library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.decode_types.all; use work.common.all; use work.helpers.all; use work.insn_helpers.all; entity decode2 is port ( clk : in std_ulogic; rst : in std_ulogic; complete_in : in std_ulogic; stall_out : out std_ulogic; stopped_out : out std_ulogic; flush_in: in std_ulogic; d_in : in Decode1ToDecode2Type; e_out : out Decode2ToExecute1Type; m_out : out Decode2ToMultiplyType; d_out : out Decode2ToDividerType; l_out : out Decode2ToLoadstore1Type; r_in : in RegisterFileToDecode2Type; r_out : out Decode2ToRegisterFileType; c_in : in CrFileToDecode2Type; c_out : out Decode2ToCrFileType ); end entity decode2; architecture behaviour of decode2 is type state_type is (IDLE, WAIT_FOR_PREV_TO_COMPLETE, WAIT_FOR_CURR_TO_COMPLETE); type reg_internal_type is record state : state_type; outstanding : integer; end record; type reg_type is record e : Decode2ToExecute1Type; m : Decode2ToMultiplyType; d : Decode2ToDividerType; l : Decode2ToLoadstore1Type; end record; signal r_int, rin_int : reg_internal_type; signal r, rin : reg_type; type decode_input_reg_t is record reg_valid : std_ulogic; reg : std_ulogic_vector(4 downto 0); data : std_ulogic_vector(63 downto 0); end record; function decode_input_reg_a (t : input_reg_a_t; insn_in : std_ulogic_vector(31 downto 0); reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is begin case t is when RA => return ('1', insn_ra(insn_in), reg_data); when RA_OR_ZERO => return ('1', insn_ra(insn_in), ra_or_zero(reg_data, insn_ra(insn_in))); when RS => return ('1', insn_rs(insn_in), reg_data); when NONE => return ('0', (others => '0'), (others => '0')); end case; end; function decode_input_reg_b (t : input_reg_b_t; insn_in : std_ulogic_vector(31 downto 0); reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is begin case t is when RB => return ('1', insn_rb(insn_in), reg_data); when RS => return ('1', insn_rs(insn_in), reg_data); when CONST_UI => return ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_ui(insn_in)), 64))); when CONST_SI => return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)), 64))); when CONST_SI_HI => return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)) & x"0000", 64))); when CONST_UI_HI => return ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_si(insn_in)) & x"0000", 64))); when CONST_LI => return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_li(insn_in)) & "00", 64))); when CONST_BD => return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_bd(insn_in)) & "00", 64))); when CONST_DS => return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_ds(insn_in)) & "00", 64))); when NONE => return ('0', (others => '0'), (others => '0')); end case; end; function decode_input_reg_c (t : input_reg_c_t; insn_in : std_ulogic_vector(31 downto 0); reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is begin case t is when RS => return ('1', insn_rs(insn_in), reg_data); when NONE => return ('0', (others => '0'), (others => '0')); end case; end; function decode_output_reg (t : output_reg_a_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic_vector is begin case t is when RT => return insn_rt(insn_in); when RA => return insn_ra(insn_in); when NONE => return "00000"; end case; end; function decode_const_a (t : constant_a_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic_vector is begin case t is when SH => return "00" & insn_sh(insn_in); when SH32 => return "000" & insn_sh32(insn_in); when FXM => return insn_fxm(insn_in); when BO => return "000" & insn_bo(insn_in); when BF => return "00000" & insn_bf(insn_in); when TOO => return "000" & insn_to(insn_in); when BC => return "000" & insn_bc(insn_in); when NONE => return "00000000"; end case; end; function decode_const_b (t : constant_b_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic_vector is begin case t is when MB => return insn_mb(insn_in); when ME => return insn_me(insn_in); when MB32 => return "0" & insn_mb32(insn_in); when BI => return "0" & insn_bi(insn_in); when L => return "00000" & insn_l(insn_in); when NONE => return "000000"; end case; end; function decode_const_c (t : constant_c_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic_vector is begin case t is when ME32 => return insn_me32(insn_in); when BH => return "000" & insn_bh(insn_in); when NONE => return "00000"; end case; end; function decode_rc (t : rc_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic is begin case t is when RC => return insn_rc(insn_in); when ONE => return '1'; when NONE => return '0'; end case; end; begin decode2_0: process(clk) begin if rising_edge(clk) then assert r_int.outstanding <= 1 report "Outstanding bad " & integer'image(r_int.outstanding) severity failure; if rin.e.valid = '1' or rin.l.valid = '1' or rin.m.valid = '1' or rin.d.valid = '1' then report "execute " & to_hstring(rin.e.nia); end if; r <= rin; r_int <= rin_int; end if; end process; r_out.read1_reg <= insn_ra(d_in.insn) when (d_in.decode.input_reg_a = RA) else insn_ra(d_in.insn) when d_in.decode.input_reg_a = RA_OR_ZERO else insn_rs(d_in.insn) when d_in.decode.input_reg_a = RS else (others => '0'); r_out.read2_reg <= insn_rb(d_in.insn) when d_in.decode.input_reg_b = RB else insn_rs(d_in.insn) when d_in.decode.input_reg_b = RS else (others => '0'); r_out.read3_reg <= insn_rs(d_in.insn) when d_in.decode.input_reg_c = RS else (others => '0'); c_out.read <= d_in.decode.input_cr; decode2_1: process(all) variable v : reg_type; variable v_int : reg_internal_type; variable mul_a : std_ulogic_vector(63 downto 0); variable mul_b : std_ulogic_vector(63 downto 0); variable decoded_reg_a : decode_input_reg_t; variable decoded_reg_b : decode_input_reg_t; variable decoded_reg_c : decode_input_reg_t; variable signed_division: std_ulogic; variable is_valid : std_ulogic; begin v := r; v_int := r_int; v.e := Decode2ToExecute1Init; v.l := Decode2ToLoadStore1Init; v.m := Decode2ToMultiplyInit; v.d := Decode2ToDividerInit; mul_a := (others => '0'); mul_b := (others => '0'); --v.e.input_cr := d_in.decode.input_cr; --v.m.input_cr := d_in.decode.input_cr; --v.e.output_cr := d_in.decode.output_cr; decoded_reg_a := decode_input_reg_a (d_in.decode.input_reg_a, d_in.insn, r_in.read1_data); decoded_reg_b := decode_input_reg_b (d_in.decode.input_reg_b, d_in.insn, r_in.read2_data); decoded_reg_c := decode_input_reg_c (d_in.decode.input_reg_c, d_in.insn, r_in.read3_data); r_out.read1_enable <= decoded_reg_a.reg_valid; r_out.read2_enable <= decoded_reg_b.reg_valid; r_out.read3_enable <= decoded_reg_c.reg_valid; -- execute unit v.e.nia := d_in.nia; v.e.insn_type := d_in.decode.insn_type; v.e.read_reg1 := decoded_reg_a.reg; v.e.read_data1 := decoded_reg_a.data; v.e.read_reg2 := decoded_reg_b.reg; v.e.read_data2 := decoded_reg_b.data; v.e.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn); v.e.rc := decode_rc(d_in.decode.rc, d_in.insn); v.e.cr := c_in.read_cr_data; v.e.input_carry := d_in.decode.input_carry; v.e.output_carry := d_in.decode.output_carry; if d_in.decode.lr = '1' then v.e.lr := insn_lk(d_in.insn); end if; v.e.const1 := decode_const_a(d_in.decode.const_a, d_in.insn); v.e.const2 := decode_const_b(d_in.decode.const_b, d_in.insn); v.e.const3 := decode_const_c(d_in.decode.const_c, d_in.insn); -- multiply unit v.m.insn_type := d_in.decode.insn_type; mul_a := decoded_reg_a.data; mul_b := decoded_reg_b.data; v.m.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn); v.m.rc := decode_rc(d_in.decode.rc, d_in.insn); if d_in.decode.mul_32bit = '1' then if d_in.decode.mul_signed = '1' then v.m.data1 := (others => mul_a(31)); v.m.data1(31 downto 0) := mul_a(31 downto 0); v.m.data2 := (others => mul_b(31)); v.m.data2(31 downto 0) := mul_b(31 downto 0); else v.m.data1 := '0' & x"00000000" & mul_a(31 downto 0); v.m.data2 := '0' & x"00000000" & mul_b(31 downto 0); end if; else if d_in.decode.mul_signed = '1' then v.m.data1 := mul_a(63) & mul_a; v.m.data2 := mul_b(63) & mul_b; else v.m.data1 := '0' & mul_a; v.m.data2 := '0' & mul_b; end if; end if; -- divide unit -- PPC divide and modulus instruction words have these bits in -- the bottom 11 bits: o1dns 010t1 r -- where o = OE for div instrs, signedness for mod instrs -- d = 1 for div*, 0 for mod* -- n = 1 for normal, 0 for extended (dividend << 32/64) -- s = 1 for signed, 0 for unsigned (for div*) -- t = 1 for 32-bit, 0 for 64-bit -- r = RC bit (record condition code) v.d.