bb * 8) + bb:(((bb * 8) + 7) + bb)] = p1_arr_data_out[way][bb * 8:(bb * 8) + 7]; assign p1_data_out_pad[way][(((bb * 8) + bb) + 8)] = p1_arr_par_out[way][bb]; end end //genvar way; for (way = 0; way < ways; way = way + 1) begin : NwayDatOut assign p0_data_out_swzl[way * port_bitwidth:(way * port_bitwidth) + port_bitwidth - 1] = p0_data_out_pad[way][0:port_bitwidth - 1]; assign p1_data_out_swzl[way * port_bitwidth:(way * port_bitwidth) + port_bitwidth - 1] = p1_data_out_pad[way][0:port_bitwidth - 1]; //genvar bb; for (bb = 0; bb <= numBytes; bb = bb + 1) begin : swzl assign data_out_fix[(way * port_bitwidth) + (0 * (numBytes + 1)) + bb] = p0_data_out_swzl[(way * port_bitwidth) + ((bb * 8) + bb) + 0]; assign data_out_fix[(way * port_bitwidth) + (1 * (numBytes + 1)) + bb] = p0_data_out_swzl[(way * port_bitwidth) + ((bb * 8) + bb) + 1]; assign data_out_fix[(way * port_bitwidth) + (2 * (numBytes + 1)) + bb] = p0_data_out_swzl[(way * port_bitwidth) + ((bb * 8) + bb) + 2]; assign data_out_fix[(way * port_bitwidth) + (3 * (numBytes + 1)) + bb] = p0_data_out_swzl[(way * port_bitwidth) + ((bb * 8) + bb) + 3]; assign data_out_fix[(way * port_bitwidth) + (4 * (numBytes + 1)) + bb] = p0_data_out_swzl[(way * port_bitwidth) + ((bb * 8) + bb) + 4]; assign data_out_fix[(way * port_bitwidth) + (5 * (numBytes + 1)) + bb] = p0_data_out_swzl[(way * port_bitwidth) + ((bb * 8) + bb) + 5]; assign data_out_fix[(way * port_bitwidth) + (6 * (numBytes + 1)) + bb] = p0_data_out_swzl[(way * port_bitwidth) + ((bb * 8) + bb) + 6]; assign data_out_fix[(way * port_bitwidth) + (7 * (numBytes + 1)) + bb] = p0_data_out_swzl[(way * port_bitwidth) + ((bb * 8) + bb) + 7]; assign data_out_fix[(way * port_bitwidth) + (8 * (numBytes + 1)) + bb] = p0_data_out_swzl[(way * port_bitwidth) + ((bb * 8) + bb) + 8]; end end assign data_out_d = data_out_fix; assign data_out = ~data_out_b_q; //genvar way; for (way = 0; way < ways; way = way + 1) begin : Nways //genvar bb; for (bb = 0; bb < ((((port_bitwidth - 1)/36) + 1) * 4); bb = bb + 1) begin : BEn if (bb <= (port_bitwidth - 1)/9) begin assign p0_wayEn[way][bb] = 1'b0; assign p1_wayEn[way][bb] = wr_way[way]; end if (bb > (port_bitwidth - 1)/9) begin assign p0_wayEn[way][bb] = 1'b0; assign p1_wayEn[way][bb] = 1'b0; end end // Port A => Read Port // Port B => Write Port genvar arr; for (arr = 0; arr <= ((port_bitwidth - 1)/36); arr = arr + 1) begin : Narrs RAMB36 #(.SIM_COLLISION_CHECK("NONE"), .READ_WIDTH_A(36), .READ_WIDTH_B(36), .WRITE_WIDTH_A(36), .WRITE_WIDTH_B(36), .WRITE_MODE_A("READ_FIRST"), .WRITE_MODE_B("READ_FIRST")) wayArr( .CASCADEOUTLATA(cascadeoutlata[arr]), .CASCADEOUTLATB(cascadeoutlatb[arr]), .CASCADEOUTREGA(cascadeoutrega[arr]), .CASCADEOUTREGB(cascadeoutregb[arr]), .DOA(p0_arr_data_out[way][(arr * 32) + 0:(arr * 32) + 31]), .DOB(p1_arr_data_out[way][(arr * 32) + 0:(arr * 32) + 31]), .DOPA(p0_arr_par_out[way][(arr * 4) + 0:(arr * 4) + 3]), .DOPB(p1_arr_par_out[way][(arr * 4) + 0:(arr * 4) + 3]), .ADDRA(ramb_rd_addr), .ADDRB(ramb_wr_addr), .CASCADEINLATA(1'b0), .CASCADEINLATB(1'b0), .CASCADEINREGA(1'b0), .CASCADEINREGB(1'b0), .CLKA(nclk[0]), .CLKB(nclk[0]), .DIA(p0_arr_data_in[way][(arr * 32) + 0:(arr * 32) + 31]), .DIB(p1_arr_data_in[way][(arr * 32) + 0:(arr * 32) + 31]), .DIPA(p0_arr_par_in[way][(arr * 4) + 0:(arr * 4) + 3]), .DIPB(p1_arr_par_in[way][(arr * 4) + 0:(arr * 4) + 3]), .ENA(rd_act[way]), .ENB(wr_act[way]), .REGCEA(1'b0), .REGCEB(1'b0), .SSRA(nclk[1]), //sreset .SSRB(nclk[1]), //sreset .WEA(p0_wayEn[way][(arr * 4) + 0:(arr * 4) + 3]), .WEB(p1_wayEn[way][(arr * 4) + 0:(arr * 4) + 3]) ); end end //Nways assign abst_scan_out = 4'b0; assign time_scan_out = 1'b0; assign repr_scan_out = 1'b0; assign bo_pc_failout = 4'h0; assign bo_pc_diagloop = 4'h0; endgenerate assign unused = |({ cascadeoutlata , cascadeoutlatb , cascadeoutrega , cascadeoutregb , nclk[0:`NCLK_WIDTH-1] , gnd , vdd , vcs , sg_0 , ary_nsl_thold_0 , abst_sl_thold_0 , time_sl_thold_0 , repr_sl_thold_0 , g8t_clkoff_dc_b, ccflush_dc, scan_dis_dc_b, scan_diag_dc, g8t_d_mode_dc, g8t_mpw1_dc_b, g8t_mpw2_dc_b, g8t_delay_lclkr_dc, wr_abst_act, rd0_abst_act, abist_di, abist_bw_odd, abist_bw_even, abist_wr_adr, abist_rd0_adr, tc_lbist_ary_wrt_thru_dc, abist_ena_1, abist_g8t_rd0_comp_ena, abist_raw_dc_b, obs0_abist_cmp, abst_scan_in, time_scan_in, repr_scan_in, func_scan_in, lcb_bolt_sl_thold_0, pc_bo_enable_2, pc_bo_reset, pc_bo_unload, pc_bo_repair, pc_bo_shdata, pc_bo_select, tri_lcb_mpw1_dc_b, tri_lcb_mpw2_dc_b, tri_lcb_delay_lclkr_dc, tri_lcb_clkoff_dc_b, tri_lcb_act_dis_dc, p1_data_out_swzl}); // ############################################################### // ## Latches // ############################################################### tri_rlmreg_p #(.WIDTH(ways), .INIT(0), .NEEDS_SRESET(1)) rd_act_reg( .vd(vdd), .gd(gnd), .nclk(nclk), .act(tiup), .force_t(func_sl_force), .d_mode(d_mode_dc), .delay_lclkr(delay_lclkr_dc), .mpw1_b(mpw1_dc_b), .mpw2_b(mpw2_dc_b), .thold_b(func_sl_thold_0_b), .sg(sg_0), .scin(siv[rd_act_offset:rd_act_offset + ways - 1]), .scout(sov[rd_act_offset:rd_act_offset + ways - 1]), .din(rd_act_d), .dout(rd_act_q) ); generate //genvar way; for (way=0; way