library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library unisim; use unisim.vcomponents.all; library work; use work.wishbone_types.all; entity toplevel is generic ( MEMORY_SIZE : integer := 16384; RAM_INIT_FILE : string := "firmware.hex"; RESET_LOW : boolean := true; CLK_FREQUENCY : positive := 100000000; HAS_FPU : boolean := true; HAS_BTC : boolean := true; USE_LITEDRAM : boolean := false; NO_BRAM : boolean := false; DISABLE_FLATTEN_CORE : boolean := false; SCLK_STARTUPE2 : boolean := false; SPI_FLASH_OFFSET : integer := 4194304; SPI_FLASH_DEF_CKDV : natural := 1; SPI_FLASH_DEF_QUAD : boolean := true; LOG_LENGTH : natural := 512; USE_LITEETH : boolean := false; UART_IS_16550 : boolean := false; HAS_UART1 : boolean := true; USE_LITESDCARD : boolean := false; HAS_GPIO : boolean := true; NGPIO : natural := 32 ); port( ext_clk : in std_ulogic; ext_rst_n : in std_ulogic; -- UART0 signals: uart_main_tx : out std_ulogic; uart_main_rx : in std_ulogic; -- LEDs led_b : out std_ulogic_vector(3 downto 0); led_g : out std_ulogic_vector(3 downto 0); led_r : out std_ulogic_vector(3 downto 0); led4 : out std_ulogic; led5 : out std_ulogic; led6 : out std_ulogic; led7 : out std_ulogic; -- SPI spi_flash_cs_n : out std_ulogic; spi_flash_clk : out std_ulogic; spi_flash_mosi : inout std_ulogic; spi_flash_miso : inout std_ulogic; spi_flash_wp_n : inout std_ulogic; spi_flash_hold_n : inout std_ulogic; -- Switches and buttons btn0 : in std_ulogic; btn1 : in std_ulogic; btn2 : in std_ulogic; btn3 : in std_ulogic; sw0 : in std_ulogic; sw1 : in std_ulogic; sw2 : in std_ulogic; sw3 : in std_ulogic; -- GPIO shield_io0 : inout std_ulogic; shield_io1 : inout std_ulogic; shield_io2 : inout std_ulogic; shield_io3 : inout std_ulogic; shield_io4 : inout std_ulogic; shield_io5 : inout std_ulogic; shield_io6 : inout std_ulogic; shield_io7 : inout std_ulogic; shield_io8 : inout std_ulogic; shield_io9 : inout std_ulogic; shield_io10 : inout std_ulogic; shield_io11 : inout std_ulogic; shield_io12 : inout std_ulogic; shield_io13 : inout std_ulogic; shield_io26 : inout std_ulogic; shield_io27 : inout std_ulogic; shield_io28 : inout std_ulogic; shield_io29 : inout std_ulogic; shield_io30 : inout std_ulogic; shield_io31 : inout std_ulogic; shield_io32 : inout std_ulogic; shield_io33 : inout std_ulogic; shield_io34 : inout std_ulogic; shield_io35 : inout std_ulogic; shield_io36 : inout std_ulogic; shield_io37 : inout std_ulogic; shield_io38 : inout std_ulogic; shield_io39 : inout std_ulogic; shield_io40 : inout std_ulogic; shield_io41 : inout std_ulogic; shield_io43 : inout std_ulogic; shield_io44 : inout std_ulogic; -- Ethernet eth_ref_clk : out std_ulogic; eth_clocks_tx : in std_ulogic; eth_clocks_rx : in std_ulogic; eth_rst_n : out std_ulogic; eth_mdio : inout