-- Floating-point unit for Microwatt

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

library work;
use work.insn_helpers.all;
use work.decode_types.all;
use work.crhelpers.all;
use work.helpers.all;
use work.common.all;

entity fpu is
    port (
        clk : in std_ulogic;
        rst : in std_ulogic;
        flush_in : in std_ulogic;

        e_in  : in  Execute1ToFPUType;
        e_out : out FPUToExecute1Type;

        w_out : out FPUToWritebackType
        );
end entity fpu;

architecture behaviour of fpu is
    type fp_number_class is (ZERO, FINITE, INFINITY, NAN);

    constant EXP_BITS : natural := 13;
    constant UNIT_BIT : natural := 56;
    constant QNAN_BIT : natural := UNIT_BIT - 1;
    constant SP_LSB   : natural := UNIT_BIT - 23;
    constant SP_GBIT  : natural := SP_LSB - 1;
    constant SP_RBIT  : natural := SP_LSB - 2;
    constant DP_LSB   : natural := UNIT_BIT - 52;
    constant DP_GBIT  : natural := DP_LSB - 1;
    constant DP_RBIT  : natural := DP_LSB - 2;

    type fpu_reg_type is record
        class    : fp_number_class;
        negative : std_ulogic;
        denorm   : std_ulogic;
        exponent : signed(EXP_BITS-1 downto 0);         -- unbiased
        mantissa : std_ulogic_vector(63 downto 0);      -- 8.56 format
    end record;

    type state_t is (IDLE, DO_ILLEGAL,
                     DO_MCRFS, DO_MTFSB, DO_MTFSFI, DO_MFFS, DO_MTFSF,
                     DO_FMR, DO_FMRG, DO_FCMP, DO_FTDIV, DO_FTSQRT,
                     DO_FCFID, DO_FCTI,
                     DO_FRSP, DO_FRI,
                     DO_FADD, DO_FMUL, DO_FDIV, DO_FSQRT, DO_FMADD,
                     DO_FRE, DO_FRSQRTE,
                     DO_FSEL,
                     DO_IDIVMOD,
                     FRI_1,
                     ADD_1, ADD_SHIFT, ADD_2, ADD_3,
                     CMP_1, CMP_2,
                     MULT_1,
                     FMADD_0, FMADD_1, FMADD_2, FMADD_3,
                     FMADD_4, FMADD_5, FMADD_6,
                     LOOKUP,
                     DIV_2, DIV_3, DIV_4, DIV_5, DIV_6,
                     FRE_1,
                     RSQRT_1,
                     FTDIV_1,
                     SQRT_1, SQRT_2, SQRT_3, SQRT_4,
                     SQRT_5, SQRT_6, SQRT_7, SQRT_8,
                     SQRT_9, SQRT_10, SQRT_11, SQRT_12,
                     INT_SHIFT, INT_ROUND, INT_ISHIFT,
                     INT_FINAL, INT_CHECK, INT_OFLOW,
                     FINISH, NORMALIZE,
                     ROUND_UFLOW, ROUND_OFLOW,
                     ROUNDING, ROUNDING_2, ROUNDING_3,
                     DENORM,
                     RENORM_A, RENORM_A2,
                     RENORM_B, RENORM_B2,
                     RENORM_C, RENORM_C2,
                     NAN_RESULT, EXC_RESULT,
                     IDIV_NORMB, IDIV_NORMB2, IDIV_NORMB3,
                     IDIV_CLZA, IDIV_CLZA2, IDIV_CLZA3,
                     IDIV_NR0, IDIV_NR1, IDIV_NR2, IDIV_USE0_5,
                     IDIV_DODIV, IDIV_SH32,
                     IDIV_DIV, IDIV_DIV2, IDIV_DIV3, IDIV_DIV4, IDIV_DIV5,
                     IDIV_DIV6, IDIV_DIV7, IDIV_DIV8, IDIV_DIV9,
                     IDIV_EXT_TBH, IDIV_EXT_TBH2, IDIV_EXT_TBH3,
                     IDIV_EXT_TBH4, IDIV_EXT_TBH5,
                     IDIV_EXTDIV, IDIV_EXTDIV1, IDIV_EXTDIV2, IDIV_EXTDIV3,
                     IDIV_EXTDIV4, IDIV_EXTDIV5, IDIV_EXTDIV6,
                     IDIV_MODADJ, IDIV_MODSUB, IDIV_DIVADJ, IDIV_OVFCHK, IDIV_DONE, IDIV_ZERO);

    type decode32 is array(0 to 31) of state_t;
    type decode8 is array(0 to 7) of state_t;

    type reg_type is record
        state        : state_t;
        busy         : std_ulogic;
        f2stall      : std_ulogic;
        instr_done   : std_ulogic;
        complete     : std_ulogic;
        do_intr      : std_ulogic;
        illegal      : std_ulogic;
        op           : insn_type_t;
        insn         : std_ulogic_vector(31 downto 0);
        instr_tag    : instr_tag_t;
        dest_fpr     : gspr_index_t;
        fe_mode      : std_ulogic;
        rc           : std_ulogic;
        fp_rc        : std_ulogic;
        is_cmp       : std_ulogic;
        single_prec  : std_ulogic;
        sp_result    : std_ulogic;
        fpscr        : std_ulogic_vector(31 downto 0);
        comm_fpscr   : std_ulogic_vector(31 downto 0);  -- committed FPSCR value
        a            : fpu_reg_type;
        b            : fpu_reg_type;
        c            : fpu_reg_type;
        r            : std_ulogic_vector(63 downto 0);  -- 8.56 format
        s            : std_ulogic_vector(55 downto 0);  -- extended fraction
        x            : std_ulogic;
        p            : std_ulogic_vector(63 downto 0);  -- 8.56 format
        y            : std_ulogic_vector(63 downto 0);  -- 8.56 format
        result_sign  : std_ulogic;
        result_class : fp_number_class;
        result_exp   : signed(EXP_BITS-1 downto 0);
        shift        : signed(EXP_BITS-1 downto 0);
        writing_fpr  : std_ulogic;
        write_reg    : gspr_index_t;
        complete_tag : instr_tag_t;
        writing_cr   : std_ulogic;
        writing_xer  : std_ulogic;
        int_result   : std_ulogic;
        cr_result    : std_ulogic_vector(3 downto 0);
        cr_mask      : std_ulogic_vector(7 downto 0);
        old_exc      : std_ulogic_vector(4 downto 0);
        update_fprf  : std_ulogic;
        quieten_nan  : std_ulogic;
        nsnan_result : std_ulogic;
        tiny         : std_ulogic;
        denorm       : std_ulogic;
        round_mode   : std_ulogic_vector(2 downto 0);
        is_subtract  : std_ulogic;
        exp_cmp      : std_ulogic;
        madd_cmp     : std_ulogic;
        add_bsmall   : std_ulogic;
        is_multiply  : std_ulogic;
        is_sqrt      : std_ulogic;
        first        : std_ulogic;
        count        : unsigned(1 downto 0);
        doing_ftdiv  : std_ulogic_vector(1 downto 0);
        opsel_a      : std_ulogic_vector(1 downto 0);
        use_a        : std_ulogic;
        use_b        : std_ulogic;
        use_c        : std_ulogic;
        invalid      : std_ulogic;
        negate       : std_ulogic;
        longmask     : std_ulogic;
        integer_op   : std_ulogic;
        divext       : std_ulogic;
        divmod       : std_ulogic;
        is_signed    : std_ulogic;
        int_ovf      : std_ulogic;
        div_close    : std_ulogic;
        inc_quot     : std_ulogic;
        a_hi         : std_ulogic_vector(7 downto 0);
        a_lo         : std_ulogic_vector(55 downto 0);
        m32b         : std_ulogic;
        oe           : std_ulogic;
        xerc         : xer_common_t;
        xerc_result  : xer_common_t;
        res_sign     : std_ulogic;
    end record;

    type lookup_table is array(0 to 1023) of std_ulogic_vector(17 downto 0);

    signal r, rin : reg_type;

    signal fp_result     : std_ulogic_vector(63 downto 0);
    signal opsel_b       : std_ulogic_vector(1 downto 0);
    signal opsel_r       : std_ulogic_vector(1 downto 0);
    signal opsel_s       : std_ulogic_vector(1 downto 0);
    signal opsel_ainv    : std_ulogic;
    signal opsel_mask    : std_ulogic;
    signal opsel_binv    : std_ulogic;
    signal in_a          : std_ulogic_vector(63 downto 0);
    signal in_b          : std_ulogic_vector(63 downto 0);
    signal result        : std_ulogic_vector(63 downto 0);
    signal carry_in      : std_ulogic;
    signal lost_bits     : std_ulogic;
    signal r_hi_nz       : std_ulogic;
    signal r_lo_nz       : std_ulogic;
    signal r_gt_1        : std_ulogic;
    signal s_nz          : std_ulogic;
    signal misc_sel      : std_ulogic_vector(3 downto 0);
    signal f_to_multiply : MultiplyInputType;
    signal multiply_to_f : MultiplyOutputType;
    signal msel_1        : std_ulogic_vector(1 downto 0);
    signal msel_2        : std_ulogic_vector(1 downto 0);
    signal msel_add      : std_ulogic_vector(1 downto 0);
    signal msel_inv      : std_ulogic;
    signal inverse_est   : std_ulogic_vector(18 downto 0);

    -- opsel values
    constant AIN_R    : std_ulogic_vector(1 downto 0) := "00";
    constant AIN_A    : std_ulogic_vector(1 downto 0) := "01";
    constant AIN_B    : std_ulogic_vector(1 downto 0) := "10";
    constant AIN_C    : std_ulogic_vector(1 downto 0) := "11";

    constant BIN_ZERO : std_ulogic_vector(1 downto 0) := "00";
    constant BIN_R    : std_ulogic_vector(1 downto 0) := "01";
    constant BIN_RND  : std_ulogic_vector(1 downto 0) := "10";
    constant BIN_PS8  : std_ulogic_vector(1 downto 0) := "11";

    constant RES_SUM   : std_ulogic_vector(1 downto 0) := "00";
    constant RES_SHIFT : std_ulogic_vector(1 downto 0) := "01";
    constant RES_MULT  : std_ulogic_vector(1 downto 0) := "10";
    constant RES_MISC  : std_ulogic_vector(1 downto 0) := "11";

    constant S_ZERO  : std_ulogic_vector(1 downto 0) := "00";
    constant S_NEG   : std_ulogic_vector(1 downto 0) := "01";
    constant S_SHIFT : std_ulogic_vector(1 downto 0) := "10";
    constant S_MULT  : std_ulogic_vector(1 downto 0) := "11";

    -- msel values
    constant MUL1_A : std_ulogic_vector(1 downto 0) := "00";
    constant MUL1_B : std_ulogic_vector(1 downto 0) := "01";
    constant MUL1_Y : std_ulogic_vector(1 downto 0) := "10";
    constant MUL1_R : std_ulogic_vector(1 downto 0) := "11";

    constant MUL2_C   : std_ulogic_vector(1 downto 0) := "00";
    constant MUL2_LUT : std_ulogic_vector(1 downto 0) := "01";
    constant MUL2_P   : std_ulogic_vector(1 downto 0) := "10";
    constant MUL2_R   : std_ulogic_vector(1 downto 0) := "11";

    constant MULADD_ZERO  : std_ulogic_vector(1 downto 0) := "00";
    constant MULADD_CONST : std_ulogic_vector(1 downto 0) := "01";
    constant MULADD_A     : std_ulogic_vector(1 downto 0) := "10";
    constant MULADD_RS    : std_ulogic_vector(1 downto 0) := "11";

    -- control signals and values for exponent data path
    constant REXP1_ZERO  : std_ulogic_vector(1 downto 0) := "00";
    constant REXP1_R     : std_ulogic_vector(1 downto 0) := "01";
    constant REXP1_A     : std_ulogic_vector(1 downto 0) := "10";
    constant REXP1_BHALF : std_ulogic_vector(1 downto 0) := "11";

    constant REXP2_CON   : std_ulogic_vector(1 downto 0) := "00";
    constant REXP2_NE    : std_ulogic_vector(1 downto 0) := "01";
    constant REXP2_C     : std_ulogic_vector(1 downto 0) := "10";
    constant REXP2_B     : std_ulogic_vector(1 downto 0) := "11";

    constant RECON2_ZERO : std_ulogic_vector(1 downto 0) := "00";
    constant RECON2_UNIT : std_ulogic_vector(1 downto 0) := "01";
    constant RECON2_BIAS : std_ulogic_vector(1 downto 0) := "10";
    constant RECON2_MAX  : std_ulogic_vector(1 downto 0) := "11";

    signal re_sel1       : std_ulogic_vector(1 downto 0);
    signal re_sel2       : std_ulogic_vector(1 downto 0);
    signal re_con2       : std_ulogic_vector(1 downto 0);
    signal re_neg1       : std_ulogic;
    signal re_neg2       : std_ulogic;
    signal re_set_result : std_ulogic;

    constant RSH1_ZERO   : std_ulogic_vector(1 downto 0) := "00";
    constant RSH1_B      : std_ulogic_vector(1 downto 0) := "01";
    constant RSH1_NE     : std_ulogic_vector(1 downto 0) := "10";
    constant RSH1_S      : std_ulogic_vector(1 downto 0) := "11";

    constant RSH2_CON    : std_ulogic := '0';
    constant RSH2_A      : std_ulogic := '1';

    constant RSCON2_ZERO    : std_ulogic_vector(3 downto 0) := "0000";
    constant RSCON2_1       : std_ulogic_vector(3 downto 0) := "0001";
    constant RSCON2_UNIT_52 : std_ulogic_vector(3 downto 0) := "0010";
    constant RSCON2_64_UNIT : std_ulogic_vector(3 downto 0) := "0011";
    constant RSCON2_32      : std_ulogic_vector(3 downto 0) := "0100";
    constant RSCON2_52      : std_ulogic_vector(3 downto 0) := "0101";
    constant RSCON2_UNIT    : std_ulogic_vector(3 downto 0) := "0110";
    constant RSCON2_63      : std_ulogic_vector(3 downto 0) := "0111";
    constant RSCON2_64      : std_ulogic_vector(3 downto 0) := "1000";
    constant RSCON2_MINEXP  : std_ulogic_vector(3 downto 0) := "1001";

    signal rs_sel1       : std_ulogic_vector(1 downto 0);
    signal rs_sel2       : std_ulogic;
    signal rs_con2       : std_ulogic_vector(3 downto 0);
    signal rs_neg1       : std_ulogic;
    signal rs_neg2       : std_ulogic;
    signal rs_norm       : std_ulogic;

    constant arith_decode : decode32 := (
        -- indexed by bits 5..1 of opcode
        2#01000# => DO_FRI,
        2#01100# => DO_FRSP,
        2#01110# => DO_FCTI,
        2#01111# => DO_FCTI,
        2#10010# => DO_FDIV,
        2#10100# => DO_FADD,
        2#10101# => DO_FADD,
        2#10110# => DO_FSQRT,
        2#11000# => DO_FRE,
        2#11001# => DO_FMUL,
        2#11010# => DO_FRSQRTE,
        2#11100# => DO_FMADD,
        2#11101# => DO_FMADD,
        2#11110# => DO_FMADD,
        2#11111# => DO_FMADD,
        others   => DO_ILLEGAL
        );

    constant cmp_decode : decode8 := (
        2#000# => DO_FCMP,
        2#001# => DO_FCMP,
        2#010# => DO_MCRFS,
        2#100# => DO_FTDIV,
        2#101# => DO_FTSQRT,
        others => DO_ILLEGAL
        );

    constant misc_decode : decode32 := (
        -- indexed by bits 10, 8, 4, 2, 1 of opcode
        2#00010# => DO_MTFSB,
        2#01010# => DO_MTFSFI,
        2#10010# => DO_FMRG,
        2#11010# => DO_FMRG,
        2#10011# => DO_MFFS,
        2#11011# => DO_MTFSF,
        2#10110# => DO_FCFID,
        2#11110# => DO_FCFID,
        others   => DO_ILLEGAL
        );

