// © IBM Corp. 2020
// Licensed under the Apache License, Version 2.0 (the "License"), as modified by
// the terms below; you may not use the files in this repository except in
// compliance with the License as modified.
// You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
//
// Modified Terms:
//
//    1) For the purpose of the patent license granted to you in Section 3 of the
//    License, the "Work" hereby includes implementations of the work of authorship
//    in physical form.
//
//    2) Notwithstanding any terms to the contrary in the License, any licenses
//    necessary for implementation of the Work that are available from OpenPOWER
//    via the Power ISA End User License Agreement (EULA) are explicitly excluded
//    hereunder, and may be obtained from OpenPOWER under the terms and conditions
//    of the EULA.
//
// Unless required by applicable law or agreed to in writing, the reference design
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License
// for the specific language governing permissions and limitations under the License.
//
// Additional rights, including the ability to physically implement a softcore that
// is compliant with the required sections of the Power ISA Specification, are
// available at no cost under the terms of the OpenPOWER Power ISA EULA, which can be
// obtained (along with the Power ISA) here: https://openpowerfoundation.org.

`timescale 1 ns / 1 ns

//  Description:  XU CPL - Configurable Flush Delay Counter
//
//*****************************************************************************
`include "tri_a2o.vh"

module xu_fctr
#(
   parameter               CLOCKGATE = 1,
   parameter               PASSTHRU = 1,
   parameter               DELAY_WIDTH = 4,
   parameter               WIDTH = 2
)
(
   input                   clk,
   input                   rst,

   input                   force_t,
   input                   thold_b,
   input                   sg,
   input                   d_mode,
   input                   delay_lclkr,
   input                   mpw1_b,
   input                   mpw2_b,

   input                   scin,
   output                  scout,

   input [0:WIDTH-1]       din,
   output [0:WIDTH-1]      dout,
   input [0:DELAY_WIDTH-1] delay,

   inout                   vdd,
   inout                   gnd
);


   // Latches
   wire [0:DELAY_WIDTH-1]  delay_q[0:WIDTH-1];
   wire [0:DELAY_WIDTH-1]  delay_d[0:WIDTH-1];
   // Scanchains
   localparam              delay_offset = 0;
   localparam              scan_right = delay_offset + DELAY_WIDTH*WIDTH;
   wire [0:scan_right-1]   siv;
   wire [0:scan_right-1]   sov;
   // Signals
   wire [0:WIDTH-1]     set;
   wire [0:WIDTH-1]     zero_b;
   wire [0:WIDTH-1]     act;

   generate
      genvar                  t;
      for (t=0;t<=WIDTH-1;t=t+1)
      begin : threads_gen
         wire [0:DELAY_WIDTH-1]   delay_m1;

         assign set[t] = din[t];
         assign zero_b[t] = |(delay_q[t]);
         assign delay_m1 = delay_q[t] - {{DELAY_WIDTH-1{1'b0}},1'b1};

         if (CLOCKGATE == 0) begin : clockgate_0
            assign act[t] = set[t] | zero_b[t];

            assign delay_d[t] = ({set[t], zero_b[t]} == 2'b11) ? delay :
                                ({set[t], zero_b[t]} == 2'b10) ? delay :
                                ({set[t], zero_b[t]} == 2'b01) ? delay_m1 :
                                delay_q[t];
         end
         if (CLOCKGATE == 1) begin : clockgate_1
            assign act[t] = set[t] | zero_b[t];

            assign delay_d[t] = (set[t] == 1'b1) ? delay :
                                delay_m1;
         end

         if (PASSTHRU == 1)begin : PASSTHRU_gen_1
            assign dout[t] = zero_b[t] | din[t];
         end
         if (PASSTHRU == 0) begin : PASSTHRU_gen_0
            assign dout[t] = zero_b[t];
         end

         tri_rlmreg_p #(.WIDTH(DELAY_WIDTH), .INIT(0), .NEEDS_SRESET(1)) delay_latch(
            .clk(clk),
            .rst(rst),
            .vd(vdd),
            .gd(gnd),
            .act(act[t]),
            .force_t(force_t),
            .d_mode(d_mode),
            .delay_lclkr(delay_lclkr),
            .mpw1_b(mpw1_b),
            .mpw2_b(mpw2_b),
            .thold_b(thold_b),
            .sg(sg),
            .scin(siv[delay_offset+DELAY_WIDTH*t:delay_offset+DELAY_WIDTH*(t+1)-1]),
            .scout(sov[delay_offset+DELAY_WIDTH*t:delay_offset+DELAY_WIDTH*(t+1)-1]),
            .din(delay_d[t]),
            .dout(delay_q[t])
         );
      end
   endgenerate

assign siv[0:scan_right - 1] = {sov[1:scan_right - 1], scin};
assign scout = sov[0];

endmodule