std_ulogic; eth_mdc : out std_ulogic; eth_rx_dv : in std_ulogic; eth_rx_er : in std_ulogic; eth_rx_data : in std_ulogic_vector(3 downto 0); eth_tx_en : out std_ulogic; eth_tx_data : out std_ulogic_vector(3 downto 0); eth_col : in std_ulogic; eth_crs : in std_ulogic; -- SD card sdcard_data : inout std_ulogic_vector(3 downto 0); sdcard_cmd : inout std_ulogic; sdcard_clk : out std_ulogic; sdcard_cd : in std_ulogic; -- DRAM wires ddram_a : out std_ulogic_vector(13 downto 0); ddram_ba : out std_ulogic_vector(2 downto 0); ddram_ras_n : out std_ulogic; ddram_cas_n : out std_ulogic; ddram_we_n : out std_ulogic; ddram_cs_n : out std_ulogic; ddram_dm : out std_ulogic_vector(1 downto 0); ddram_dq : inout std_ulogic_vector(15 downto 0); ddram_dqs_p : inout std_ulogic_vector(1 downto 0); ddram_dqs_n : inout std_ulogic_vector(1 downto 0); ddram_clk_p : out std_ulogic; ddram_clk_n : out std_ulogic; ddram_cke : out std_ulogic; ddram_odt : out std_ulogic; ddram_reset_n : out std_ulogic ); end entity toplevel; architecture behaviour of toplevel is -- Reset signals: signal soc_rst : std_ulogic; signal pll_rst : std_ulogic; signal sw_rst : std_ulogic; signal periph_rst : std_ulogic; -- Internal clock signals: signal system_clk : std_ulogic; signal system_clk_locked : std_ulogic; signal eth_clk_locked : std_ulogic; -- External IOs from the SoC signal wb_ext_io_in : wb_io_master_out; signal wb_ext_io_out : wb_io_slave_out; signal wb_ext_is_dram_csr : std_ulogic; signal wb_ext_is_dram_init : std_ulogic; signal wb_ext_is_eth : std_ulogic; signal wb_ext_is_sdcard : std_ulogic; -- DRAM main data wishbone connection signal wb_dram_in : wishbone_master_out; signal wb_dram_out : wishbone_slave_out; -- DRAM control wishbone connection signal wb_dram_ctrl_out : wb_io_slave_out := wb_io_slave_out_init; -- LiteEth connection signal ext_irq_eth : std_ulogic; signal wb_eth_out : wb_io_slave_out := wb_io_slave_out_init; -- LiteSDCard connection signal ext_irq_sdcard : std_ulogic := '0'; signal wb_sdcard_out : wb_io_slave_out := wb_io_slave_out_init; signal wb_sddma_out : wb_io_master_out := wb_io_master_out_init; signal wb_sddma_in : wb_io_slave_out; signal wb_sddma_nr : wb_io_master_out; signal wb_sddma_ir : wb_io_slave_out; -- for conversion from non-pipelined wishbone to pipelined signal wb_sddma_stb_sent : std_ulogic; -- Status LED signal led_b_pwm : std_ulogic_vector(3 downto 0); signal led_r_pwm : std_ulogic_vector(3 downto 0); signal led_g_pwm : std_ulogic_vector(3 downto 0); -- Dumb PWM for the LEDs, those RGB LEDs are too bright otherwise signal pwm_counter : std_ulogic_vector(8 downto 0); -- SPI flash signal spi_sck : std_ulogic; signal spi_cs_n : std_ulogic; signal spi_sdat_o : std_ulogic_vector(3 downto 0); signal spi_sdat_oe : std_ulogic_vector(3 downto 0); signal spi_sdat_i : std_ulogic_vector(3 downto 0); -- GPIO signal gpio_in : std_ulogic_vector(NGPIO - 1 downto 0); signal gpio_out : std_ulogic_vector(NGPIO - 1 downto 0); signal gpio_dir : std_ulogic_vector(NGPIO - 1 downto 0); -- ddram clock signals as vectors signal ddram_clk_p_vec : std_logic_vector(0 downto 0); signal ddram_clk_n_vec : std_logic_vector(0 downto 0); signal uart1_rxd : std_ulogic; signal uart1_txd : std_ulogic; -- Fixup various memory sizes based on generics function get_bram_size return natural is begin if USE_LITEDRAM and NO_BRAM then return 0; else return MEMORY_SIZE; end if; end function; function get_payload_size return natural is begin if USE_LITEDRAM and NO_BRAM then return MEMORY_SIZE; else return 0; end if; end function; constant BRAM_SIZE : natural := get_bram_size; constant PAYLOAD_SIZE : natural := get_payload_size; begin -- Main SoC soc0: entity work.soc generic map( MEMORY_SIZE => BRAM_SIZE, RAM_INIT_FILE => RAM_INIT_FILE, SIM => false, CLK_FREQ => CLK_FREQUENCY, HAS_FPU => HAS_FPU, HAS_BTC => HAS_BTC, HAS_DRAM => USE_LITEDRAM, DRAM_SIZE => 256 * 1024 * 1024, DRAM_INIT_SIZE => PAYLOAD_SIZE, DISABLE_FLATTEN_CORE => DISABLE_FLATTEN_CORE, HAS_SPI_FLASH => true, SPI_FLASH_DLINES => 4, SPI_FLASH_OFFSET => SPI_FLASH_OFFSET, SPI_FLASH_DEF_CKDV => SPI_FLASH_DEF_CKDV, SPI_FLASH_DEF_QUAD => SPI_FLASH_DEF_QUAD, LOG_LENGTH => LOG_LENGTH, HAS_LITEETH => USE_LITEETH, UART0_IS_16550 => UART_IS_16550, HAS_UART1 => HAS_UART1, HAS_SD_CARD => USE_LITESDCARD, HAS_GPIO => HAS_GPIO, NGPIO => NGPIO ) port map ( -- System signals system_clk => system_clk, rst => soc_rst, sw_soc_reset => sw_rst, -- UART signals uart0_txd => uart_main_tx, uart0_rxd => uart_main_rx, -- UART1 signals uart1_txd => uart1_txd, uart1_rxd => uart1_rxd, -- SPI signals spi_flash_sck => spi_sck, spi_flash_cs_n => spi_cs_n, spi_flash_sdat_o => spi_sdat_o, spi_flash_sdat_oe => spi_sdat_oe, spi_flash_sdat_i => spi_sdat_i, -- GPIO signals gpio_in => gpio_in, gpio_out => gpio_out, gpio_dir => gpio_dir, -- External interrupts ext_irq_eth => ext_irq_eth, ext_irq_sdcard => ext_irq_sdcard, -- DRAM wishbone wb_dram_in => wb_dram_in, wb_dram_out => wb_dram_out, -- IO wishbone wb_ext_io_in => wb_ext_io_in, wb_ext_io_out => wb_ext_io_out, wb_ext_is_dram_csr => wb_ext_is_dram_csr, wb_ext_is_dram_init => wb_ext_is_dram_init, wb_ext_is_eth => wb_ext_is_eth, wb_ext_is_sdcard => wb_ext_is_sdcard, -- DMA wishbone wishbone_dma_in => wb_sddma_in, wishbone_dma_out => wb_sddma_out ); uart1_txd <= '1'; -- SPI Flash -- -- Note: Unlike many other boards, the SPI flash on the Arty has -- an actual pin to generate the clock and doesn't require to use -- the STARTUPE2 primitive. -- spi_flash_cs_n <= spi_cs_n; spi_flash_mosi <= spi_sdat_o(0) when spi_sdat_oe(0) = '1' else 'Z'; spi_flash_miso <= spi_sdat_o(1) when spi_sdat_oe(1) = '1' else 'Z'; spi_flash_wp_n <= spi_sdat_o(2) when spi_sdat_oe(2) = '1' else 'Z'; spi_flash_hold_n <= spi_sdat_o(3) when spi_sdat_oe(3) = '1' else 'Z'; spi_sdat_i(0) <= spi_flash_mosi; spi_sdat_i(1) <= spi_flash_miso; spi_sdat_i(2) <= spi_flash_wp_n; spi_sdat_i(3) <= spi_flash_hold_n; spi_sclk_startupe2: if SCLK_STARTUPE2 generate spi_flash_clk <= 'Z'; STARTUPE2_INST: STARTUPE2 port map ( CLK => '0', GSR => '0', GTS => '0', KEYCLEARB => '0', PACK => '0', USRCCLKO => spi_sck, USRCCLKTS => '0', USRDONEO => '1', USRDONETS => '0' ); end generate; spi_direct_sclk: if not SCLK_STARTUPE2 generate spi_flash_clk <= spi_sck; end generate; nodram: if not USE_LITEDRAM generate signal ddram_clk_dummy : std_ulogic; signal gen_rst : std_ulogic; begin reset_controller: entity work.soc_reset generic map( RESET_LOW => RESET_LOW ) port map( ext_clk => ext_clk, pll_clk => system_clk, pll_locked_in => system_clk_locked and eth_clk_locked, ext_rst_in => ext_rst_n, pll_rst_out => pll_rst, rst_out => gen_rst ); soc_rst <= gen_rst; clkgen: entity work.clock_generator generic map( CLK_INPUT_HZ => 100000000, CLK_OUTPUT_HZ => CLK_FREQUENCY ) port map( ext_clk => ext_clk, pll_rst_in => pll_rst, pll_clk_out => system_clk, pll_locked_out => system_clk_locked ); led_b_pwm <= "1111"; led_r_pwm <= "1111"; led_g_pwm <= "0000"; -- Vivado barfs on those differential signals if left -- unconnected. So instanciate a diff. buffer and feed -- it a constant '0'. dummy_dram_clk: OBUFDS port map ( O => ddram_clk_p, OB => ddram_clk_n, I => ddram_clk_dummy ); ddram_clk_dummy <= '0'; end generate; has_dram: if USE_LITEDRAM generate signal dram_init_done : std_ulogic; signal dram_init_error : std_ulogic; signal gen_rst : std_ulogic; begin -- Eventually dig out the frequency from the generator -- but for now, assert it's 100Mhz assert CLK_FREQUENCY = 100000000; reset_controller: entity work.soc_reset generic map( RESET_LOW => RESET_LOW, PLL_RESET_BITS => 18, SOC_RESET_BITS => 1 ) port map( ext_clk => ext_clk, pll_clk => system_clk, pll_locked_in => eth_clk_locked, ext_rst_in => ext_rst_n, pll_rst_out => pll_rst, rst_out => open ); -- Generate SoC reset soc_rst_gen: process(system_clk, ext_rst_n) begin -- XXX why does this need to be an asynchronous reset? if ext_rst_n = '0' then soc_rst <= '1'; elsif rising_edge(system_clk) then soc_rst <= gen_rst or not eth_clk_locked or not system_clk_locked; end if; end process; ddram_clk_p_vec <= (others => ddram_clk_p); ddram_clk_n_vec <= (others => ddram_clk_n); dram: entity work.litedram_wrapper generic map( DRAM_ABITS => 24, DRAM_ALINES => 14, DRAM_DLINES => 16, DRAM_CKLINES => 1, DRAM_PORT_WIDTH => 128, PAYLOAD_FILE => RAM_INIT_FILE, PAYLOAD_SIZE => PAYLOAD_SIZE ) port map( clk_in => ext_clk, rst => pll_rst, system_clk => system_clk, system_reset => gen_rst, pll_locked => system_clk_locked, wb_in => wb_dram_in, wb_out => wb_dram_out, wb_ctrl_in => wb_ext_io_in, wb_ctrl_out => wb_dram_ctrl_out, wb_ctrl_is_csr => wb_ext_is_dram_csr, wb_ctrl_is_init => wb_ext_is_dram_init, init_done => dram_init_done, init_error => dram_init_error, ddram_a => ddram_a, ddram_ba => ddram_ba, ddram_ras_n => ddram_ras_n, ddram_cas_n => ddram_cas_n, ddram_we_n => ddram_we_n, ddram_cs_n => ddram_cs_n, ddram_dm => ddram_dm, ddram_dq => ddram_dq, ddram_dqs_p => ddram_dqs_p, ddram_dqs_n => ddram_dqs_n, ddram_clk_p => ddram_clk_p_vec, ddram_clk_n => ddram_clk_n_vec, ddram_cke => ddram_cke, ddram_odt => ddram_odt, ddram_reset_n => ddram_reset_n ); led_b_pwm(0) <= not dram_init_done; led_r_pwm(0) <= dram_init_error; led_g_pwm(0) <= dram_init_done and not dram_init_error; end generate; periph_rst <= soc_rst or sw_rst; has_liteeth : if USE_LITEETH generate component liteeth_core port ( sys_clock : in std_ulogic; sys_reset : in std_ulogic; mii_clocks_tx : in std_ulogic; mii_clocks_rx : in std_ulogic; mii_rst_n : out std_ulogic; mii_mdio : in std_ulogic; mii_mdc : out std_ulogic; mii_rx_dv : in std_ulogic; mii_rx_er : in std_ulogic; mii_rx_data : in std_ulogic_vector(3 downto 0); mii_tx_en : out std_ulogic; mii_tx_data : out std_ulogic_vector(3 downto 0); mii_col : in std_ulogic; mii_crs : in std_ulogic; wishbone_adr : in std_ulogic_vector(29 downto 0); wishbone_dat_w : in std_ulogic_vector(31 downto 0); wishbone_dat_r : out std_ulogic_vector(31 downto 0); wishbone_sel : in std_ulogic_vector(3 downto 0); wishbone_cyc : in std_ulogic; wishbone_stb : in std_ulogic; wishbone_ack : out std_ulogic; wishbone_we : in std_ulogic; wishbone_cti : in std_ulogic_vector(2 downto 0); wishbone_bte : in std_ulogic_vector(1 downto 0); wishbone_err : out std_ulogic; interrupt : out std_ulogic ); end component; signal wb_eth_cyc : std_ulogic; signal wb_eth_adr : std_ulogic_vector(29 downto 0); -- Change this to use a PLL instead of a BUFR to generate the 25Mhz -- reference clock to the PHY. constant USE_PLL : boolean := false; begin eth_use_pll: if USE_PLL generate signal eth_clk_25 : std_ulogic; signal eth_clkfb : std_ulogic; begin pll_eth : PLLE2_BASE generic map ( BANDWIDTH => "OPTIMIZED", CLKFBOUT_MULT => 16, CLKIN1_PERIOD => 10.0, CLKOUT0_DIVIDE => 64, DIVCLK_DIVIDE => 1, STARTUP_WAIT => "FALSE") port map ( CLKOUT0 => eth_clk_25, CLKOUT1 => open, CLKOUT2 => open, CLKOUT3 => open, CLKOUT4 => open, CLKOUT5 => open, CLKFBOUT => eth_clkfb, LOCKED => eth_clk_locked, CLKIN1 => ext_clk, PWRDWN => '0', RST => pll_rst, CLKFBIN => eth_clkfb); eth_clk_buf: BUFG port map ( I => eth_clk_25, O => eth_ref_clk ); end generate; eth_use_bufr: if not USE_PLL generate eth_clk_div: BUFR generic map ( BUFR_DIVIDE => "4" ) port