    -- Inverse lookup table, indexed by the top 8 fraction bits
    -- The first 256 entries are the reciprocal (1/x) lookup table,
    -- and the remaining 768 entries are the reciprocal square root table.
    -- Output range is [0.5, 1) in 0.19 format, though the top
    -- bit isn't stored since it is always 1.
    -- Each output value is the inverse of the center of the input
    -- range for the value, i.e. entry 0 is 1 / (1 + 1/512),
    -- entry 1 is 1 / (1 + 3/512), etc.
    constant inverse_table : lookup_table := (
        -- 1/x lookup table
        -- Unit bit is assumed to be 1, so input range is [1, 2)
        18x"3fc01", 18x"3f411", 18x"3ec31", 18x"3e460", 18x"3dc9f", 18x"3d4ec", 18x"3cd49", 18x"3c5b5",
        18x"3be2f", 18x"3b6b8", 18x"3af4f", 18x"3a7f4", 18x"3a0a7", 18x"39968", 18x"39237", 18x"38b14",
        18x"383fe", 18x"37cf5", 18x"375f9", 18x"36f0a", 18x"36828", 18x"36153", 18x"35a8a", 18x"353ce",
        18x"34d1e", 18x"3467a", 18x"33fe3", 18x"33957", 18x"332d7", 18x"32c62", 18x"325f9", 18x"31f9c",
        18x"3194a", 18x"31303", 18x"30cc7", 18x"30696", 18x"30070", 18x"2fa54", 18x"2f443", 18x"2ee3d",
        18x"2e841", 18x"2e250", 18x"2dc68", 18x"2d68b", 18x"2d0b8", 18x"2caee", 18x"2c52e", 18x"2bf79",
        18x"2b9cc", 18x"2b429", 18x"2ae90", 18x"2a900", 18x"2a379", 18x"29dfb", 18x"29887", 18x"2931b",
        18x"28db8", 18x"2885e", 18x"2830d", 18x"27dc4", 18x"27884", 18x"2734d", 18x"26e1d", 18x"268f6",
        18x"263d8", 18x"25ec1", 18x"259b3", 18x"254ac", 18x"24fad", 18x"24ab7", 18x"245c8", 18x"240e1",
        18x"23c01", 18x"23729", 18x"23259", 18x"22d90", 18x"228ce", 18x"22413", 18x"21f60", 18x"21ab4",
        18x"2160f", 18x"21172", 18x"20cdb", 18x"2084b", 18x"203c2", 18x"1ff40", 18x"1fac4", 18x"1f64f",
        18x"1f1e1", 18x"1ed79", 18x"1e918", 18x"1e4be", 18x"1e069", 18x"1dc1b", 18x"1d7d4", 18x"1d392",
        18x"1cf57", 18x"1cb22", 18x"1c6f3", 18x"1c2ca", 18x"1bea7", 18x"1ba8a", 18x"1b672", 18x"1b261",
        18x"1ae55", 18x"1aa50", 18x"1a64f", 18x"1a255", 18x"19e60", 18x"19a70", 18x"19686", 18x"192a2",
        18x"18ec3", 18x"18ae9", 18x"18715", 18x"18345", 18x"17f7c", 18x"17bb7", 18x"177f7", 18x"1743d",
        18x"17087", 18x"16cd7", 18x"1692c", 18x"16585", 18x"161e4", 18x"15e47", 18x"15ab0", 18x"1571d",
        18x"1538e", 18x"15005", 18x"14c80", 18x"14900", 18x"14584", 18x"1420d", 18x"13e9b", 18x"13b2d",
        18x"137c3", 18x"1345e", 18x"130fe", 18x"12da2", 18x"12a4a", 18x"126f6", 18x"123a7", 18x"1205c",
        18x"11d15", 18x"119d2", 18x"11694", 18x"11359", 18x"11023", 18x"10cf1", 18x"109c2", 18x"10698",
        18x"10372", 18x"10050", 18x"0fd31", 18x"0fa17", 18x"0f700", 18x"0f3ed", 18x"0f0de", 18x"0edd3",
        18x"0eacb", 18x"0e7c7", 18x"0e4c7", 18x"0e1ca", 18x"0ded2", 18x"0dbdc", 18x"0d8eb", 18x"0d5fc",
        18x"0d312", 18x"0d02b", 18x"0cd47", 18x"0ca67", 18x"0c78a", 18x"0c4b1", 18x"0c1db", 18x"0bf09",
        18x"0bc3a", 18x"0b96e", 18x"0b6a5", 18x"0b3e0", 18x"0b11e", 18x"0ae5f", 18x"0aba3", 18x"0a8eb",
        18x"0a636", 18x"0a383", 18x"0a0d4", 18x"09e28", 18x"09b80", 18x"098da", 18x"09637", 18x"09397",
        18x"090fb", 18x"08e61", 18x"08bca", 18x"08936", 18x"086a5", 18x"08417", 18x"0818c", 18x"07f04",
        18x"07c7e", 18x"079fc", 18x"0777c", 18x"074ff", 18x"07284", 18x"0700d", 18x"06d98", 18x"06b26",
        18x"068b6", 18x"0664a", 18x"063e0", 18x"06178", 18x"05f13", 18x"05cb1", 18x"05a52", 18x"057f5",
        18x"0559a", 18x"05342", 18x"050ed", 18x"04e9a", 18x"04c4a", 18x"049fc", 18x"047b0", 18x"04567",
        18x"04321", 18x"040dd", 18x"03e9b", 18x"03c5c", 18x"03a1f", 18x"037e4", 18x"035ac", 18x"03376",
        18x"03142", 18x"02f11", 18x"02ce2", 18x"02ab5", 18x"0288b", 18x"02663", 18x"0243d", 18x"02219",
        18x"01ff7", 18x"01dd8", 18x"01bbb", 18x"019a0", 18x"01787", 18x"01570", 18x"0135b", 18x"01149",
        18x"00f39", 18x"00d2a", 18x"00b1e", 18x"00914", 18x"0070c", 18x"00506", 18x"00302", 18x"00100",
        -- 1/sqrt(x) lookup table
        -- Input is in the range [1, 4), i.e. two bits to the left of the
        -- binary point.  Those 2 bits index the following 3 blocks of 256 values.
        -- 1.0 ... 1.9999
        18x"3fe00", 18x"3fa06", 18x"3f612", 18x"3f224", 18x"3ee3a", 18x"3ea58", 18x"3e67c", 18x"3e2a4",
        18x"3ded2", 18x"3db06", 18x"3d73e", 18x"3d37e", 18x"3cfc2", 18x"3cc0a", 18x"3c85a", 18x"3c4ae",
        18x"3c106", 18x"3bd64", 18x"3b9c8", 18x"3b630", 18x"3b29e", 18x"3af10", 18x"3ab86", 18x"3a802",
        18x"3a484", 18x"3a108", 18x"39d94", 18x"39a22", 18x"396b6", 18x"3934e", 18x"38fea", 18x"38c8c",
        18x"38932", 18x"385dc", 18x"3828a", 18x"37f3e", 18x"37bf6", 18x"378b2", 18x"37572", 18x"37236",
        18x"36efe", 18x"36bca", 18x"3689a", 18x"36570", 18x"36248", 18x"35f26", 18x"35c06", 18x"358ea",
        18x"355d4", 18x"352c0", 18x"34fb0", 18x"34ca4", 18x"3499c", 18x"34698", 18x"34398", 18x"3409c",
        18x"33da2", 18x"33aac", 18x"337bc", 18x"334cc", 18x"331e2", 18x"32efc", 18x"32c18", 18x"32938",
        18x"3265a", 18x"32382", 18x"320ac", 18x"31dd8", 18x"31b0a", 18x"3183e", 18x"31576", 18x"312b0",
        18x"30fee", 18x"30d2e", 18x"30a74", 18x"307ba", 18x"30506", 18x"30254", 18x"2ffa4", 18x"2fcf8",
        18x"2fa4e", 18x"2f7a8", 18x"2f506", 18x"2f266", 18x"2efca", 18x"2ed2e", 18x"2ea98", 18x"2e804",
        18x"2e572", 18x"2e2e4", 18x"2e058", 18x"2ddce", 18x"2db48", 18x"2d8c6", 18x"2d646", 18x"2d3c8",
        18x"2d14c", 18x"2ced4", 18x"2cc5e", 18x"2c9ea", 18x"2c77a", 18x"2c50c", 18x"2c2a2", 18x"2c038",
        18x"2bdd2", 18x"2bb70", 18x"2b90e", 18x"2b6b0", 18x"2b454", 18x"2b1fa", 18x"2afa4", 18x"2ad4e",
        18x"2aafc", 18x"2a8ac", 18x"2a660", 18x"2a414", 18x"2a1cc", 18x"29f86", 18x"29d42", 18x"29b00",
        18x"298c2", 18x"29684", 18x"2944a", 18x"29210", 18x"28fda", 18x"28da6", 18x"28b74", 18x"28946",
        18x"28718", 18x"284ec", 18x"282c4", 18x"2809c", 18x"27e78", 18x"27c56", 18x"27a34", 18x"27816",
        18x"275fa", 18x"273e0", 18x"271c8", 18x"26fb0", 18x"26d9c", 18x"26b8a", 18x"2697a", 18x"2676c",
        18x"26560", 18x"26356", 18x"2614c", 18x"25f46", 18x"25d42", 18x"25b40", 18x"2593e", 18x"25740",
        18x"25542", 18x"25348", 18x"2514e", 18x"24f58", 18x"24d62", 18x"24b6e", 18x"2497c", 18x"2478c",
        18x"2459e", 18x"243b0", 18x"241c6", 18x"23fde", 18x"23df6", 18x"23c10", 18x"23a2c", 18x"2384a",
        18x"2366a", 18x"2348c", 18x"232ae", 18x"230d2", 18x"22efa", 18x"22d20", 18x"22b4a", 18x"22976",
        18x"227a2", 18x"225d2", 18x"22402", 18x"22234", 18x"22066", 18x"21e9c", 18x"21cd2", 18x"21b0a",
        18x"21944", 18x"2177e", 18x"215ba", 18x"213fa", 18x"21238", 18x"2107a", 18x"20ebc", 18x"20d00",
        18x"20b46", 18x"2098e", 18x"207d6", 18x"20620", 18x"2046c", 18x"202b8", 18x"20108", 18x"1ff58",
        18x"1fda8", 18x"1fbfc", 18x"1fa50", 18x"1f8a4", 18x"1f6fc", 18x"1f554", 18x"1f3ae", 18x"1f208",
        18x"1f064", 18x"1eec2", 18x"1ed22", 18x"1eb82", 18x"1e9e4", 18x"1e846", 18x"1e6aa", 18x"1e510",
        18x"1e378", 18x"1e1e0", 18x"1e04a", 18x"1deb4", 18x"1dd20", 18x"1db8e", 18x"1d9fc", 18x"1d86c",
        18x"1d6de", 18x"1d550", 18x"1d3c4", 18x"1d238", 18x"1d0ae", 18x"1cf26", 18x"1cd9e", 18x"1cc18",
        18x"1ca94", 18x"1c910", 18x"1c78c", 18x"1c60a", 18x"1c48a", 18x"1c30c", 18x"1c18e", 18x"1c010",
        18x"1be94", 18x"1bd1a", 18x"1bba0", 18x"1ba28", 18x"1b8b2", 18x"1b73c", 18x"1b5c6", 18x"1b452",
        18x"1b2e0", 18x"1b16e", 18x"1affe", 18x"1ae8e", 18x"1ad20", 18x"1abb4", 18x"1aa46", 18x"1a8dc",
        -- 2.0 ... 2.9999
        18x"1a772", 18x"1a608", 18x"1a4a0", 18x"1a33a", 18x"1a1d4", 18x"1a070", 18x"19f0c", 18x"19da8",
        18x"19c48", 18x"19ae6", 18x"19986", 18x"19828", 18x"196ca", 18x"1956e", 18x"19412", 18x"192b8",
        18x"1915e", 18x"19004", 18x"18eae", 18x"18d56", 18x"18c00", 18x"18aac", 18x"18958", 18x"18804",
        18x"186b2", 18x"18562", 18x"18412", 18x"182c2", 18x"18174", 18x"18026", 18x"17eda", 18x"17d8e",
        18x"17c44", 18x"17afa", 18x"179b2", 18x"1786a", 18x"17724", 18x"175de", 18x"17498", 18x"17354",
        18x"17210", 18x"170ce", 18x"16f8c", 18x"16e4c", 18x"16d0c", 18x"16bcc", 18x"16a8e", 18x"16950",
        18x"16814", 18x"166d8", 18x"1659e", 18x"16464", 18x"1632a", 18x"161f2", 18x"160ba", 18x"15f84",
        18x"15e4e", 18x"15d1a", 18x"15be6", 18x"15ab2", 18x"15980", 18x"1584e", 18x"1571c", 18x"155ec",
        18x"154bc", 18x"1538e", 18x"15260", 18x"15134", 18x"15006", 18x"14edc", 18x"14db0", 18x"14c86",
        18x"14b5e", 18x"14a36", 18x"1490e", 18x"147e6", 18x"146c0", 18x"1459a", 18x"14476", 18x"14352",
        18x"14230", 18x"1410c", 18x"13fea", 18x"13eca", 18x"13daa", 18x"13c8a", 18x"13b6c", 18x"13a4e",
        18x"13930", 18x"13814", 18x"136f8", 18x"135dc", 18x"134c2", 18x"133a8", 18x"1328e", 18x"13176",
        18x"1305e", 18x"12f48", 18x"12e30", 18x"12d1a", 18x"12c06", 18x"12af2", 18x"129de", 18x"128ca",
        18x"127b8", 18x"126a6", 18x"12596", 18x"12486", 18x"12376", 18x"12266", 18x"12158", 18x"1204a",
        18x"11f3e", 18x"11e32", 18x"11d26", 18x"11c1a", 18x"11b10", 18x"11a06", 18x"118fc", 18x"117f4",
        18x"116ec", 18x"115e4", 18x"114de", 18x"113d8", 18x"112d2", 18x"111ce", 18x"110ca", 18x"10fc6",
        18x"10ec2", 18x"10dc0", 18x"10cbe", 18x"10bbc", 18x"10abc", 18x"109bc", 18x"108bc", 18x"107be",
        18x"106c0", 18x"105c2", 18x"104c4", 18x"103c8", 18x"102cc", 18x"101d0", 18x"100d6", 18x"0ffdc",
        18x"0fee2", 18x"0fdea", 18x"0fcf0", 18x"0fbf8", 18x"0fb02", 18x"0fa0a", 18x"0f914", 18x"0f81e",
        18x"0f72a", 18x"0f636", 18x"0f542", 18x"0f44e", 18x"0f35a", 18x"0f268", 18x"0f176", 18x"0f086",
        18x"0ef94", 18x"0eea4", 18x"0edb4", 18x"0ecc6", 18x"0ebd6", 18x"0eae8", 18x"0e9fa", 18x"0e90e",
        18x"0e822", 18x"0e736", 18x"0e64a", 18x"0e55e", 18x"0e474", 18x"0e38a", 18x"0e2a0", 18x"0e1b8",
        18x"0e0d0", 18x"0dfe8", 18x"0df00", 18x"0de1a", 18x"0dd32", 18x"0dc4c", 18x"0db68", 18x"0da82",
        18x"0d99e", 18x"0d8ba", 18x"0d7d6", 18x"0d6f4", 18x"0d612", 18x"0d530", 18x"0d44e", 18x"0d36c",
        18x"0d28c", 18x"0d1ac", 18x"0d0cc", 18x"0cfee", 18x"0cf0e", 18x"0ce30", 18x"0cd54", 18x"0cc76",
        18x"0cb9a", 18x"0cabc", 18x"0c9e0", 18x"0c906", 18x"0c82a", 18x"0c750", 18x"0c676", 18x"0c59c",
        18x"0c4c4", 18x"0c3ea", 18x"0c312", 18x"0c23a", 18x"0c164", 18x"0c08c", 18x"0bfb6", 18x"0bee0",
        18x"0be0a", 18x"0bd36", 18x"0bc62", 18x"0bb8c", 18x"0baba", 18x"0b9e6", 18x"0b912", 18x"0b840",
        18x"0b76e", 18x"0b69c", 18x"0b5cc", 18x"0b4fa", 18x"0b42a", 18x"0b35a", 18x"0b28a", 18x"0b1bc",
        18x"0b0ee", 18x"0b01e", 18x"0af50", 18x"0ae84", 18x"0adb6", 18x"0acea", 18x"0ac1e", 18x"0ab52",
        18x"0aa86", 18x"0a9bc", 18x"0a8f0", 18x"0a826", 18x"0a75c", 18x"0a694", 18x"0a5ca", 18x"0a502",
        18x"0a43a", 18x"0a372", 18x"0a2aa", 18x"0a1e4", 18x"0a11c", 18x"0a056", 18x"09f90", 18x"09ecc",
        -- 3.0 ... 3.9999
        18x"09e06", 18x"09d42", 18x"09c7e", 18x"09bba", 18x"09af6", 18x"09a32", 18x"09970", 18x"098ae",
        18x"097ec", 18x"0972a", 18x"09668", 18x"095a8", 18x"094e8", 18x"09426", 18x"09368", 18x"092a8",
        18x"091e8", 18x"0912a", 18x"0906c", 18x"08fae", 18x"08ef0", 18x"08e32", 18x"08d76", 18x"08cba",
        18x"08bfe", 18x"08b42", 18x"08a86", 18x"089ca", 18x"08910", 18x"08856", 18x"0879c", 18x"086e2",
        18x"08628", 18x"08570", 18x"084b6", 18x"083fe", 18x"08346", 18x"0828e", 18x"081d8", 18x"08120",
        18x"0806a", 18x"07fb4", 18x"07efe", 18x"07e48", 18x"07d92", 18x"07cde", 18x"07c2a", 18x"07b76",
        18x"07ac2", 18x"07a0e", 18x"0795a", 18x"078a8", 18x"077f4", 18x"07742", 18x"07690", 18x"075de",
        18x"0752e", 18x"0747c", 18x"073cc", 18x"0731c", 18x"0726c", 18x"071bc", 18x"0710c", 18x"0705e",
        18x"06fae", 18x"06f00", 18x"06e52", 18x"06da4", 18x"06cf6", 18x"06c4a", 18x"06b9c", 18x"06af0",
        18x"06a44", 18x"06998", 18x"068ec", 18x"06840", 18x"06796", 18x"066ea", 18x"06640", 18x"06596",
        18x"064ec", 18x"06442", 18x"0639a", 18x"062f0", 18x"06248", 18x"061a0", 18x"060f8", 18x"06050",
        18x"05fa8", 18x"05f00", 18x"05e5a", 18x"05db4", 18x"05d0e", 18x"05c68", 18x"05bc2", 18x"05b1c",
        18x"05a76", 18x"059d2", 18x"0592e", 18x"05888", 18x"057e4", 18x"05742", 18x"0569e", 18x"055fa",
        18x"05558", 18x"054b6", 18x"05412", 18x"05370", 18x"052ce", 18x"0522e", 18x"0518c", 18x"050ec",
        18x"0504a", 18x"04faa", 18x"04f0a", 18x"04e6a", 18x"04dca", 18x"04d2c", 18x"04c8c", 18x"04bee",
        18x"04b50", 18x"04ab0", 18x"04a12", 18x"04976", 18x"048d8", 18x"0483a", 18x"0479e", 18x"04700",
        18x"04664", 18x"045c8", 18x"0452c", 18x"04490", 18x"043f6", 18x"0435a", 18x"042c0", 18x"04226",
        18x"0418a", 18x"040f0", 18x"04056", 18x"03fbe", 18x"03f24", 18x"03e8c", 18x"03df2", 18x"03d5a",
        18x"03cc2", 18x"03c2a", 18x"03b92", 18x"03afa", 18x"03a62", 18x"039cc", 18x"03934", 18x"0389e",
        18x"03808", 18x"03772", 18x"036dc", 18x"03646", 18x"035b2", 18x"0351c", 18x"03488", 18x"033f2",
        18x"0335e", 18x"032ca", 18x"03236", 18x"031a2", 18x"03110", 18x"0307c", 18x"02fea", 18x"02f56",
        18x"02ec4", 18x"02e32", 18x"02da0", 18x"02d0e", 18x"02c7c", 18x"02bec", 18x"02b5a", 18x"02aca",
        18x"02a38", 18x"029a8", 18x"02918", 18x"02888", 18x"027f8", 18x"0276a", 18x"026da", 18x"0264a",
        18x"025bc", 18x"0252e", 18x"024a0", 18x"02410", 18x"02384", 18x"022f6", 18x"02268", 18x"021da",
        18x"0214e", 18x"020c0", 18x"02034", 18x"01fa8", 18x"01f1c", 18x"01e90", 18x"01e04", 18x"01d78",
        18x"01cee", 18x"01c62", 18x"01bd8", 18x"01b4c", 18x"01ac2", 18x"01a38", 18x"019ae", 18x"01924",
        18x"0189c", 18x"01812", 18x"01788", 18x"01700", 18x"01676", 18x"015ee", 18x"01566", 18x"014de",
        18x"01456", 18x"013ce", 18x"01346", 18x"012c0", 18x"01238", 18x"011b2", 18x"0112c", 18x"010a4",
        18x"0101e", 18x"00f98", 18x"00f12", 18x"00e8c", 18x"00e08", 18x"00d82", 18x"00cfe", 18x"00c78",
        18x"00bf4", 18x"00b70", 18x"00aec", 18x"00a68", 18x"009e4", 18x"00960", 18x"008dc", 18x"00858",
        18x"007d6", 18x"00752", 18x"006d0", 18x"0064e", 18x"005cc", 18x"0054a", 18x"004c8", 18x"00446",
        18x"003c4", 18x"00342", 18x"002c2", 18x"00240", 18x"001c0", 18x"00140", 18x"000c0", 18x"00040"
        );