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn); v.d.is_modulus := not d_in.insn(8); v.d.is_32bit := not d_in.insn(2); if d_in.insn(8) = '1' then signed_division := d_in.insn(6); else signed_division := d_in.insn(10); end if; v.d.is_signed := signed_division; if d_in.insn(2) = '0' then -- 64-bit forms if d_in.insn(8) = '1' and d_in.insn(7) = '0' then v.d.is_extended := '1'; end if; v.d.dividend := decoded_reg_a.data; v.d.divisor := decoded_reg_b.data; else -- 32-bit forms if d_in.insn(8) = '1' and d_in.insn(7) = '0' then -- extended forms v.d.dividend := decoded_reg_a.data(31 downto 0) & x"00000000"; elsif signed_division = '1' and decoded_reg_a.data(31) = '1' then -- sign extend to 64 bits v.d.dividend := x"ffffffff" & decoded_reg_a.data(31 downto 0); else v.d.dividend := x"00000000" & decoded_reg_a.data(31 downto 0); end if; if signed_division = '1' and decoded_reg_b.data(31) = '1' then v.d.divisor := x"ffffffff" & decoded_reg_b.data(31 downto 0); else v.d.divisor := x"00000000" & decoded_reg_b.data(31 downto 0); end if; end if; v.d.rc := decode_rc(d_in.decode.rc, d_in.insn); -- load/store unit v.l.update_reg := decoded_reg_a.reg; v.l.addr1 := decoded_reg_a.data; v.l.addr2 := decoded_reg_b.data; v.l.data := decoded_reg_c.data; v.l.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn); if d_in.decode.insn_type = OP_LOAD then v.l.load := '1'; else v.l.load := '0'; end if; case d_in.decode.length is when is1B => v.l.length := "0001"; when is2B => v.l.length := "0010"; when is4B => v.l.length := "0100"; when is8B => v.l.length := "1000"; when NONE => v.l.length := "0000"; end case; v.l.byte_reverse := d_in.decode.byte_reverse; v.l.sign_extend := d_in.decode.sign_extend; v.l.update := d_in.decode.update; -- single issue if complete_in = '1' then v_int.outstanding := v_int.outstanding - 1; end if; -- state machine to handle instructions that must be single -- through the pipeline. stall_out <= '0'; is_valid := d_in.valid; -- Handle debugger stop stopped_out <= '0'; if d_in.stop_mark = '1' and v_int.outstanding = 0 then stopped_out <= '1'; end if; case v_int.state is when IDLE => if (flush_in = '0') and (is_valid = '1') and (d_in.decode.sgl_pipe = '1') then if v_int.outstanding /= 0 then v_int.state := WAIT_FOR_PREV_TO_COMPLETE; stall_out <= '1'; is_valid := '0'; else -- send insn out and wait on it to complete v_int.state := WAIT_FOR_CURR_TO_COMPLETE; end if; end if; when WAIT_FOR_PREV_TO_COMPLETE => if v_int.outstanding = 0 then -- send insn out and wait on it to complete v_int.state := WAIT_FOR_CURR_TO_COMPLETE; else stall_out <= '1'; is_valid := '0'; end if; when WAIT_FOR_CURR_TO_COMPLETE => if v_int.outstanding = 0 then v_int.state := IDLE; else stall_out <= '1'; is_valid := '0'; end if; end case; v.e.valid := '0'; v.m.valid := '0'; v.d.valid := '0'; v.l.valid := '0'; case d_in.decode.unit is when ALU => v.e.valid := is_valid; when LDST => v.l.valid := is_valid; when MUL => v.m.valid := is_valid; when DIV => v.d.valid := is_valid; when NONE => v.e.valid := is_valid; v.e.insn_type := OP_ILLEGAL; end case; if flush_in = '1' then v.e.valid := '0'; v.m.valid := '0'; v.d.valid := '0'; v.l.valid := '0'; end if; -- track outstanding instructions if v.e.valid = '1' or v.l.valid = '1' or v.m.valid = '1' or v.d.valid = '1' then v_int.outstanding := v_int.outstanding + 1; end if; if rst = '1' then v_int.state := IDLE; v_int.outstanding := 0; v.e := Decode2ToExecute1Init; v.l := Decode2ToLoadStore1Init; v.m := Decode2ToMultiplyInit; v.d := Decode2ToDividerInit; end if; -- Update registers rin <= v; rin_int <= v_int; -- Update outputs e_out <= r.e; l_out <= r.l; m_out <= r.m; d_out <= r.d; end process; end architecture behaviour;