map ( I => system_clk, O => eth_ref_clk, CE => '1', CLR => '0' ); eth_clk_locked <= '1'; end generate; liteeth : liteeth_core port map( sys_clock => system_clk, sys_reset => periph_rst, mii_clocks_tx => eth_clocks_tx, mii_clocks_rx => eth_clocks_rx, mii_rst_n => eth_rst_n, mii_mdio => eth_mdio, mii_mdc => eth_mdc, mii_rx_dv => eth_rx_dv, mii_rx_er => eth_rx_er, mii_rx_data => eth_rx_data, mii_tx_en => eth_tx_en, mii_tx_data => eth_tx_data, mii_col => eth_col, mii_crs => eth_crs, wishbone_adr => wb_eth_adr, wishbone_dat_w => wb_ext_io_in.dat, wishbone_dat_r => wb_eth_out.dat, wishbone_sel => wb_ext_io_in.sel, wishbone_cyc => wb_eth_cyc, wishbone_stb => wb_ext_io_in.stb, wishbone_ack => wb_eth_out.ack, wishbone_we => wb_ext_io_in.we, wishbone_cti => "000", wishbone_bte => "00", wishbone_err => open, interrupt => ext_irq_eth ); -- Gate cyc with "chip select" from soc wb_eth_cyc <= wb_ext_io_in.cyc and wb_ext_is_eth; -- Remove top address bits as liteeth decoder doesn't know about them wb_eth_adr <= x"000" & "000" & wb_ext_io_in.adr(14 downto 0); -- LiteETH isn't pipelined wb_eth_out.stall <= not wb_eth_out.ack; end generate; no_liteeth : if not USE_LITEETH generate eth_clk_locked <= '1'; ext_irq_eth <= '0'; end generate; -- SD card pmod has_sdcard : if USE_LITESDCARD generate component litesdcard_core port ( clk : in std_ulogic; rst : in std_ulogic; -- wishbone for accessing control registers wb_ctrl_adr : in std_ulogic_vector(29 downto 0); wb_ctrl_dat_w : in std_ulogic_vector(31 downto 0); wb_ctrl_dat_r : out std_ulogic_vector(31 downto 0); wb_ctrl_sel : in std_ulogic_vector(3 downto 0); wb_ctrl_cyc : in std_ulogic; wb_ctrl_stb : in std_ulogic; wb_ctrl_ack : out std_ulogic; wb_ctrl_we : in std_ulogic; wb_ctrl_cti : in std_ulogic_vector(2 downto 0); wb_ctrl_bte : in std_ulogic_vector(1 downto 0); wb_ctrl_err : out std_ulogic; -- wishbone for SD card core to use for DMA wb_dma_adr : out std_ulogic_vector(29 downto 0); wb_dma_dat_w : out std_ulogic_vector(31 downto 0); wb_dma_dat_r : in std_ulogic_vector(31 downto 0); wb_dma_sel : out std_ulogic_vector(3 downto 0); wb_dma_cyc : out std_ulogic; wb_dma_stb : out std_ulogic; wb_dma_ack : in std_ulogic; wb_dma_we : out std_ulogic; wb_dma_cti : out std_ulogic_vector(2 downto 0); wb_dma_bte : out std_ulogic_vector(1 downto 0); wb_dma_err : in std_ulogic; -- connections to SD card sdcard_data : inout std_ulogic_vector(3 downto 0); sdcard_cmd : inout std_ulogic; sdcard_clk : out std_ulogic; sdcard_cd : in std_ulogic; irq : out std_ulogic ); end component; signal wb_sdcard_cyc : std_ulogic; signal wb_sdcard_adr : std_ulogic_vector(29 downto 0); begin litesdcard : litesdcard_core port map ( clk => system_clk, rst => periph_rst, wb_ctrl_adr => wb_sdcard_adr, wb_ctrl_dat_w => wb_ext_io_in.dat, wb_ctrl_dat_r => wb_sdcard_out.dat, wb_ctrl_sel => wb_ext_io_in.sel, wb_ctrl_cyc => wb_sdcard_cyc, wb_ctrl_stb => wb_ext_io_in.stb, wb_ctrl_ack => wb_sdcard_out.ack, wb_ctrl_we => wb_ext_io_in.we, wb_ctrl_cti => "000", wb_ctrl_bte => "00", wb_ctrl_err => open, wb_dma_adr => wb_sddma_nr.adr, wb_dma_dat_w => wb_sddma_nr.dat, wb_dma_dat_r => wb_sddma_ir.dat, wb_dma_sel => wb_sddma_nr.sel, wb_dma_cyc => wb_sddma_nr.cyc, wb_dma_stb => wb_sddma_nr.stb, wb_dma_ack => wb_sddma_ir.ack, wb_dma_we => wb_sddma_nr.we, wb_dma_cti => open, wb_dma_bte => open, wb_dma_err => '0', sdcard_data => sdcard_data, sdcard_cmd => sdcard_cmd, sdcard_clk => sdcard_clk, sdcard_cd => sdcard_cd, irq => ext_irq_sdcard ); -- Gate cyc with chip select from SoC wb_sdcard_cyc <= wb_ext_io_in.cyc and wb_ext_is_sdcard; wb_sdcard_adr <= x"0000" & wb_ext_io_in.adr(13 downto 0); wb_sdcard_out.stall <= not wb_sdcard_out.ack; -- Convert non-pipelined DMA wishbone to pipelined by suppressing -- non-acknowledged strobes process(system_clk) begin if rising_edge(system_clk) then wb_sddma_out <= wb_sddma_nr; if wb_sddma_stb_sent = '1' or (wb_sddma_out.stb = '1' and wb_sddma_in.stall = '0') then wb_sddma_out.stb <= '0'; end if; if wb_sddma_nr.cyc = '0' or wb_sddma_ir.ack = '1' then wb_sddma_stb_sent <= '0'; elsif wb_sddma_in.stall = '0' then wb_sddma_stb_sent <= wb_sddma_nr.stb; end if; wb_sddma_ir <= wb_sddma_in; end if; end process; end generate; -- Mux WB response on the IO bus wb_ext_io_out <= wb_eth_out when wb_ext_is_eth = '1' else wb_sdcard_out when wb_ext_is_sdcard = '1' else wb_dram_ctrl_out; leds_pwm : process(system_clk) begin if rising_edge(system_clk) then pwm_counter <= std_ulogic_vector(signed(pwm_counter) + 1); if pwm_counter(8 downto 4) = "00000" then led_b <= led_b_pwm; led_r <= led_r_pwm; led_g <= led_g_pwm; else led_b <= "0000"; led_r <= "0000"; led_g <= "0000"; end if; end if; end process; led4 <= system_clk_locked; led5 <= eth_clk_locked; led6 <= not soc_rst; -- GPIO gpio_in(10) <= btn0; gpio_in(11) <= btn1; gpio_in(12) <= btn2; gpio_in(13) <= btn3; gpio_in(14) <= sw0; gpio_in(15) <= sw1; gpio_in(16) <= sw2; gpio_in(17) <= sw3; gpio_in(0) <= shield_io10; gpio_in(1) <= shield_io11; gpio_in(2) <= shield_io12; gpio_in(3) <= shield_io13; gpio_in(4) <= shield_io26; gpio_in(5) <= shield_io27; gpio_in(6) <= shield_io28; gpio_in(7) <= shield_io29; gpio_in(8) <= shield_io8; gpio_in(9) <= shield_io9; --gpio_in(10) <= shield_io10; --gpio_in(11) <= shield_io11; --gpio_in(12) <= shield_io12; --gpio_in(13) <= shield_io13; --gpio_in(14) <= shield_io26; --gpio_in(15) <= shield_io27; --gpio_in(16) <= shield_io28; --gpio_in(17) <= shield_io29; gpio_in(18) <= shield_io30; gpio_in(19) <= shield_io31; gpio_in(20) <= shield_io32; gpio_in(21) <= shield_io33; gpio_in(22) <= shield_io34; gpio_in(23) <= shield_io35; gpio_in(24) <= shield_io36; gpio_in(25) <= shield_io37; gpio_in(26) <= shield_io38; gpio_in(27) <= shield_io39; gpio_in(28) <= shield_io40; gpio_in(29) <= shield_io41; gpio_in(30) <= shield_io43; gpio_in(31) <= shield_io44; led_b_pwm(1) <= gpio_out(0) when