    -- Left and right shifter with 120 bit input and 64 bit output.
    -- Shifts inp left by shift bits and returns the upper 64 bits of
    -- the result.  The shift parameter is interpreted as a signed
    -- number in the range -64..63, with negative values indicating
    -- right shifts.
    function shifter_64(inp: std_ulogic_vector(119 downto 0);
                        shift: std_ulogic_vector(6 downto 0))
        return std_ulogic_vector is
        variable s1 : std_ulogic_vector(94 downto 0);
        variable s2 : std_ulogic_vector(70 downto 0);
        variable shift_result : std_ulogic_vector(63 downto 0);
    begin
        case shift(6 downto 5) is
            when "00" =>
                s1 := inp(119 downto 25);
            when "01" =>
                s1 := inp(87 downto 0) & "0000000";
            when "10" =>
                s1 := x"0000000000000000" & inp(119 downto 89);
            when others =>
                s1 := x"00000000" & inp(119 downto 57);
        end case;
        case shift(4 downto 3) is
            when "00" =>
                s2 := s1(94 downto 24);
            when "01" =>
                s2 := s1(86 downto 16);
            when "10" =>
                s2 := s1(78 downto 8);
            when others =>
                s2 := s1(70 downto 0);
        end case;
        case shift(2 downto 0) is
            when "000" =>
                shift_result := s2(70 downto 7);
            when "001" =>
                shift_result := s2(69 downto 6);
            when "010" =>
                shift_result := s2(68 downto 5);
            when "011" =>
                shift_result := s2(67 downto 4);
            when "100" =>
                shift_result := s2(66 downto 3);
            when "101" =>
                shift_result := s2(65 downto 2);
            when "110" =>
                shift_result := s2(64 downto 1);
            when others =>
                shift_result := s2(63 downto 0);
        end case;
        return shift_result;
    end;

    -- Generate a mask with 0-bits on the left and 1-bits on the right which
    -- selects the bits will be lost in doing a right shift.  The shift
    -- parameter is the bottom 6 bits of a negative shift count,
    -- indicating a right shift.
    function right_mask(shift: unsigned(5 downto 0)) return std_ulogic_vector is
        variable mask_result: std_ulogic_vector(63 downto 0);
    begin
        mask_result := (others => '0');
	if is_X(shift) then
	    mask_result := (others => 'X');
	    return mask_result;
	end if;
        for i in 0 to 63 loop
            if i >= shift then
                mask_result(63 - i) := '1';
            end if;
        end loop;
        return mask_result;
    end;

    -- Split a DP floating-point number into components and work out its class.
    -- If is_int = 1, the input is considered an integer
    function decode_dp(fpr: std_ulogic_vector(63 downto 0); is_fp: std_ulogic;
                       is_32bint: std_ulogic; is_signed: std_ulogic) return fpu_reg_type is
        variable reg     : fpu_reg_type;
        variable exp_nz  : std_ulogic;
        variable exp_ao  : std_ulogic;
        variable frac_nz : std_ulogic;
        variable low_nz  : std_ulogic;
        variable cls     : std_ulogic_vector(2 downto 0);
    begin
        reg.negative := fpr(63);
        reg.denorm := '0';
        exp_nz := or (fpr(62 downto 52));
        exp_ao := and (fpr(62 downto 52));
        frac_nz := or (fpr(51 downto 0));
        low_nz := or (fpr(31 downto 0));
        if is_fp = '1' then
            reg.denorm := frac_nz and not exp_nz;
            reg.exponent := signed(resize(unsigned(fpr(62 downto 52)), EXP_BITS)) - to_signed(1023, EXP_BITS);
            if exp_nz = '0' then
                reg.exponent := to_signed(-1022, EXP_BITS);
            end if;
            reg.mantissa := std_ulogic_vector(shift_left(resize(unsigned(exp_nz & fpr(51 downto 0)), 64),
                                                         UNIT_BIT - 52));
            cls := exp_ao & exp_nz & frac_nz;
            case cls is
                when "000"  => reg.class := ZERO;
                when "001"  => reg.class := FINITE;    -- denormalized
                when "010"  => reg.class := FINITE;
                when "011"  => reg.class := FINITE;
                when "110"  => reg.class := INFINITY;
                when others => reg.class := NAN;
            end case;
        elsif is_32bint = '1' then
            reg.negative := fpr(31);
            reg.mantissa(31 downto 0) := fpr(31 downto 0);
            reg.mantissa(63 downto 32) := (others => (is_signed and fpr(31)));
            reg.exponent := (others => '0');
            if low_nz = '1' then
                reg.class := FINITE;
            else
                reg.class := ZERO;
            end if;
        else
            reg.mantissa := fpr;
            reg.exponent := (others => '0');
            if (fpr(63) or exp_nz or frac_nz) = '1' then
                reg.class := FINITE;
            else
                reg.class := ZERO;
            end if;
        end if;
        return reg;
    end;

    -- Construct a DP floating-point result from components
    function pack_dp(negative: std_ulogic; class: fp_number_class; exp: signed(EXP_BITS-1 downto 0);
                     mantissa: std_ulogic_vector; single_prec: std_ulogic; quieten_nan: std_ulogic)
        return std_ulogic_vector is
        variable dp_result : std_ulogic_vector(63 downto 0);
    begin
        dp_result := (others => '0');
        case class is
            when ZERO =>
            when FINITE =>
                if mantissa(UNIT_BIT) = '1' then
                    -- normalized number
                    dp_result(62 downto 52) := std_ulogic_vector(resize(exp, 11) + 1023);
                end if;
                dp_result(51 downto 29) := mantissa(UNIT_BIT - 1 downto SP_LSB);
                if single_prec = '0' then
                    dp_result(28 downto 0) := mantissa(SP_LSB - 1 downto DP_LSB);
                end if;
            when INFINITY =>
                dp_result(62 downto 52) := "11111111111";
            when NAN =>
                dp_result(62 downto 52) := "11111111111";
                dp_result(51) := quieten_nan or mantissa(QNAN_BIT);
                dp_result(50 downto 29) := mantissa(QNAN_BIT - 1 downto SP_LSB);
                if single_prec = '0' then
                    dp_result(28 downto 0) := mantissa(SP_LSB - 1 downto DP_LSB);
                end if;
        end case;
        dp_result(63) := negative;
        return dp_result;
    end;

    -- Determine whether to increment when rounding
    -- Returns rounding_inc & inexact
    -- If single_prec = 1, assumes x includes the bottom 31 (== SP_LSB - 2)
    -- bits of the mantissa already (usually arranged by setting set_x = 1 earlier).
    function fp_rounding(mantissa: std_ulogic_vector(63 downto 0); x: std_ulogic;
                         single_prec: std_ulogic; rn: std_ulogic_vector(2 downto 0);
                         sign: std_ulogic)
        return std_ulogic_vector is
        variable grx : std_ulogic_vector(2 downto 0);
        variable ret : std_ulogic_vector(1 downto 0);
        variable lsb : std_ulogic;
    begin
        if single_prec = '0' then
            grx := mantissa(DP_GBIT downto DP_RBIT) & (x or (or mantissa(DP_RBIT - 1 downto 0)));
            lsb := mantissa(DP_LSB);
        else
            grx := mantissa(SP_GBIT downto SP_RBIT) & x;
            lsb := mantissa(SP_LSB);
        end if;
        ret(1) := '0';
        ret(0) := or (grx);
        case rn(1 downto 0) is
            when "00" =>        -- round to nearest
                if grx = "100" and rn(2) = '0' then
                    ret(1) := lsb; -- tie, round to even
                else
                    ret(1) := grx(2);
                end if;
            when "01" =>        -- round towards zero
            when others =>      -- round towards +/- inf
                if rn(0) = sign then
                    -- round towards greater magnitude
                    ret(1) := ret(0);
                end if;
        end case;
        return ret;
    end;

    -- Determine result flags to write into the FPSCR
    function result_flags(sign: std_ulogic; class: fp_number_class; unitbit: std_ulogic)
        return std_ulogic_vector is
    begin
        case class is
            when ZERO =>
                return sign & "0010";
            when FINITE =>
                return (not unitbit) & sign & (not sign) & "00";
            when INFINITY =>
                return '0' & sign & (not sign) & "01";
            when NAN =>
                return "10001";
        end case;
    end;

begin
    fpu_multiply_0: entity work.multiply
        port map (
            clk => clk,
            m_in => f_to_multiply,
            m_out => multiply_to_f
            );

    fpu_0: process(clk)
    begin
        if rising_edge(clk) then
            if rst = '1' or flush_in = '1' then
                r.state <= IDLE;
                r.busy <= '0';
                r.f2stall <= '0';
                r.instr_done <= '0';
                r.complete <= '0';
                r.illegal <= '0';
                r.do_intr <= '0';
                r.writing_fpr <= '0';
                r.writing_cr <= '0';
                r.writing_xer <= '0';
                r.fpscr <= (others => '0');
                r.write_reg <= (others =>'0');
                r.complete_tag.valid <= '0';
                r.cr_mask <= (others =>'0');
                r.cr_result <= (others =>'0');
                r.instr_tag.valid <= '0';
                if rst = '1' then
                    r.fpscr <= (others => '0');
                    r.comm_fpscr <= (others => '0');
                elsif r.do_intr = '0' then
                    -- flush_in = 1 and not due to us generating an interrupt,
                    -- roll back to committed fpscr
                    r.fpscr <= r.comm_fpscr;
                end if;
            else
                assert not (r.state /= IDLE and e_in.valid = '1') severity failure;
                r <= rin;
            end if;
        end if;
    end process;

    -- synchronous reads from lookup table
    lut_access: process(clk)
        variable addrhi : std_ulogic_vector(1 downto 0);
        variable addr   : std_ulogic_vector(9 downto 0);
    begin
        if rising_edge(clk) then
            if r.is_sqrt = '1' then
                addrhi := r.b.mantissa(UNIT_BIT + 1 downto UNIT_BIT);
            else
                addrhi := "00";
            end if;
            addr := addrhi & r.b.mantissa(UNIT_BIT - 1 downto UNIT_BIT - 8);
	    if is_X(addr) then
		inverse_est <= (others => 'X');
	    else
		inverse_est <= '1' & inverse_table(to_integer(unsigned(addr)));
	    end if;
        end if;
    end process;

    e_out.busy <= r.busy;
    e_out.f2stall <= r.f2stall;
    e_out.exception <= r.fpscr(FPSCR_FEX);

    -- Note that the cycle where r.complete = 1 for an instruction can be as
    -- late as the second cycle of the following instruction (i.e. in the state
    -- following IDLE state).  Hence it is important that none of the fields of
    -- r that are used below are modified in IDLE state.
    w_out.valid <= r.complete;
    w_out.instr_tag <= r.complete_tag;
    w_out.write_enable <= r.writing_fpr and r.complete;
    w_out.write_reg <= r.write_reg;
    w_out.write_data <= fp_result;
    w_out.write_cr_enable <= r.writing_cr and r.complete;
    w_out.write_cr_mask <= r.cr_mask;
    w_out.write_cr_data <= r.cr_result & r.cr_result & r.cr_result & r.cr_result &
                           r.cr_result & r.cr_result & r.cr_result & r.cr_result;
    w_out.write_xerc <= r.writing_xer and r.complete;
    w_out.xerc <= r.xerc_result;
    w_out.interrupt <= r.do_intr;
    w_out.intr_vec <= 16#700#;
    w_out.srr1 <= (47-44 => r.illegal, 47-43 => not r.illegal, others => '0');

    fpu_1: process(all)
        variable v           : reg_type;
        variable adec        : fpu_reg_type;
        variable bdec        : fpu_reg_type;
        variable cdec        : fpu_reg_type;
        variable fpscr_mask  : std_ulogic_vector(31 downto 0);
        variable j, k        : integer;
        variable flm         : std_ulogic_vector(7 downto 0);
        variable fpin_a      : std_ulogic;
        variable fpin_b      : std_ulogic;
        variable fpin_c      : std_ulogic;
        variable is_32bint   : std_ulogic;
        variable mask        : std_ulogic_vector(63 downto 0);
        variable in_a0       : std_ulogic_vector(63 downto 0);
        variable in_b0       : std_ulogic_vector(63 downto 0);
        variable misc        : std_ulogic_vector(63 downto 0);
        variable shift_res   : std_ulogic_vector(63 downto 0);
        variable round       : std_ulogic_vector(1 downto 0);
        variable update_fx   : std_ulogic;
        variable arith_done  : std_ulogic;
        variable invalid     : std_ulogic;
        variable zero_divide : std_ulogic;
        variable mant_nz     : std_ulogic;
        variable min_exp     : signed(EXP_BITS-1 downto 0);
        variable max_exp     : signed(EXP_BITS-1 downto 0);
        variable bias_exp    : signed(EXP_BITS-1 downto 0);
        variable new_exp     : signed(EXP_BITS-1 downto 0);
        variable exp_tiny    : std_ulogic;
        variable exp_huge    : std_ulogic;
        variable clz         : std_ulogic_vector(5 downto 0);
        variable set_x       : std_ulogic;
        variable mshift      : signed(EXP_BITS-1 downto 0);
        variable need_check  : std_ulogic;
        variable msb         : std_ulogic;
        variable is_add      : std_ulogic;
        variable set_a       : std_ulogic;
        variable set_a_exp   : std_ulogic;
        variable set_a_mant  : std_ulogic;
        variable set_a_hi    : std_ulogic;
        variable set_a_lo    : std_ulogic;
        variable set_b       : std_ulogic;
        variable set_b_mant  : std_ulogic;
        variable set_c       : std_ulogic;
        variable set_y       : std_ulogic;
        variable set_s       : std_ulogic;
        variable qnan_result : std_ulogic;
        variable px_nz       : std_ulogic;
        variable pcmpb_eq    : std_ulogic;
        variable pcmpb_lt    : std_ulogic;
        variable pcmpc_eq    : std_ulogic;
        variable pcmpc_lt    : std_ulogic;
        variable pshift      : std_ulogic;
        variable renorm_sqrt : std_ulogic;
        variable sqrt_exp    : signed(EXP_BITS-1 downto 0);
        variable shiftin     : std_ulogic;
        variable shiftin0    : std_ulogic;
        variable mulexp      : signed(EXP_BITS-1 downto 0);
        variable maddend     : std_ulogic_vector(127 downto 0);
        variable sum         : std_ulogic_vector(63 downto 0);
        variable round_inc   : std_ulogic_vector(63 downto 0);
        variable rbit_inc    : std_ulogic;
        variable mult_mask   : std_ulogic;
        variable sign_bit    : std_ulogic;
        variable rnd_b32     : std_ulogic;
        variable rexp_in1    : signed(EXP_BITS-1 downto 0);
        variable rexp_in2    : signed(EXP_BITS-1 downto 0);
        variable rexp_cin    : std_ulogic;
        variable rexp_sum    : signed(EXP_BITS-1 downto 0);
        variable rsh_in1     : signed(EXP_BITS-1 downto 0);
        variable rsh_in2     : signed(EXP_BITS-1 downto 0);
        variable exec_state  : state_t;
        variable opcbits     : std_ulogic_vector(4 downto 0);
        variable int_result  : std_ulogic;
        variable illegal     : std_ulogic;
        variable rsign       : std_ulogic;
    begin
        v := r;
        v.complete := '0';
        v.do_intr := '0';
        is_32bint := '0';
        exec_state := IDLE;

        if r.complete = '1' or r.do_intr = '1' then
            v.instr_done := '0';
            v.writing_fpr := '0';
            v.writing_cr := '0';
            v.writing_xer := '0';
            v.comm_fpscr := r.fpscr;
            v.illegal := '0';
        end if;

        -- capture incoming instruction
        if e_in.valid = '1' then
            v.insn := e_in.insn;
            v.op := e_in.op;
            v.instr_tag := e_in.itag;
            v.fe_mode := or (e_in.fe_mode);
            v.dest_fpr := e_in.frt;
            v.single_prec := e_in.single;
            v.is_signed := e_in.is_signed;
            v.rc := e_in.rc;
            v.fp_rc := '0';
            v.is_cmp := e_in.out_cr;
            v.oe := e_in.oe;
            v.m32b := e_in.m32b;
            v.xerc := e_in.xerc;
            v.longmask := '0';
            v.integer_op := '0';
            v.divext := '0';
            v.divmod := '0';
            v.is_sqrt := '0';
            v.is_multiply := '0';
            fpin_a := '0';
            fpin_b := '0';
            fpin_c := '0';
            v.use_a := e_in.valid_a;
            v.use_b := e_in.valid_b;
            v.use_c := e_in.valid_c;
            v.round_mode := '0' & r.fpscr(FPSCR_RN+1 downto FPSCR_RN);
            case e_in.op is
                when OP_FP_ARITH =>
                    fpin_a := e_in.valid_a;
                    fpin_b := e_in.valid_b;
                    fpin_c := e_in.valid_c;
                    v.longmask := e_in.single;
                    v.fp_rc := e_in.rc;
                    exec_state := arith_decode(to_integer(unsigned(e_in.insn(5 downto 1))));
                    if e_in.insn(5 downto 1) = "11001" or e_in.insn(5 downto 3) = "111" then
                        v.is_multiply := '1';
                    end if;
                    if e_in.insn(5 downto 1) = "10110" or e_in.insn(5 downto 1) = "11010" then
                        v.is_sqrt := '1';
                    end if;
                    if e_in.insn(5 downto 1) = "01111" then
                        v.round_mode := "001";
                    end if;
                when OP_FP_CMP =>
                    fpin_a := e_in.valid_a;
                    fpin_b := e_in.valid_b;
                    exec_state := cmp_decode(to_integer(unsigned(e_in.insn(8 downto 6))));
                when OP_FP_MISC =>
                    v.fp_rc := e_in.rc;
                    opcbits := e_in.insn(10) & e_in.insn(8) & e_in.insn(4) & e_in.insn(2) & e_in.insn(1);
                    exec_state := misc_decode(to_integer(unsigned(opcbits)));
                when OP_FP_MOVE =>
                    v.fp_rc := e_in.rc;
                    fpin_a := e_in.valid_a;
                    fpin_b := e_in.valid_b;
                    fpin_c := e_in.valid_c;
                    if e_in.insn(5) = '0' then
                        exec_state := DO_FMR;
                    else
                        exec_state := DO_FSEL;
                    end if;
                when OP_DIV =>
                    v.integer_op := '1';
                    is_32bint := e_in.single;
                    exec_state := DO_IDIVMOD;
                when OP_DIVE =>
                    v.integer_op := '1';
                    v.divext := '1';
                    is_32bint := e_in.single;
                    exec_state := DO_IDIVMOD;
                when OP_MOD =>
                    v.integer_op := '1';
                    v.divmod := '1';
                    is_32bint := e_in.single;
                    exec_state := DO_IDIVMOD;
                when others =>
                    exec_state := DO_ILLEGAL;
            end case;
            v.quieten_nan := '1';
            v.tiny := '0';
            v.denorm := '0';
            v.is_subtract := '0';
            v.add_bsmall := '0';
            v.int_ovf := '0';
            v.div_close := '0';

            adec := decode_dp(e_in.fra, fpin_a, is_32bint, e_in.is_signed);
            bdec := decode_dp(e_in.frb, fpin_b, is_32bint, e_in.is_signed);
            cdec := decode_dp(e_in.frc, fpin_c, '0', '0');
            v.a := adec;
            v.b := bdec;
            v.c := cdec;

            v.exp_cmp := '0';
            if adec.exponent > bdec.exponent then
                v.exp_cmp := '1';
            end if;
            v.madd_cmp := '0';
            if (adec.exponent + cdec.exponent + 1) >= bdec.exponent then
                v.madd_cmp := '1';
            end if;

            v.a_hi := 8x"0";
            v.a_lo := 56x"0";
        end if;

        r_hi_nz <= or (r.r(UNIT_BIT + 1 downto SP_LSB));
        r_lo_nz <= or (r.r(SP_LSB - 1 downto DP_LSB));
        r_gt_1 <= or (r.r(63 downto 1));
        s_nz <= or (r.s);

        if r.single_prec = '0' then
            if r.doing_ftdiv(1) = '0' then
                max_exp := to_signed(1023, EXP_BITS);
            else
                max_exp := to_signed(1020, EXP_BITS);
            end if;
            if r.doing_ftdiv(0) = '0' then
                min_exp := to_signed(-1022, EXP_BITS);
            else
                min_exp := to_signed(-1021, EXP_BITS);
            end if;
            bias_exp := to_signed(1536, EXP_BITS);
        else
            max_exp := to_signed(127, EXP_BITS);
            min_exp := to_signed(-126, EXP_BITS);
            bias_exp := to_signed(192, EXP_BITS);
        end if;
        new_exp := r.result_exp - r.shift;
        exp_tiny := '0';
        exp_huge := '0';
	if is_X(new_exp) or is_X(min_exp) then
	    exp_tiny := 'X';
        elsif new_exp < min_exp then
            exp_tiny := '1';
        end if;
	if is_X(new_exp) or is_X(max_exp) then
	    exp_huge := 'X';
	elsif new_exp > max_exp then
            exp_huge := '1';
        end if;

        -- Compare P with zero and with B
        px_nz := or (r.p(UNIT_BIT + 1 downto 4));
        pcmpb_eq := '0';
        if r.p(59 downto 4) = r.b.mantissa(UNIT_BIT + 1 downto DP_RBIT) then
            pcmpb_eq := '1';
        end if;
        pcmpb_lt := '0';
        if is_X(r.p(59 downto 4)) or is_X(r.b.mantissa(55 downto 0)) then
	    pcmpb_lt := 'X';
        elsif unsigned(r.p(59 downto 4)) < unsigned(r.b.mantissa(UNIT_BIT + 1 downto DP_RBIT)) then
            pcmpb_lt := '1';
        end if;
        pcmpc_eq := '0';
        if r.p = r.c.mantissa then
            pcmpc_eq := '1';
        end if;
        pcmpc_lt := '0';
        if is_X(r.p) or is_X(r.c.mantissa) then
	    pcmpc_lt := 'X';
        elsif unsigned(r.p) < unsigned(r.c.mantissa) then
            pcmpc_lt := '1';
        end if;

        v.update_fprf := '0';
        v.first := '0';
        v.doing_ftdiv := "00";
        v.opsel_a := AIN_R;
        opsel_ainv <= '0';
        opsel_mask <= '0';
        opsel_b <= BIN_ZERO;
        opsel_binv <= '0';
        opsel_r <= RES_SUM;
        opsel_s <= S_ZERO;
        carry_in <= '0';
        misc_sel <= "0000";
        fpscr_mask := (others => '1');
        update_fx := '0';
        arith_done := '0';
        invalid := '0';
        zero_divide := '0';
        set_x := '0';
        qnan_result := '0';
        set_a := '0';
        set_a_exp := '0';
        set_a_mant := '0';
        set_a_hi := '0';
        set_a_lo := '0';
        set_b := '0';
        set_b_mant := '0';
        set_c := '0';
        set_s := '0';
        f_to_multiply.is_signed <= '0';
        f_to_multiply.valid <= '0';
        msel_1 <= MUL1_A;
        msel_2 <= MUL2_C;
        msel_add <= MULADD_ZERO;
        msel_inv <= '0';
        set_y := '0';
        pshift := '0';
        renorm_sqrt := '0';
        shiftin := '0';
        shiftin0 := '0';
        rbit_inc := '0';
        mult_mask := '0';
        rnd_b32 := '0';
        int_result := '0';
        illegal := '0';

        re_sel1 <= REXP1_ZERO;
        re_sel2 <= REXP2_CON;
        re_con2 <= RECON2_ZERO;
        re_neg1 <= '0';
        re_neg2 <= '0';
        re_set_result <= '0';
        rs_sel1 <= RSH1_ZERO;
        rs_sel2 <= RSH2_CON;
        rs_con2 <= RSCON2_ZERO;
        rs_neg1 <= '0';
        rs_neg2 <= '0';
        rs_norm <= '0';

        case r.state is
            when IDLE =>
                v.invalid := '0';
                v.negate := '0';
                if e_in.valid = '1' then
                    v.opsel_a := AIN_B;
                    v.busy := '1';
                    if e_in.op = OP_FP_ARITH and e_in.valid_a = '1' and
                        (e_in.valid_b = '0' or e_in.valid_c = '0') then
                        v.opsel_a := AIN_A;
                    end if;
                    if e_in.op = OP_FP_ARITH then
                        -- input selection for denorm cases
                        case e_in.insn(5 downto 1) is
                            when "10010" =>         -- fdiv
                                if v.b.mantissa(UNIT_BIT) = '0' and v.a.mantissa(UNIT_BIT) = '1' then
                                    v.opsel_a := AIN_B;
                                end if;
                            when "11001" =>         -- fmul
                                if v.c.mantissa(UNIT_BIT) = '0' and v.a.mantissa(UNIT_BIT) = '1' then
                                    v.opsel_a := AIN_C;
                                end if;
                            when "11100" | "11101" | "11110" | "11111" =>   -- fmadd etc.
                                if v.a.mantissa(UNIT_BIT) = '0' then
                                    v.opsel_a := AIN_A;
                                elsif v.c.mantissa(UNIT_BIT) = '0' then
                                    v.opsel_a := AIN_C;
                                end if;
                            when others =>
                        end case;
                    end if;
                    v.state := exec_state;
                end if;
                v.x := '0';
                v.old_exc := r.fpscr(FPSCR_VX downto FPSCR_XX);
                set_s := '1';

            when DO_ILLEGAL =>
                illegal := '1';
                v.instr_done := '1';

            when DO_MCRFS =>
                j := to_integer(unsigned(insn_bfa(r.insn)));
                for i in 0 to 7 loop
                    if i = j then
                        k := (7 - i) * 4;
                        v.cr_result := r.fpscr(k + 3 downto k);
                        fpscr_mask(k + 3 downto k) := "0000";
                    end if;
                end loop;
                v.fpscr := r.fpscr and (fpscr_mask or x"6007F8FF");
                v.instr_done := '1';

            when DO_FTDIV =>
                v.cr_result := "0000";
                -- set result_exp to the exponent of B
                re_sel2 <= REXP2_B;
                re_set_result <= '1';
                if r.a.class = INFINITY or r.b.class = ZERO or r.b.class = INFINITY or
                    (r.b.class = FINITE and r.b.mantissa(UNIT_BIT) = '0') then
                    v.cr_result(2) := '1';
                end if;
                if r.a.class = NAN or r.a.class = INFINITY or
                    r.b.class = NAN or r.b.class = ZERO or r.b.class = INFINITY or
                    (r.a.class = FINITE and r.a.exponent <= to_signed(-970, EXP_BITS)) then
                    v.cr_result(1) := '1';
                    v.instr_done := '1';
                else
                    v.doing_ftdiv := "11";
                    v.first := '1';
                    v.state := FTDIV_1;
                    v.instr_done := '0';
                end if;

            when DO_FTSQRT =>
                v.instr_done := '1';
                v.cr_result := "0000";
                if r.b.class = ZERO or r.b.class = INFINITY or
                    (r.b.class = FINITE and r.b.mantissa(UNIT_BIT) = '0') then
                    v.cr_result(2) := '1';
                end if;
                if r.b.class = NAN or r.b.class = INFINITY or r.b.class = ZERO
                    or r.b.negative = '1' or r.b.exponent <= to_signed(-970, EXP_BITS) then
                    v.cr_result(1) := '1';
                end if;

            when DO_FCMP =>
                -- fcmp[uo]
                -- r.opsel_a = AIN_B
                v.instr_done := '1';
                update_fx := '1';
                re_sel2 <= REXP2_B;
                re_set_result <= '1';
                if (r.a.class = NAN and r.a.mantissa(QNAN_BIT) = '0') or
                    (r.b.class = NAN and r.b.mantissa(QNAN_BIT) = '0') then
                    -- Signalling NAN
                    v.fpscr(FPSCR_VXSNAN) := '1';
                    if r.insn(6) = '1' and r.fpscr(FPSCR_VE) = '0' then
                        v.fpscr(FPSCR_VXVC) := '1';
                    end if;
                    invalid := '1';
                    v.cr_result := "0001";          -- unordered
                elsif r.a.class = NAN or r.b.class = NAN then
                    if r.insn(6) = '1' then
                        -- fcmpo
                        v.fpscr(FPSCR_VXVC) := '1';
                        invalid := '1';
                    end if;
                    v.cr_result := "0001";          -- unordered
                elsif r.a.class = ZERO and r.b.class = ZERO then
                    v.cr_result := "0010";          -- equal
                elsif r.a.negative /= r.b.negative then
                    v.cr_result := r.a.negative & r.b.negative & "00";
                elsif r.a.class = ZERO then
                    -- A and B are the same sign from here down
                    v.cr_result := not r.b.negative & r.b.negative & "00";
                elsif r.a.class = INFINITY then
                    if r.b.class = INFINITY then
                        v.cr_result := "0010";
                    else
                        v.cr_result := r.a.negative & not r.a.negative & "00";
                    end if;
                elsif r.b.class = ZERO then
                    -- A is finite from here down
                    v.cr_result := r.a.negative & not r.a.negative & "00";
                elsif r.b.class = INFINITY then
                    v.cr_result := not r.b.negative & r.b.negative & "00";
                elsif r.exp_cmp = '1' then
                    -- A and B are both finite from here down
                    v.cr_result := r.a.negative & not r.a.negative & "00";
                elsif r.a.exponent /= r.b.exponent then
                    -- A exponent is smaller than B
                    v.cr_result := not r.a.negative & r.a.negative & "00";
                else
                    -- Prepare to subtract mantissas, put B in R
                    v.cr_result := "0000";
                    v.instr_done := '0';
                    v.opsel_a := AIN_A;
                    v.state := CMP_1;
                end if;
                v.fpscr(FPSCR_FL downto FPSCR_FU) := v.cr_result;