gpio_dir(0) = '1' else 'Z'; led_g_pwm(1) <= gpio_out(1) when gpio_dir(1) = '1' else 'Z'; led_r_pwm(1) <= gpio_out(2) when gpio_dir(2) = '1' else 'Z'; led_b_pwm(2) <= gpio_out(3) when gpio_dir(3) = '1' else 'Z'; led_g_pwm(2) <= gpio_out(4) when gpio_dir(4) = '1' else 'Z'; led_r_pwm(2) <= gpio_out(5) when gpio_dir(5) = '1' else 'Z'; led_b_pwm(3) <= gpio_out(6) when gpio_dir(6) = '1' else 'Z'; led_g_pwm(3) <= gpio_out(7) when gpio_dir(7) = '1' else 'Z'; led_r_pwm(3) <= gpio_out(8) when gpio_dir(8) = '1' else 'Z'; --shield_io0 <= gpio_out(0) when gpio_dir(0) = '1' else 'Z'; --shield_io1 <= gpio_out(1) when gpio_dir(1) = '1' else 'Z'; --shield_io2 <= gpio_out(2) when gpio_dir(2) = '1' else 'Z'; --shield_io3 <= gpio_out(3) when gpio_dir(3) = '1' else 'Z'; --shield_io4 <= gpio_out(4) when gpio_dir(4) = '1' else 'Z'; --shield_io5 <= gpio_out(5) when gpio_dir(5) = '1' else 'Z'; --shield_io6 <= gpio_out(6) when gpio_dir(6) = '1' else 'Z'; --shield_io7 <= gpio_out(7) when gpio_dir(7) = '1' else 'Z'; --shield_io8 <= gpio_out(8) when gpio_dir(8) = '1' else 'Z'; shield_io9 <= gpio_out(9) when gpio_dir(9) = '1' else 'Z'; shield_io10 <= gpio_out(10) when gpio_dir(10) = '1' else 'Z'; shield_io11 <= gpio_out(11) when gpio_dir(11) = '1' else 'Z'; shield_io12 <= gpio_out(12) when gpio_dir(12) = '1' else 'Z'; shield_io13 <= gpio_out(13) when gpio_dir(13) = '1' else 'Z'; shield_io26 <= gpio_out(14) when gpio_dir(14) = '1' else 'Z'; shield_io27 <= gpio_out(15) when gpio_dir(15) = '1' else 'Z'; shield_io28 <= gpio_out(16) when gpio_dir(16) = '1' else 'Z'; shield_io29 <= gpio_out(17) when gpio_dir(17) = '1' else 'Z'; shield_io30 <= gpio_out(18) when gpio_dir(18) = '1' else 'Z'; shield_io31 <= gpio_out(19) when gpio_dir(19) = '1' else 'Z'; shield_io32 <= gpio_out(20) when gpio_dir(20) = '1' else 'Z'; shield_io33 <= gpio_out(21) when gpio_dir(21) = '1' else 'Z'; shield_io34 <= gpio_out(22) when gpio_dir(22) = '1' else 'Z'; shield_io35 <= gpio_out(23) when gpio_dir(23) = '1' else 'Z'; shield_io36 <= gpio_out(24) when gpio_dir(24) = '1' else 'Z'; shield_io37 <= gpio_out(25) when gpio_dir(25) = '1' else 'Z'; shield_io38 <= gpio_out(26) when gpio_dir(26) = '1' else 'Z'; shield_io39 <= gpio_out(27) when gpio_dir(27) = '1' else 'Z'; shield_io40 <= gpio_out(28) when gpio_dir(28) = '1' else 'Z'; shield_io41 <= gpio_out(29) when gpio_dir(29) = '1' else 'Z'; shield_io43 <= gpio_out(30) when gpio_dir(30) = '1' else 'Z'; shield_io44 <= gpio_out(31) when gpio_dir(31) = '1' else 'Z'; end architecture behaviour;