            when DO_MTFSB =>
                -- mtfsb{0,1}
                j := to_integer(unsigned(insn_bt(r.insn)));
                for i in 0 to 31 loop
                    if i = j then
                        v.fpscr(31 - i) := r.insn(6);
                    end if;
                end loop;
                v.instr_done := '1';

            when DO_MTFSFI =>
                -- mtfsfi
                j := to_integer(unsigned(insn_bf(r.insn)));
                if r.insn(16) = '0' then
                    for i in 0 to 7 loop
                        if i = j then
                            k := (7 - i) * 4;
                            v.fpscr(k + 3 downto k) := insn_u(r.insn);
                        end if;
                    end loop;
                end if;
                v.instr_done := '1';

            when DO_FMRG =>
                -- fmrgew, fmrgow
                opsel_r <= RES_MISC;
                misc_sel <= "01" & r.insn(8) & '0';
                int_result := '1';
                v.writing_fpr := '1';
                v.instr_done := '1';

            when DO_MFFS =>
                v.writing_fpr := '1';
                opsel_r <= RES_MISC;
                case r.insn(20 downto 16) is
                    when "00000" =>
                        -- mffs
                    when "00001" =>
                        -- mffsce
                        v.fpscr(FPSCR_VE downto FPSCR_XE) := "00000";
                    when "10100" | "10101" =>
                        -- mffscdrn[i] (but we don't implement DRN)
                        fpscr_mask := x"000000FF";
                    when "10110" =>
                        -- mffscrn
                        fpscr_mask := x"000000FF";
                        v.fpscr(FPSCR_RN+1 downto FPSCR_RN) :=
                            r.b.mantissa(FPSCR_RN+1 downto FPSCR_RN);
                    when "10111" =>
                        -- mffscrni
                        fpscr_mask := x"000000FF";
                        v.fpscr(FPSCR_RN+1 downto FPSCR_RN) := r.insn(12 downto 11);
                    when "11000" =>
                        -- mffsl
                        fpscr_mask := x"0007F0FF";
                    when others =>
                        v.illegal := '1';
                        v.writing_fpr := '0';
                end case;
                int_result := '1';
                v.instr_done := '1';

            when DO_MTFSF =>
                if r.insn(25) = '1' then
                    flm := x"FF";
                elsif r.insn(16) = '1' then
                    flm := x"00";
                else
                    flm := r.insn(24 downto 17);
                end if;
                for i in 0 to 7 loop
                    k := i * 4;
                    if flm(i) = '1' then
                        v.fpscr(k + 3 downto k) := r.b.mantissa(k + 3 downto k);
                    end if;
                end loop;
                v.instr_done := '1';

            when DO_FMR =>
                -- r.opsel_a = AIN_B
                v.result_class := r.b.class;
                re_sel2 <= REXP2_B;
                re_set_result <= '1';
                v.quieten_nan := '0';
                if r.insn(9) = '1' then
                    v.result_sign := '0';              -- fabs
                elsif r.insn(8) = '1' then
                    v.result_sign := '1';              -- fnabs
                elsif r.insn(7) = '1' then
                    v.result_sign := r.b.negative;     -- fmr
                elsif r.insn(6) = '1' then
                    v.result_sign := not r.b.negative; -- fneg
                else
                    v.result_sign := r.a.negative;     -- fcpsgn
                end if;
                v.writing_fpr := '1';
                v.instr_done := '1';

            when DO_FRI =>    -- fri[nzpm]
                -- r.opsel_a = AIN_B
                v.result_class := r.b.class;
                v.result_sign := r.b.negative;
                re_sel2 <= REXP2_B;
                re_set_result <= '1';
                -- set shift to exponent - 52
                rs_sel1 <= RSH1_B;
                rs_con2 <= RSCON2_52;
                rs_neg2 <= '1';
                v.fpscr(FPSCR_FR) := '0';
                v.fpscr(FPSCR_FI) := '0';
                if r.b.class = NAN and r.b.mantissa(QNAN_BIT) = '0' then
                    -- Signalling NAN
                    v.fpscr(FPSCR_VXSNAN) := '1';
                    invalid := '1';
                end if;
                if r.b.class = FINITE then
                    if r.b.exponent >= to_signed(52, EXP_BITS) then
                        -- integer already, no rounding required
                        arith_done := '1';
                    else
                        v.state := FRI_1;
                        v.round_mode := '1' & r.insn(7 downto 6);
                    end if;
                else
                    arith_done := '1';
                end if;

            when DO_FRSP =>
                -- r.opsel_a = AIN_B, r.shift = 0
                v.result_class := r.b.class;
                v.result_sign := r.b.negative;
                re_sel2 <= REXP2_B;
                re_set_result <= '1';
                -- set shift to exponent - -126
                rs_sel1 <= RSH1_B;
                rs_con2 <= RSCON2_MINEXP;
                rs_neg2 <= '1';
                v.fpscr(FPSCR_FR) := '0';
                v.fpscr(FPSCR_FI) := '0';
                if r.b.class = NAN and r.b.mantissa(53) = '0' then
                    -- Signalling NAN
                    v.fpscr(FPSCR_VXSNAN) := '1';
                    invalid := '1';
                end if;
                set_x := '1';
                if r.b.class = FINITE then
                    if r.b.exponent < to_signed(-126, EXP_BITS) then
                        v.state := ROUND_UFLOW;
                    elsif r.b.exponent > to_signed(127, EXP_BITS) then
                        v.state := ROUND_OFLOW;
                    else
                        v.state := ROUNDING;
                    end if;
                else
                    arith_done := '1';
                end if;

            when DO_FCTI =>
                -- instr bit 9: 1=dword 0=word
                -- instr bit 8: 1=unsigned 0=signed
                -- instr bit 1: 1=round to zero 0=use fpscr[RN]
                -- r.opsel_a = AIN_B
                v.result_class := r.b.class;
                v.result_sign := r.b.negative;
                re_sel2 <= REXP2_B;
                re_set_result <= '1';
                rs_sel1 <= RSH1_B;
                rs_neg2 <= '1';
                v.fpscr(FPSCR_FR) := '0';
                v.fpscr(FPSCR_FI) := '0';
                if r.b.class = NAN and r.b.mantissa(53) = '0' then
                    -- Signalling NAN
                    v.fpscr(FPSCR_VXSNAN) := '1';
                    invalid := '1';
                end if;

                int_result := '1';

                case r.b.class is
                    when ZERO =>
                        arith_done := '1';
                    when FINITE =>
                        if r.b.exponent >= to_signed(64, EXP_BITS) or
                            (r.insn(9) = '0' and r.b.exponent >= to_signed(32, EXP_BITS)) then
                            v.state := INT_OFLOW;
                        elsif r.b.exponent >= to_signed(52, EXP_BITS) then
                            -- integer already, no rounding required,
                            -- shift into final position
                            -- set shift to exponent - 56
                            rs_con2 <= RSCON2_UNIT;
                            if r.insn(8) = '1' and r.b.negative = '1' then
                                v.state := INT_OFLOW;
                            else
                                v.state := INT_ISHIFT;
                            end if;
                        else
                            -- set shift to exponent - 52
                            rs_con2 <= RSCON2_52;
                            v.state := INT_SHIFT;
                        end if;
                    when INFINITY | NAN =>
                        v.state := INT_OFLOW;
                end case;

            when DO_FCFID =>
                -- r.opsel_a = AIN_B
                v.result_sign := '0';
                if r.insn(8) = '0' and r.b.negative = '1' then
                    -- fcfid[s] with negative operand, set R = -B
                    opsel_ainv <= '1';
                    carry_in <= '1';
                    v.result_sign := '1';
                end if;
                v.result_class := r.b.class;
                re_con2 <= RECON2_UNIT;
                re_set_result <= '1';
                v.fpscr(FPSCR_FR) := '0';
                v.fpscr(FPSCR_FI) := '0';
                if r.b.class = ZERO then
                    arith_done := '1';
                else
                    v.state := FINISH;
                end if;

            when DO_FADD =>
                -- fadd[s] and fsub[s]
                -- r.opsel_a = AIN_A
                v.result_sign := r.a.negative;
                v.result_class := r.a.class;
                re_sel1 <= REXP1_A;
                re_set_result <= '1';
                -- set shift to a.exp - b.exp
                rs_sel1 <= RSH1_B;
                rs_neg1 <= '1';
                rs_sel2 <= RSH2_A;
                v.fpscr(FPSCR_FR) := '0';
                v.fpscr(FPSCR_FI) := '0';
                is_add := r.a.negative xor r.b.negative xor r.insn(1);
                v.is_subtract := not is_add;
                if r.a.class = FINITE and r.b.class = FINITE then
                    v.add_bsmall := r.exp_cmp;
                    v.opsel_a := AIN_B;
                    if r.exp_cmp = '0' then
                        v.result_sign := r.b.negative xnor r.insn(1);
                        if r.a.exponent = r.b.exponent then
                            v.state := ADD_2;
                        else
                            v.longmask := '0';
                            v.state := ADD_SHIFT;
                        end if;
                    else
                        v.state := ADD_1;
                    end if;
                else
                    if r.a.class = NAN or r.b.class = NAN then
                        v.state := NAN_RESULT;
                    elsif r.a.class = INFINITY and r.b.class = INFINITY and is_add = '0' then
                        -- invalid operation, construct QNaN
                        v.fpscr(FPSCR_VXISI) := '1';
                        qnan_result := '1';
                        arith_done := '1';
                    elsif r.a.class = INFINITY or r.b.class = ZERO then
                        -- result is A; we're already set up to put A into R
                        arith_done := '1';
                    else
                        -- result is +/- B
                        v.opsel_a := AIN_B;
                        v.result_sign := r.b.negative xnor r.insn(1);
                        v.state := EXC_RESULT;
                    end if;
                end if;

            when DO_FMUL =>
                -- fmul[s]
                -- r.opsel_a = AIN_A unless C is denorm and A isn't
                v.result_sign := r.a.negative xor r.c.negative;
                v.result_class := r.a.class;
                v.fpscr(FPSCR_FR) := '0';
                v.fpscr(FPSCR_FI) := '0';
                re_sel1 <= REXP1_A;
                re_sel2 <= REXP2_C;
                re_set_result <= '1';
                if r.a.class = FINITE and r.c.class = FINITE then
                    -- Renormalize denorm operands
                    if r.a.mantissa(UNIT_BIT) = '0' then
                        v.state := RENORM_A;
                    elsif r.c.mantissa(UNIT_BIT) = '0' then
                        v.state := RENORM_C;
                    else
                        f_to_multiply.valid <= '1';
                        v.state := MULT_1;
                    end if;
                else
                    if r.a.class = NAN or r.c.class = NAN then
                        v.state := NAN_RESULT;
                    elsif (r.a.class = INFINITY and r.c.class = ZERO) or
                        (r.a.class = ZERO and r.c.class = INFINITY) then
                        -- invalid operation, construct QNaN
                        v.fpscr(FPSCR_VXIMZ) := '1';
                        qnan_result := '1';
                    elsif r.a.class = ZERO or r.a.class = INFINITY then
                        -- result is +/- A
                        arith_done := '1';
                    else
                        -- r.c.class is ZERO or INFINITY
                        v.opsel_a := AIN_C;
                        v.state := EXC_RESULT;
                    end if;
                end if;

            when DO_FDIV =>
                -- r.opsel_a = AIN_A unless B is denorm and A isn't
                v.result_class := r.a.class;
                v.fpscr(FPSCR_FR) := '0';
                v.fpscr(FPSCR_FI) := '0';
                v.result_sign := r.a.negative xor r.b.negative;
                re_sel1 <= REXP1_A;
                re_sel2 <= REXP2_B;
                re_neg2 <= '1';
                re_set_result <= '1';
                v.count := "00";
                if r.a.class = FINITE and r.b.class = FINITE then
                    -- Renormalize denorm operands
                    if r.a.mantissa(UNIT_BIT) = '0' then
                        v.state := RENORM_A;
                    elsif r.b.mantissa(UNIT_BIT) = '0' then
                        v.state := RENORM_B;
                    else
                        v.first := '1';
                        v.state := DIV_2;
                    end if;
                else
                    if r.a.class = NAN or r.b.class = NAN then
                        v.state := NAN_RESULT;
                    elsif r.b.class = INFINITY then
                        if r.a.class = INFINITY then
                            v.fpscr(FPSCR_VXIDI) := '1';
                            qnan_result := '1';
                        else
                            v.result_class := ZERO;
                        end if;
                        arith_done := '1';
                    elsif r.b.class = ZERO then
                        if r.a.class = ZERO then
                            v.fpscr(FPSCR_VXZDZ) := '1';
                            qnan_result := '1';
                        else
                            if r.a.class = FINITE then
                                zero_divide := '1';
                            end if;
                            v.result_class := INFINITY;
                        end if;
                        arith_done := '1';
                    else -- r.b.class = FINITE, result_class = r.a.class
                        arith_done := '1';
                    end if;
                end if;

            when DO_FSEL =>
                if r.a.class = ZERO or (r.a.negative = '0' and r.a.class /= NAN) then
                    v.opsel_a := AIN_C;
                    v.result_sign := r.c.negative;
                else
                    v.opsel_a := AIN_B;
                    v.result_sign := r.b.negative;
                end if;
                v.quieten_nan := '0';
                v.state := EXC_RESULT;

            when DO_FSQRT =>
                -- r.opsel_a = AIN_B
                v.result_class := r.b.class;
                v.result_sign := r.b.negative;
                v.fpscr(FPSCR_FR) := '0';
                v.fpscr(FPSCR_FI) := '0';
                re_sel2 <= REXP2_B;
                re_set_result <= '1';
                case r.b.class is
                    when FINITE =>
                        if r.b.negative = '1' then
                            v.fpscr(FPSCR_VXSQRT) := '1';
                            qnan_result := '1';
                        elsif r.b.mantissa(UNIT_BIT) = '0' then
                            v.state := RENORM_B;
                        elsif r.b.exponent(0) = '0' then
                            v.state := SQRT_1;
                        else
                            -- set shift to 1
                            rs_con2 <= RSCON2_1;
                            v.state := RENORM_B2;
                        end if;
                    when NAN =>
                        v.state := NAN_RESULT;
                    when ZERO =>
                        -- result is B
                        arith_done := '1';
                    when INFINITY =>
                        if r.b.negative = '1' then
                            v.fpscr(FPSCR_VXSQRT) := '1';
                            qnan_result := '1';
                        -- else result is B
                        end if;
                        arith_done := '1';
                end case;

            when DO_FRE =>
                -- r.opsel_a = AIN_B
                v.result_class := r.b.class;
                v.result_sign := r.b.negative;
                v.fpscr(FPSCR_FR) := '0';
                v.fpscr(FPSCR_FI) := '0';
                re_sel2 <= REXP2_B;
                re_set_result <= '1';
                case r.b.class is
                    when FINITE =>
                        if r.b.mantissa(UNIT_BIT) = '0' then
                            v.state := RENORM_B;
                        else
                            v.state := FRE_1;
                        end if;
                    when NAN =>
                        v.state := NAN_RESULT;
                    when INFINITY =>
                        v.result_class := ZERO;
                        arith_done := '1';
                    when ZERO =>
                        v.result_class := INFINITY;
                        zero_divide := '1';
                        arith_done := '1';
                end case;

            when DO_FRSQRTE =>
                -- r.opsel_a = AIN_B
                v.result_class := r.b.class;
                v.result_sign := r.b.negative;
                v.fpscr(FPSCR_FR) := '0';
                v.fpscr(FPSCR_FI) := '0';
                re_sel2 <= REXP2_B;
                re_set_result <= '1';
                -- set shift to 1
                rs_con2 <= RSCON2_1;
                case r.b.class is
                    when FINITE =>
                        if r.b.negative = '1' then
                            v.fpscr(FPSCR_VXSQRT) := '1';
                            qnan_result := '1';
                        elsif r.b.mantissa(UNIT_BIT) = '0' then
                            v.state := RENORM_B;
                        elsif r.b.exponent(0) = '0' then
                            v.state := RSQRT_1;
                        else
                            v.state := RENORM_B2;
                        end if;
                    when NAN =>
                        v.state := NAN_RESULT;
                    when INFINITY =>
                        if r.b.negative = '1' then
                            v.fpscr(FPSCR_VXSQRT) := '1';
                            qnan_result := '1';
                        else
                            v.result_class := ZERO;
                        end if;
                        arith_done := '1';
                    when ZERO =>
                        v.result_class := INFINITY;
                        zero_divide := '1';
                        arith_done := '1';
                end case;

            when DO_FMADD =>
                -- fmadd, fmsub, fnmadd, fnmsub
                -- r.opsel_a = AIN_A if A is denorm, else AIN_C if C is denorm,
                -- else AIN_B
                v.result_sign := r.a.negative;
                v.result_class := r.a.class;
                -- put a.exp + c.exp into result_exp
                re_sel1 <= REXP1_A;
                re_sel2 <= REXP2_C;
                re_set_result <= '1';
                -- put b.exp into shift
                rs_sel1 <= RSH1_B;
                v.fpscr(FPSCR_FR) := '0';
                v.fpscr(FPSCR_FI) := '0';
                is_add := r.a.negative xor r.c.negative xor r.b.negative xor r.insn(1);
                v.negate := r.insn(2);
                v.is_subtract := not is_add;
                if r.a.class = FINITE and r.c.class = FINITE and
                    (r.b.class = FINITE or r.b.class = ZERO) then
                    -- Make sure A and C are normalized
                    if r.a.mantissa(UNIT_BIT) = '0' then
                        v.state := RENORM_A;
                    elsif r.c.mantissa(UNIT_BIT) = '0' then
                        v.state := RENORM_C;
                    elsif r.b.class = ZERO then
                        -- no addend, degenerates to multiply
                        v.result_sign := r.a.negative xor r.c.negative;
                        f_to_multiply.valid <= '1';
                        v.is_multiply := '1';
                        v.state := MULT_1;
                    elsif r.madd_cmp = '0' then
                        -- addend is bigger, do multiply first
                        v.result_sign := r.b.negative xnor r.insn(1);
                        f_to_multiply.valid <= '1';
                        v.first := '1';
                        v.state := FMADD_0;
                    else
                        -- product is bigger, shift B first
                        v.state := FMADD_1;
                    end if;
                else
                    if r.a.class = NAN or r.b.class = NAN or r.c.class = NAN then
                        v.state := NAN_RESULT;
                    elsif (r.a.class = ZERO and r.c.class = INFINITY) or
                        (r.a.class = INFINITY and r.c.class = ZERO) then
                        -- invalid operation, construct QNaN
                        v.fpscr(FPSCR_VXIMZ) := '1';
                        qnan_result := '1';
                    elsif r.a.class = INFINITY or r.c.class = INFINITY then
                        if r.b.class = INFINITY and is_add = '0' then
                            -- invalid operation, construct QNaN
                            v.fpscr(FPSCR_VXISI) := '1';
                            qnan_result := '1';
                        else
                            -- result is infinity
                            v.result_class := INFINITY;
                            v.result_sign := r.a.negative xor r.c.negative;
                            arith_done := '1';
                        end if;
                    else
                        -- Here A is zero, C is zero, or B is infinity
                        -- Result is +/-B in all of those cases
                        v.opsel_a := AIN_B;
                        v.result_sign := r.b.negative xnor r.insn(1);
                        v.state := EXC_RESULT;
                    end if;
                end if;

            when RENORM_A =>
                rs_norm <= '1';
                v.state := RENORM_A2;
                if r.use_c = '1' and r.c.denorm = '1' then
                    v.opsel_a := AIN_C;
                else
                    v.opsel_a := AIN_B;
                end if;

            when RENORM_A2 =>
                -- r.opsel_a = AIN_C for fmul/fmadd, AIN_B for fdiv
                set_a := '1';
                re_sel2 <= REXP2_NE;
                re_set_result <= '1';
                if r.insn(4) = '1' then
                    if r.c.mantissa(UNIT_BIT) = '1' then
                        if r.insn(3) = '0' or r.b.class = ZERO then
                            v.first := '1';
                            v.state := MULT_1;
                        else
                            v.madd_cmp := '0';
                            if new_exp + 1 >= r.b.exponent then
                                v.madd_cmp := '1';
                            end if;
                            v.opsel_a := AIN_B;
                            v.state := DO_FMADD;
                        end if;
                    else
                        v.state := RENORM_C;
                    end if;
                else
                    if r.b.mantissa(UNIT_BIT) = '1' then
                        v.first := '1';
                        v.state := DIV_2;
                    else
                        v.state := RENORM_B;
                    end if;
                end if;

            when RENORM_B =>
                rs_norm <= '1';
                renorm_sqrt := r.is_sqrt;
                v.state := RENORM_B2;

            when RENORM_B2 =>
                set_b := '1';
                -- For fdiv, we need to increase result_exp by shift rather
                -- than decreasing it as for fre/frsqrte and fsqrt.
                -- We do that by negating r.shift in this cycle and then
                -- setting result_exp to new_exp in the next cycle
                if r.use_a = '1' then
                    rs_sel1 <= RSH1_S;
                    rs_neg1 <= '1';
                else
                    re_sel2 <= REXP2_NE;
                    re_set_result <= '1';
                end if;
                v.opsel_a := AIN_B;
                v.state := LOOKUP;

            when RENORM_C =>
                rs_norm <= '1';
                v.state := RENORM_C2;

            when RENORM_C2 =>
                set_c := '1';
                re_sel2 <= REXP2_NE;
                re_set_result <= '1';
                if r.insn(3) = '0' or r.b.class = ZERO then
                    v.first := '1';
                    v.state := MULT_1;
                else
                    v.madd_cmp := '0';
                    if new_exp + 1 >= r.b.exponent then
                        v.madd_cmp := '1';
                    end if;
                    v.opsel_a := AIN_B;
                    v.state := DO_FMADD;
                end if;

            when ADD_1 =>
                -- transferring B to R
                re_sel2 <= REXP2_B;
                re_set_result <= '1';
                -- set shift to b.exp - a.exp
                rs_sel1 <= RSH1_B;
                rs_sel2 <= RSH2_A;
                rs_neg2 <= '1';
                v.longmask := '0';
                v.state := ADD_SHIFT;

            when ADD_SHIFT =>
                -- r.shift = - exponent difference, r.longmask = 0
                opsel_r <= RES_SHIFT;
                re_sel2 <= REXP2_NE;
                re_set_result <= '1';
                v.x := s_nz;
                set_x := '1';
                v.longmask := r.single_prec;
                if r.add_bsmall = '1' then
                    v.opsel_a := AIN_A;
                else
                    v.opsel_a := AIN_B;
                end if;
                v.state := ADD_2;

            when ADD_2 =>
                -- r.opsel_a = AIN_A if r.add_bsmall = 1 else AIN_B
                opsel_b <= BIN_R;
                opsel_binv <= r.is_subtract;
                carry_in <= r.is_subtract and not r.x;
                -- set shift to -1
                rs_con2 <= RSCON2_1;
                rs_neg2 <= '1';
                v.state := ADD_3;

            when ADD_3 =>
                -- check for overflow or negative result (can't get both)
                -- r.shift = -1
                re_sel2 <= REXP2_NE;
                if r.r(63) = '1' then
                    -- result is opposite sign to expected
                    v.result_sign := not r.result_sign;
                    opsel_ainv <= '1';
                    carry_in <= '1';
                    v.state := FINISH;
                elsif r.r(UNIT_BIT + 1) = '1' then
                    -- sum overflowed, shift right
                    opsel_r <= RES_SHIFT;
                    re_set_result <= '1';
                    set_x := '1';
                    if exp_huge = '1' then
                        v.state := ROUND_OFLOW;
                    else
                        v.state := ROUNDING;
                    end if;
                elsif r.r(UNIT_BIT) = '1' then
                    set_x := '1';
                    v.state := ROUNDING;
                elsif (r_hi_nz or r_lo_nz or (or (r.r(DP_LSB - 1 downto 0)))) = '0' then
                    -- r.x must be zero at this point
                    v.result_class := ZERO;
                    arith_done := '1';
                else
                    rs_norm <= '1';
                    v.state := NORMALIZE;
                end if;

            when CMP_1 =>
                -- r.opsel_a = AIN_A
                opsel_b <= BIN_R;
                opsel_binv <= '1';
                carry_in <= '1';
                v.state := CMP_2;

            when CMP_2 =>
                if r.r(63) = '1' then
                    -- A is smaller in magnitude
                    v.cr_result := not r.a.negative & r.a.negative & "00";
                elsif (r_hi_nz or r_lo_nz) = '0' then
                    v.cr_result := "0010";
                else
                    v.cr_result := r.a.negative & not r.a.negative & "00";
                end if;
                v.fpscr(FPSCR_FL downto FPSCR_FU) := v.cr_result;
                v.instr_done := '1';

            when MULT_1 =>
                f_to_multiply.valid <= r.first;
                opsel_r <= RES_MULT;
                if multiply_to_f.valid = '1' then
                    v.state := FINISH;
                end if;

            when FMADD_0 =>
                -- r.shift is b.exp, so new_exp is a.exp + c.exp - b.exp
                -- (first time through; subsequent times we preserve v.shift)
                -- Addend is bigger here
                -- set shift to a.exp + c.exp - b.exp
                -- note v.shift is at most -2 here
                if r.first = '1' then
                    rs_sel1 <= RSH1_NE;
                else
                    rs_sel1 <= RSH1_S;
                end if;
                opsel_r <= RES_MULT;
                opsel_s <= S_MULT;
                set_s := '1';
                if multiply_to_f.valid = '1' then
                    v.longmask := '0';
                    v.state := ADD_SHIFT;
                end if;

            when FMADD_1 =>
                -- shift is b.exp, so new_exp is a.exp + c.exp - b.exp
                -- product is bigger here
                -- shift B right and use it as the addend to the multiplier
                -- for subtract, multiplier does B - A * C
                v.result_sign := r.a.negative xor r.c.negative xor r.is_subtract;
                re_sel2 <= REXP2_B;
                re_set_result <= '1';
                -- set shift to b.exp - result_exp + 64
                rs_sel1 <= RSH1_NE;
                rs_neg1 <= '1';
                rs_con2 <= RSCON2_64;
                v.state := FMADD_2;

            when FMADD_2 =>
                -- Product is potentially bigger here
                -- r.shift = addend exp - product exp + 64, r.r = r.b.mantissa
                set_s := '1';
                opsel_s <= S_SHIFT;
                -- set shift to r.shift - 64
                rs_sel1 <= RSH1_S;
                rs_con2 <= RSCON2_64;
                rs_neg2 <= '1';
                v.state := FMADD_3;

            when FMADD_3 =>
                -- r.shift = addend exp - product exp
                opsel_r <= RES_SHIFT;
                re_sel2 <= REXP2_NE;
                re_set_result <= '1';
                v.first := '1';
                v.state := FMADD_4;

            when FMADD_4 =>
                msel_add <= MULADD_RS;
                f_to_multiply.valid <= r.first;
                msel_inv <= r.is_subtract;
                opsel_r <= RES_MULT;
                opsel_s <= S_MULT;
                set_s := '1';
                if multiply_to_f.valid = '1' then
                    v.state := FMADD_5;
                end if;

            when FMADD_5 =>
                -- negate R:S:X if negative
                if r.r(63) = '1' then
                    v.result_sign := not r.result_sign;
                    opsel_ainv <= '1';
                    carry_in <= not (s_nz or r.x);
                    opsel_s <= S_NEG;
                    set_s := '1';
                end if;
                -- set shift to UNIT_BIT
                rs_con2 <= RSCON2_UNIT;
                v.state := FMADD_6;

            when FMADD_6 =>
                -- r.shift = UNIT_BIT (or 0, but only if r is now nonzero)
                re_sel2 <= REXP2_NE;
                rs_norm <= '1';
                if (r.r(UNIT_BIT + 2) or r_hi_nz or r_lo_nz or (or (r.r(DP_LSB - 1 downto 0)))) = '0' then
                    if s_nz = '0' then
                        -- must be a subtraction, and r.x must be zero
                        v.result_class := ZERO;
                        arith_done := '1';
                    else
                        -- R is all zeroes but there are non-zero bits in S
                        -- so shift them into R and set S to 0
                        opsel_r <= RES_SHIFT;
                        re_set_result <= '1';
                        set_s := '1';
                        v.state := FINISH;
                    end if;
                elsif r.r(UNIT_BIT + 2 downto UNIT_BIT) = "001" then
                    v.state := FINISH;
                else
                    v.state := NORMALIZE;
                end if;

            when LOOKUP =>
                -- r.opsel_a = AIN_B
                -- wait one cycle for inverse_table[B] lookup
                -- if this is a division, compute exponent
                -- (see comment on RENORM_B2 above)
                if r.use_a = '1' then
                    re_sel2 <= REXP2_NE;
                    re_set_result <= '1';
                end if;
                v.first := '1';
                if r.insn(4) = '0' then
                    if r.insn(3) = '0' then
                        v.state := DIV_2;
                    else
                        v.state := SQRT_1;
                    end if;
                elsif r.insn(2) = '0' then
                    v.state := FRE_1;
                else
                    v.state := RSQRT_1;
                end if;

            when DIV_2 =>
                -- compute Y = inverse_table[B] (when count=0); P = 2 - B * Y
                msel_1 <= MUL1_B;
                msel_add <= MULADD_CONST;
                msel_inv <= '1';
                if r.count = 0 then
                    msel_2 <= MUL2_LUT;
                else
                    msel_2 <= MUL2_P;
                end if;
                set_y := r.first;
                pshift := '1';
                f_to_multiply.valid <= r.first;
                if multiply_to_f.valid = '1' then
                    v.first := '1';
                    v.count := r.count + 1;
                    v.state := DIV_3;
                end if;

            when DIV_3 =>
                -- compute Y = P = P * Y
                msel_1 <= MUL1_Y;
                msel_2 <= MUL2_P;
                f_to_multiply.valid <= r.first;
                pshift := '1';
                if multiply_to_f.valid = '1' then
                    v.first := '1';
                    if r.count = 3 then
                        v.state := DIV_4;
                    else
                        v.state := DIV_2;
                    end if;
                end if;

            when DIV_4 =>
                -- compute R = P = A * Y (quotient)
                msel_1 <= MUL1_A;
                msel_2 <= MUL2_P;
                set_y := r.first;
                f_to_multiply.valid <= r.first;
                pshift := '1';
                mult_mask := '1';
                if multiply_to_f.valid = '1' then
                    opsel_r <= RES_MULT;
                    v.first := '1';
                    v.state := DIV_5;
                end if;

            when DIV_5 =>
                -- compute P = A - B * R (remainder)
                msel_1 <= MUL1_B;
                msel_2 <= MUL2_R;
                msel_add <= MULADD_A;
                msel_inv <= '1';
                f_to_multiply.valid <= r.first;
                if multiply_to_f.valid = '1' then
                    v.state := DIV_6;
                end if;

            when DIV_6 =>
                -- r.opsel_a = AIN_R
                -- test if remainder is 0 or >= B
                if pcmpb_lt = '1' then
                    -- quotient is correct, set X if remainder non-zero
                    v.x := r.p(UNIT_BIT + 2) or px_nz;
                else
                    -- quotient needs to be incremented by 1 in R-bit position
                    rbit_inc := '1';
                    opsel_b <= BIN_RND;
                    v.x := not pcmpb_eq;
                end if;
                v.state := FINISH;

            when FRE_1 =>
                re_sel1 <= REXP1_R;
                re_neg1 <= '1';
                re_set_result <= '1';
                opsel_r <= RES_MISC;
                misc_sel <= "0111";
                -- set shift to 1
                rs_con2 <= RSCON2_1;
                v.state := NORMALIZE;

            when FTDIV_1 =>
                -- We go through this state up to two times; the first sees if
                -- B.exponent is in the range [-1021,1020], and the second tests
                -- whether B.exp - A.exp is in the range [-1022,1020].
                v.cr_result(1) := exp_tiny or exp_huge;
                -- set shift to a.exp
                rs_sel2 <= RSH2_A;
                if exp_tiny = '1' or exp_huge = '1' or r.a.class = ZERO or r.first = '0' then
                    v.instr_done := '1';
                else
                    v.doing_ftdiv := "10";
                end if;

            when RSQRT_1 =>
                opsel_r <= RES_MISC;
                misc_sel <= "0111";
                re_sel1 <= REXP1_BHALF;
                re_neg1 <= '1';
                re_set_result <= '1';
                -- set shift to 1
                rs_con2 <= RSCON2_1;
                v.state := NORMALIZE;

            when SQRT_1 =>
                -- put invsqr[B] in R and compute P = invsqr[B] * B
                -- also transfer B (in R) to A
                set_a := '1';
                opsel_r <= RES_MISC;
                misc_sel <= "0111";
                msel_1 <= MUL1_B;
                msel_2 <= MUL2_LUT;
                f_to_multiply.valid <= '1';
                -- set shift to -1
                rs_con2 <= RSCON2_1;
                rs_neg2 <= '1';
                v.count := "00";
                v.state := SQRT_2;

            when SQRT_2 =>
                -- shift R right one place
                -- not expecting multiplier result yet
                -- r.shift = -1
                opsel_r <= RES_SHIFT;
                re_sel2 <= REXP2_NE;
                re_set_result <= '1';
                v.first := '1';
                v.state := SQRT_3;

            when SQRT_3 =>
                -- put R into Y, wait for product from multiplier
                msel_2 <= MUL2_R;
                set_y := r.first;
                pshift := '1';
                mult_mask := '1';
                if multiply_to_f.valid = '1' then
                    -- put result into R
                    opsel_r <= RES_MULT;
                    v.first := '1';
                    v.state := SQRT_4;
                end if;

            when SQRT_4 =>
                -- compute 1.5 - Y * P
                msel_1 <= MUL1_Y;
                msel_2 <= MUL2_P;
                msel_add <= MULADD_CONST;
                msel_inv <= '1';
                f_to_multiply.valid <= r.first;
                pshift := '1';
                if multiply_to_f.valid = '1' then
                    v.state := SQRT_5;
                end if;

            when SQRT_5 =>
                -- compute Y = Y * P
                msel_1 <= MUL1_Y;
                msel_2 <= MUL2_P;
                f_to_multiply.valid <= '1';
                v.first := '1';
                v.state := SQRT_6;

            when SQRT_6 =>
                -- pipeline in R = R * P
                msel_1 <= MUL1_R;
                msel_2 <= MUL2_P;
                f_to_multiply.valid <= r.first;
                pshift := '1';
                if multiply_to_f.valid = '1' then
                    v.first := '1';
                    v.state := SQRT_7;
                end if;

            when SQRT_7 =>
                -- first multiply is done, put result in Y
                msel_2 <= MUL2_P;
                set_y := r.first;
                -- wait for second multiply (should be here already)
                pshift := '1';
                mult_mask := '1';
                if multiply_to_f.valid = '1' then
                    -- put result into R
                    opsel_r <= RES_MULT;
                    v.first := '1';
                    v.count := r.count + 1;
                    if r.count < 2 then
                        v.state := SQRT_4;
                    else
                        v.first := '1';
                        v.state := SQRT_8;
                    end if;
                end if;

            when SQRT_8 =>
                -- compute P = A - R * R, which can be +ve or -ve
                -- we arranged for B to be put into A earlier
                msel_1 <= MUL1_R;
                msel_2 <= MUL2_R;
                msel_add <= MULADD_A;
                msel_inv <= '1';
                pshift := '1';
                f_to_multiply.valid <= r.first;
                if multiply_to_f.valid = '1' then
                    v.first := '1';
                    v.state := SQRT_9;
                end if;

            when SQRT_9 =>
                -- compute P = P * Y
                -- since Y is an estimate of 1/sqrt(B), this makes P an
                -- estimate of the adjustment needed to R.  Since the error
                -- could be negative and we have an unsigned multiplier, the
                -- upper bits can be wrong, but it turns out the lowest 8 bits
                -- are correct and are all we need (given 3 iterations through
                -- SQRT_4 to SQRT_7).
                msel_1 <= MUL1_Y;
                msel_2 <= MUL2_P;
                pshift := '1';
                f_to_multiply.valid <= r.first;
                if multiply_to_f.valid = '1' then
                    v.state := SQRT_10;
                end if;

            when SQRT_10 =>
                -- Add the bottom 8 bits of P, sign-extended, onto R.
                opsel_b <= BIN_PS8;
                re_sel1 <= REXP1_BHALF;
                re_set_result <= '1';
                -- set shift to 1
                rs_con2 <= RSCON2_1;
                v.first := '1';
                v.state := SQRT_11;

            when SQRT_11 =>
                -- compute P = A - R * R (remainder)
                -- also put 2 * R + 1 into B for comparison with P
                msel_1 <= MUL1_R;
                msel_2 <= MUL2_R;
                msel_add <= MULADD_A;
                msel_inv <= '1';
                f_to_multiply.valid <= r.first;
                shiftin := '1';
                set_b := r.first;
                if multiply_to_f.valid = '1' then
                    v.state := SQRT_12;
                end if;

            when SQRT_12 =>
                -- test if remainder is 0 or >= B = 2*R + 1
                if pcmpb_lt = '1' then
                    -- square root is correct, set X if remainder non-zero
                    v.x := r.p(UNIT_BIT + 2) or px_nz;
                else
                    -- square root needs to be incremented by 1
                    carry_in <= '1';
                    v.x := not pcmpb_eq;
                end if;
                v.state := FINISH;

            when INT_SHIFT =>
                -- r.shift = b.exponent - 52
                opsel_r <= RES_SHIFT;
                re_sel2 <= REXP2_NE;
                re_set_result <= '1';
                set_x := '1';
                v.state := INT_ROUND;
                -- set shift to -4 (== 52 - UNIT_BIT)
                rs_con2 <= RSCON2_UNIT_52;
                rs_neg2 <= '1';

            when INT_ROUND =>
                -- r.shift = -4 (== 52 - UNIT_BIT)
                opsel_r <= RES_SHIFT;
                re_sel2 <= REXP2_NE;
                re_set_result <= '1';
                round := fp_rounding(r.r, r.x, '0', r.round_mode, r.result_sign);
                v.fpscr(FPSCR_FR downto FPSCR_FI) := round;
                -- Check for negative values that don't round to 0 for fcti*u*
                if r.insn(8) = '1' and r.result_sign = '1' and
                    (r_hi_nz or r_lo_nz or v.fpscr(FPSCR_FR)) = '1' then
                    v.state := INT_OFLOW;
                else
                    v.state := INT_FINAL;
                end if;

            when INT_ISHIFT =>
                -- r.shift = b.exponent - UNIT_BIT;
                opsel_r <= RES_SHIFT;
                re_sel2 <= REXP2_NE;
                re_set_result <= '1';
                v.state := INT_FINAL;

            when INT_FINAL =>
                -- Negate if necessary, and increment for rounding if needed
                opsel_ainv <= r.result_sign;
                carry_in <= r.fpscr(FPSCR_FR) xor r.result_sign;
                -- Check for possible overflows
                case r.insn(9 downto 8) is
                    when "00" =>        -- fctiw[z]
                        need_check := r.r(31) or (r.r(30) and not r.result_sign);
                    when "01" =>        -- fctiwu[z]
                        need_check := r.r(31);
                    when "10" =>        -- fctid[z]
                        need_check := r.r(63) or (r.r(62) and not r.result_sign);
                    when others =>      -- fctidu[z]
                        need_check := r.r(63);
                end case;
                int_result := '1';
                if need_check = '1' then
                    v.state := INT_CHECK;
                else
                    if r.fpscr(FPSCR_FI) = '1' then
                        v.fpscr(FPSCR_XX) := '1';
                    end if;
                    arith_done := '1';
                end if;

            when INT_CHECK =>
                if r.insn(9) = '0' then
                    msb := r.r(31);
                else
                    msb := r.r(63);
                end if;
                misc_sel <= '1' & r.insn(9 downto 8) & r.result_sign;
                if (r.insn(8) = '0' and msb /= r.result_sign) or
                    (r.insn(8) = '1' and msb /= '1') then
                    opsel_r <= RES_MISC;
                    v.fpscr(FPSCR_VXCVI) := '1';
                    invalid := '1';
                else
                    if r.fpscr(FPSCR_FI) = '1' then
                        v.fpscr(FPSCR_XX) := '1';
                    end if;
                end if;
                int_result := '1';
                arith_done := '1';

            when INT_OFLOW =>
                opsel_r <= RES_MISC;
                misc_sel <= '1' & r.insn(9 downto 8) & r.result_sign;
                if r.b.class = NAN then
                    misc_sel(0) <= '1';
                end if;
                v.fpscr(FPSCR_VXCVI) := '1';
                invalid := '1';
                int_result := '1';
                arith_done := '1';

            when FRI_1 =>
                -- r.shift = b.exponent - 52
                opsel_r <= RES_SHIFT;
                re_sel2 <= REXP2_NE;
                re_set_result <= '1';
                set_x := '1';
                v.state := ROUNDING;

            when FINISH =>
                if r.is_multiply = '1' and px_nz = '1' then
                    v.x := '1';
                end if;
                -- set shift to new_exp - min_exp (N.B. rs_norm overrides this)
                rs_sel1 <= RSH1_NE;
                rs_con2 <= RSCON2_MINEXP;
                rs_neg2 <= '1';
                if r.r(63 downto UNIT_BIT) /= std_ulogic_vector(to_unsigned(1, 64 - UNIT_BIT)) then
                    rs_norm <= '1';
                    v.state := NORMALIZE;
                else
                    set_x := '1';
                    if exp_tiny = '1' then
                        v.state := ROUND_UFLOW;
                    elsif exp_huge = '1' then
                        v.state := ROUND_OFLOW;
                    else
                        v.state := ROUNDING;
                    end if;
                end if;

            when NORMALIZE =>
                -- Shift so we have 9 leading zeroes (we know R is non-zero)
                -- r.shift = clz(r.r) - 7
                opsel_r <= RES_SHIFT;
                re_sel2 <= REXP2_NE;
                re_set_result <= '1';
                -- set shift to new_exp - min_exp
                rs_sel1 <= RSH1_NE;
                rs_con2 <= RSCON2_MINEXP;
                rs_neg2 <= '1';
                set_x := '1';
                if exp_tiny = '1' then
                    v.state := ROUND_UFLOW;
                elsif exp_huge = '1' then
                    v.state := ROUND_OFLOW;
                else
                    v.state := ROUNDING;
                end if;

            when ROUND_UFLOW =>
                -- r.shift = - amount by which exponent underflows
                v.tiny := '1';
                if r.fpscr(FPSCR_UE) = '0' then
                    -- disabled underflow exception case
                    -- have to denormalize before rounding
                    opsel_r <= RES_SHIFT;
                    re_sel2 <= REXP2_NE;
                    re_set_result <= '1';
                    set_x := '1';
                    v.state := ROUNDING;
                else
                    -- enabled underflow exception case
                    -- if denormalized, have to normalize before rounding
                    v.fpscr(FPSCR_UX) := '1';
                    re_sel1 <= REXP1_R;
                    re_con2 <= RECON2_BIAS;
                    re_set_result <= '1';
                    if r.r(UNIT_BIT) = '0' then
                        rs_norm <= '1';
                        v.state := NORMALIZE;
                    else
                        v.state := ROUNDING;
                    end if;
                end if;

            when ROUND_OFLOW =>
                v.fpscr(FPSCR_OX) := '1';
                if r.fpscr(FPSCR_OE) = '0' then
                    -- disabled overflow exception
                    -- result depends on rounding mode
                    v.fpscr(FPSCR_XX) := '1';
                    v.fpscr(FPSCR_FI) := '1';
                    if r.round_mode(1 downto 0) = "00" or
                        (r.round_mode(1) = '1' and r.round_mode(0) = r.result_sign) then
                        v.result_class := INFINITY;
                        v.fpscr(FPSCR_FR) := '1';
                    else
                        v.fpscr(FPSCR_FR) := '0';
                    end if;
                    -- construct largest representable number
                    re_con2 <= RECON2_MAX;
                    re_set_result <= '1';
                    opsel_r <= RES_MISC;
                    misc_sel <= "001" & r.single_prec;
                    arith_done := '1';
                else
                    -- enabled overflow exception
                    re_sel1 <= REXP1_R;
                    re_con2 <= RECON2_BIAS;
                    re_neg2 <= '1';
                    re_set_result <= '1';
                    v.state := ROUNDING;
                end if;

            when ROUNDING =>
                opsel_mask <= '1';
                round := fp_rounding(r.r, r.x, r.single_prec, r.round_mode, r.result_sign);
                v.fpscr(FPSCR_FR downto FPSCR_FI) := round;
                if round(1) = '1' then
                    -- increment the LSB for the precision
                    opsel_b <= BIN_RND;
                    -- set shift to -1
                    rs_con2 <= RSCON2_1;
                    rs_neg2 <= '1';
                    v.state := ROUNDING_2;
                else
                    if r.r(UNIT_BIT) = '0' then
                        -- result after masking could be zero, or could be a
                        -- denormalized result that needs to be renormalized
                        rs_norm <= '1';
                        v.state := ROUNDING_3;
                    else
                        arith_done := '1';
                    end if;
                end if;
                if round(0) = '1' then
                    v.fpscr(FPSCR_XX) := '1';
                    if r.tiny = '1' then
                        v.fpscr(FPSCR_UX) := '1';
                    end if;
                end if;

            when ROUNDING_2 =>
                -- Check for overflow during rounding
                -- r.shift = -1
                v.x := '0';
                re_sel2 <= REXP2_NE;
                if r.r(UNIT_BIT + 1) = '1' then
                    opsel_r <= RES_SHIFT;
                    re_set_result <= '1';
                    if exp_huge = '1' then
                        v.state := ROUND_OFLOW;
                    else
                        arith_done := '1';
                    end if;
                elsif r.r(UNIT_BIT) = '0' then
                    -- Do CLZ so we can renormalize the result
                    rs_norm <= '1';
                    v.state := ROUNDING_3;
                else
                    arith_done := '1';
                end if;

            when ROUNDING_3 =>
                -- r.shift = clz(r.r) - 9
                mant_nz := r_hi_nz or (r_lo_nz and not r.single_prec);
                re_sel2 <= REXP2_NE;
                -- set shift to new_exp - min_exp (== -1022)
                rs_sel1 <= RSH1_NE;
                rs_con2 <= RSCON2_MINEXP;
                rs_neg2 <= '1';
                if mant_nz = '0' then
                    v.result_class := ZERO;
                    arith_done := '1';
                else
                    -- Renormalize result after rounding
                    opsel_r <= RES_SHIFT;
                    re_set_result <= '1';
                    v.denorm := exp_tiny;
                    if new_exp < to_signed(-1022, EXP_BITS) then
                        v.state := DENORM;
                    else
                        arith_done := '1';
                    end if;
                end if;

            when DENORM =>
                -- r.shift = result_exp - -1022
                opsel_r <= RES_SHIFT;
                re_sel2 <= REXP2_NE;
                re_set_result <= '1';
                arith_done := '1';

            when NAN_RESULT =>
                if (r.use_a = '1' and r.a.class = NAN and r.a.mantissa(QNAN_BIT) = '0') or
                    (r.use_b = '1' and r.b.class = NAN and r.b.mantissa(QNAN_BIT) = '0') or
                    (r.use_c = '1' and r.c.class = NAN and r.c.mantissa(QNAN_BIT) = '0') then
                    -- Signalling NAN
                    v.fpscr(FPSCR_VXSNAN) := '1';
                    invalid := '1';
                end if;
                if r.use_a = '1' and r.a.class = NAN then
                    v.opsel_a := AIN_A;
                    v.result_sign := r.a.negative;
                elsif r.use_b = '1' and r.b.class = NAN then
                    v.opsel_a := AIN_B;
                    v.result_sign := r.b.negative;
                elsif r.use_c = '1' and r.c.class = NAN then
                    v.opsel_a := AIN_C;
                    v.result_sign := r.c.negative;
                end if;
                v.state := EXC_RESULT;

            when EXC_RESULT =>
                -- r.opsel_a = AIN_A, AIN_B or AIN_C according to which input is the result
                case r.opsel_a is
                    when AIN_B =>
                        re_sel2 <= REXP2_B;
                        v.result_class := r.b.class;
                    when AIN_C =>
                        re_sel2 <= REXP2_C;
                        v.result_class := r.c.class;
                    when others =>
                        re_sel1 <= REXP1_A;
                        v.result_class := r.a.class;
                end case;
                re_set_result <= '1';
                arith_done := '1';

            when DO_IDIVMOD =>
                -- r.opsel_a = AIN_B
                v.result_sign := r.is_signed and (r.a.negative xor (r.b.negative and not r.divmod));
                if r.b.class = ZERO then
                    -- B is zero, signal overflow
                    v.int_ovf := '1';
                    v.state := IDIV_ZERO;
                elsif r.a.class = ZERO then
                    -- A is zero, result is zero (both for div and for mod)
                    v.state := IDIV_ZERO;
                else
                    -- take absolute value for signed division, and
                    -- normalize and round up B to 8.56 format, like fcfid[u]
                    if r.is_signed = '1' and r.b.negative = '1' then
                        opsel_ainv <= '1';
                        carry_in <= '1';
                    end if;
                    v.result_class := FINITE;
                    re_con2 <= RECON2_UNIT;
                    re_set_result <= '1';
                    v.state := IDIV_NORMB;
                end if;
            when IDIV_NORMB =>
                -- do count-leading-zeroes on B (now in R)
                rs_norm <= '1';
                -- save the original value of B or |B| in C
                set_c := '1';
                v.state := IDIV_NORMB2;
            when IDIV_NORMB2 =>
                -- get B into the range [1, 2) in 8.56 format
                set_x := '1';           -- record if any 1 bits shifted out
                opsel_r <= RES_SHIFT;
                re_sel2 <= REXP2_NE;
                re_set_result <= '1';
                v.state := IDIV_NORMB3;
            when IDIV_NORMB3 =>
                -- add the X bit onto R to round up B
                carry_in <= r.x;
                -- prepare to do count-leading-zeroes on A
                v.opsel_a := AIN_A;
                v.state := IDIV_CLZA;
            when IDIV_CLZA =>
                set_b := '1';           -- put R back into B
                -- r.opsel_a = AIN_A
                if r.is_signed = '1' and r.a.negative = '1' then
                    opsel_ainv <= '1';
                    carry_in <= '1';
                end if;
                re_con2 <= RECON2_UNIT;
                re_set_result <= '1';
                v.opsel_a := AIN_C;
                v.state := IDIV_CLZA2;
            when IDIV_CLZA2 =>
                -- r.opsel_a = AIN_C
                rs_norm <= '1';
                -- write the dividend back into A in case we negated it
                set_a_mant := '1';
                -- while doing the count-leading-zeroes on A,
                -- also compute A - B to tell us whether A >= B
                -- (using the original value of B, which is now in C)
                opsel_b <= BIN_R;
                opsel_ainv <= '1';
                carry_in <= '1';
                v.state := IDIV_CLZA3;
            when IDIV_CLZA3 =>
                -- save the exponent of A (but don't overwrite the mantissa)
                set_a_exp := '1';
                re_sel2 <= REXP2_NE;
                re_set_result <= '1';
                v.div_close := '0';
                if new_exp = r.b.exponent then
                    v.div_close := '1';
                end if;
                v.state := IDIV_NR0;
                if new_exp > r.b.exponent or (v.div_close = '1' and r.r(63) = '0') then
                    -- A >= B, overflow if extended division
                    if r.divext = '1' then
                        v.int_ovf := '1';
                        -- return 0 in overflow cases
                        v.state := IDIV_ZERO;
                    end if;
                else
                    -- A < B, result is zero for normal division
                    if r.divmod = '0' and r.divext = '0' then
                        v.state := IDIV_ZERO;
                    end if;
                end if;
            when IDIV_NR0 =>
                -- reduce number of Newton-Raphson iterations for small A
                if r.divext = '1' or r.result_exp >= to_signed(32, EXP_BITS) then
                    v.count := "00";
                elsif r.result_exp >= to_signed(16, EXP_BITS) then
                    v.count := "01";
                else
                    v.count := "10";
                end if;
                -- first NR iteration does Y = LUT; P = 2 - B * LUT
                msel_1 <= MUL1_B;
                msel_add <= MULADD_CONST;
                msel_inv <= '1';
                msel_2 <= MUL2_LUT;
                set_y := '1';
                if r.b.mantissa(UNIT_BIT + 1) = '1' then
                    -- rounding up of the mantissa caused overflow, meaning the
                    -- normalized B is 2.0.  Since this is outside the range
                    -- of the LUT, just use 0.5 as the estimated inverse.
                    v.state := IDIV_USE0_5;
                else
                    -- start the first multiply now
                    f_to_multiply.valid <= '1';
                    -- note we don't set v.first, thus the following IDIV_NR1
                    -- state doesn't start a multiply (we already did that)
                    v.state := IDIV_NR1;
                end if;
            when IDIV_NR1 =>
                -- subsequent NR iterations do Y = P; P = 2 - B * P
                msel_1 <= MUL1_B;
                msel_add <= MULADD_CONST;
                msel_inv <= '1';
                msel_2 <= MUL2_P;
                set_y := r.first;
                pshift := '1';
                f_to_multiply.valid <= r.first;
                if multiply_to_f.valid = '1' then
                    v.first := '1';
                    v.count := r.count + 1;
                    v.state := IDIV_NR2;
                end if;
            when IDIV_NR2 =>
                -- compute P = Y * P
                msel_1 <= MUL1_Y;
                msel_2 <= MUL2_P;
                f_to_multiply.valid <= r.first;
                pshift := '1';
                v.opsel_a := AIN_A;
                -- set shift to 64
                rs_con2 <= RSCON2_64;
                -- Get 0.5 into R in case the inverse estimate turns out to be
                -- less than 0.5, in which case we want to use 0.5, to avoid
                -- infinite loops in some cases.
                opsel_r <= RES_MISC;
                misc_sel <= "0001";
                if multiply_to_f.valid = '1' then
                    v.first := '1';
                    if r.count = "11" then
                        v.state := IDIV_DODIV;
                    else
                        v.state := IDIV_NR1;
                    end if;
                end if;
            when IDIV_USE0_5 =>
                -- Get 0.5 into R; it turns out the generated
                -- QNaN mantissa is actually what we want
                opsel_r <= RES_MISC;
                misc_sel <= "0001";
                v.opsel_a := AIN_A;
                -- set shift to 64
                rs_con2 <= RSCON2_64;
                v.state := IDIV_DODIV;
            when IDIV_DODIV =>
                -- r.opsel_a = AIN_A
                -- r.shift = 64
                -- inverse estimate is in P or in R; copy it to Y
                if r.b.mantissa(UNIT_BIT + 1) = '1' or
                    (r.p(UNIT_BIT) = '0' and r.p(UNIT_BIT - 1) = '0') then
                    msel_2 <= MUL2_R;
                else
                    msel_2 <= MUL2_P;
                end if;
                set_y := '1';
                -- shift_res is 0 because r.shift = 64;
                -- put that into B, which now holds the quotient
                set_b_mant := '1';
                if r.divext = '0' then
                    -- set shift to -56
                    rs_con2 <= RSCON2_UNIT;
                    rs_neg2 <= '1';
                    v.first := '1';
                    v.state := IDIV_DIV;
                elsif r.single_prec = '1' then
                    -- divwe[u][o], shift A left 32 bits
                    -- set shift to 32
                    rs_con2 <= RSCON2_32;
                    v.state := IDIV_SH32;
                elsif r.div_close = '0' then
                    -- set shift to 64 - UNIT_BIT (== 8)
                    rs_con2 <= RSCON2_64_UNIT;
                    v.state := IDIV_EXTDIV;
                else
                    -- handle top bit of quotient specially
                    -- for this we need the divisor left-justified in B
                    v.opsel_a := AIN_C;
                    v.state := IDIV_EXT_TBH;
                end if;
            when IDIV_SH32 =>
                -- r.shift = 32, R contains the dividend
                opsel_r <= RES_SHIFT;
                -- set shift to -UNIT_BIT (== -56)
                rs_con2 <= RSCON2_UNIT;
                rs_neg2 <= '1';
                v.first := '1';
                v.state := IDIV_DIV;
            when IDIV_DIV =>
                -- Dividing A by C, r.shift = -56; A is in R
                -- Put A into the bottom 64 bits of Ahi/A/Alo
                set_a_mant := r.first;
                set_a_lo := r.first;
                -- compute R = R * Y (quotient estimate)
                msel_1 <= MUL1_Y;
                msel_2 <= MUL2_R;
                f_to_multiply.valid <= r.first;
                pshift := '1';
                opsel_r <= RES_MULT;
                -- set shift to - b.exp
                rs_sel1 <= RSH1_B;
                rs_neg1 <= '1';
                if multiply_to_f.valid = '1' then
                    v.state := IDIV_DIV2;
                end if;
            when IDIV_DIV2 =>
                -- r.shift = - b.exponent
                -- shift the quotient estimate right by b.exponent bits
                opsel_r <= RES_SHIFT;
                v.first := '1';
                v.state := IDIV_DIV3;
            when IDIV_DIV3 =>
                -- quotient (so far) is in R; multiply by C and subtract from A
                msel_1 <= MUL1_R;
                msel_2 <= MUL2_C;
                msel_add <= MULADD_A;
                msel_inv <= '1';
                f_to_multiply.valid <= r.first;
                -- store the current quotient estimate in B
                set_b_mant := r.first;
                opsel_r <= RES_MULT;
                opsel_s <= S_MULT;
                set_s := '1';
                if multiply_to_f.valid = '1' then
                    v.state := IDIV_DIV4;
                end if;
            when IDIV_DIV4 =>
                -- remainder is in R/S and P
                msel_1 <= MUL1_Y;
                msel_2 <= MUL2_P;
                v.inc_quot := not pcmpc_lt and not r.divmod;
                if r.divmod = '0' then
                    v.opsel_a := AIN_B;
                end if;
                -- set shift to UNIT_BIT (== 56)
                rs_con2 <= RSCON2_UNIT;
                if pcmpc_lt = '1' or pcmpc_eq = '1' then
                    if r.divmod = '0' then
                        v.state := IDIV_DIVADJ;
                    elsif pcmpc_eq = '1' then
                        v.state := IDIV_ZERO;
                    else
                        v.state := IDIV_MODADJ;
                    end if;
                else
                    -- need to do another iteration, compute P * Y
                    f_to_multiply.valid <= '1';
                    v.state := IDIV_DIV5;
                end if;
            when IDIV_DIV5 =>
                pshift := '1';
                opsel_r <= RES_MULT;
                -- set shift to - b.exp
                rs_sel1 <= RSH1_B;
                rs_neg1 <= '1';
                if multiply_to_f.valid = '1' then
                    v.state := IDIV_DIV6;
                end if;
            when IDIV_DIV6 =>
                -- r.shift = - b.exponent
                -- shift the quotient estimate right by b.exponent bits
                opsel_r <= RES_SHIFT;
                v.opsel_a := AIN_B;
                v.first := '1';
                v.state := IDIV_DIV7;
            when IDIV_DIV7 =>
                -- r.opsel_a = AIN_B
                -- add shifted quotient delta onto the total quotient
                opsel_b <= BIN_R;
                v.first := '1';
                v.state := IDIV_DIV8;
            when IDIV_DIV8 =>
                -- quotient (so far) is in R; multiply by C and subtract from A
                msel_1 <= MUL1_R;
                msel_2 <= MUL2_C;
                msel_add <= MULADD_A;
                msel_inv <= '1';
                f_to_multiply.valid <= r.first;
                -- store the current quotient estimate in B
                set_b_mant := r.first;
                opsel_r <= RES_MULT;
                opsel_s <= S_MULT;
                set_s := '1';
                if multiply_to_f.valid = '1' then
                    v.state := IDIV_DIV9;
                end if;
            when IDIV_DIV9 =>
                -- remainder is in R/S and P
                msel_1 <= MUL1_Y;
                msel_2 <= MUL2_P;
                v.inc_quot := not pcmpc_lt and not r.divmod;
                if r.divmod = '0' then
                    v.opsel_a := AIN_B;
                end if;
                -- set shift to UNIT_BIT (== 56)
                rs_con2 <= RSCON2_UNIT;
                if r.divmod = '0' then
                    v.state := IDIV_DIVADJ;
                elsif pcmpc_eq = '1' then
                    v.state := IDIV_ZERO;
                else
                    v.state := IDIV_MODADJ;
                end if;
            when IDIV_EXT_TBH =>
                -- r.opsel_a = AIN_C; get divisor into R and prepare to shift left
                -- set shift to 63 - b.exp
                rs_sel1 <= RSH1_B;
                rs_neg1 <= '1';
                rs_con2 <= RSCON2_63;
                v.opsel_a := AIN_A;
                v.state := IDIV_EXT_TBH2;
            when IDIV_EXT_TBH2 =>
                -- r.opsel_a = AIN_A; divisor is in R
                -- r.shift = 63 - b.exponent; shift and put into B
                set_b_mant := '1';
                -- set shift to 64 - UNIT_BIT (== 8)
                rs_con2 <= RSCON2_64_UNIT;
                v.state := IDIV_EXT_TBH3;
            when IDIV_EXT_TBH3 =>
                -- Dividing (A << 64) by C
                -- r.shift = 8
                -- Put A in the top 64 bits of Ahi/A/Alo
                set_a_hi := '1';
                set_a_mant := '1';
                -- set shift to 64 - b.exp
                rs_sel1 <= RSH1_B;
                rs_neg1 <= '1';
                rs_con2 <= RSCON2_64;
                v.state := IDIV_EXT_TBH4;
            when IDIV_EXT_TBH4 =>
                -- dividend (A) is in R
                -- r.shift = 64 - B.exponent, so is at least 1
                opsel_r <= RES_SHIFT;
                -- top bit of A gets lost in the shift, so handle it specially
                v.opsel_a := AIN_B;
                -- set shift to 63
                rs_con2 <= RSCON2_63;
                v.state := IDIV_EXT_TBH5;
            when IDIV_EXT_TBH5 =>
                -- r.opsel_a = AIN_B, r.shift = 63
                -- shifted dividend is in R, subtract left-justified divisor
                opsel_b <= BIN_R;
                opsel_ainv <= '1';
                carry_in <= '1';
                -- and put 1<<63 into B as the divisor (S is still 0)
                shiftin0 := '1';
                set_b_mant := '1';
                v.first := '1';
                v.state := IDIV_EXTDIV2;
            when IDIV_EXTDIV =>
                -- Dividing (A << 64) by C
                -- r.shift = 8
                -- Put A in the top 64 bits of Ahi/A/Alo
                set_a_hi := '1';
                set_a_mant := '1';
                -- set shift to 64 - b.exp
                rs_sel1 <= RSH1_B;
                rs_neg1 <= '1';
                rs_con2 <= RSCON2_64;
                v.state := IDIV_EXTDIV1;
            when IDIV_EXTDIV1 =>
                -- dividend is in R
                -- r.shift = 64 - B.exponent
                opsel_r <= RES_SHIFT;
                v.first := '1';
                v.state := IDIV_EXTDIV2;
            when IDIV_EXTDIV2 =>
                -- shifted remainder is in R; compute R = R * Y (quotient estimate)
                msel_1 <= MUL1_Y;
                msel_2 <= MUL2_R;
                f_to_multiply.valid <= r.first;
                pshift := '1';
                v.opsel_a := AIN_B;
                opsel_r <= RES_MULT;
                if multiply_to_f.valid = '1' then
                    v.first := '1';
                    v.state := IDIV_EXTDIV3;
                end if;
            when IDIV_EXTDIV3 =>
                -- r.opsel_a = AIN_B
                -- delta quotient is in R; add it to B
                opsel_b <= BIN_R;
                v.first := '1';
                v.state := IDIV_EXTDIV4;
            when IDIV_EXTDIV4 =>
                -- quotient is in R; put it in B and compute remainder
                set_b_mant := r.first;
                msel_1 <= MUL1_R;
                msel_2 <= MUL2_C;
                msel_add <= MULADD_A;
                msel_inv <= '1';
                f_to_multiply.valid <= r.first;
                opsel_r <= RES_MULT;
                opsel_s <= S_MULT;
                set_s := '1';
                -- set shift to UNIT_BIT - b.exp
                rs_sel1 <= RSH1_B;
                rs_neg1 <= '1';
                rs_con2 <= RSCON2_UNIT;
                if multiply_to_f.valid = '1' then
                    v.state := IDIV_EXTDIV5;
                end if;
            when IDIV_EXTDIV5 =>
                -- r.shift = r.b.exponent - 56
                -- remainder is in R/S; shift it right r.b.exponent bits
                opsel_r <= RES_SHIFT;
                -- test LS 64b of remainder in P against divisor in C
                v.inc_quot := not pcmpc_lt;
                v.opsel_a := AIN_B;
                v.state := IDIV_EXTDIV6;
            when IDIV_EXTDIV6 =>
                -- r.opsel_a = AIN_B
                -- shifted remainder is in R, see if it is > 1
                -- and compute R = R * Y if so
                msel_1 <= MUL1_Y;
                msel_2 <= MUL2_R;
                pshift := '1';
                if r_gt_1 = '1' then
                    f_to_multiply.valid <= '1';
                    v.state := IDIV_EXTDIV2;
                else
                    v.state := IDIV_DIVADJ;
                end if;
            when IDIV_MODADJ =>
                -- r.shift = 56
                -- result is in R/S
                opsel_r <= RES_SHIFT;
                if pcmpc_lt = '0' then
                    v.opsel_a := AIN_C;
                    v.state := IDIV_MODSUB;
                elsif r.result_sign = '0' then
                    v.state := IDIV_DONE;
                else
                    v.state := IDIV_DIVADJ;
                end if;
            when IDIV_MODSUB =>
                -- r.opsel_a = AIN_C
                -- Subtract divisor from remainder
                opsel_ainv <= '1';
                carry_in <= '1';
                opsel_b <= BIN_R;
                if r.result_sign = '0' then
                    v.state := IDIV_DONE;
                else
                    v.state := IDIV_DIVADJ;
                end if;
            when IDIV_DIVADJ =>
                -- result (so far) is on the A input of the adder
                -- set carry to increment quotient if needed
                -- and also negate R if the answer is negative
                opsel_ainv <= r.result_sign;
                carry_in <= r.inc_quot xor r.result_sign;
                rnd_b32 := '1';
                if r.divmod = '0' then
                    opsel_b <= BIN_RND;
                end if;
                if r.is_signed = '0' then
                    v.state := IDIV_DONE;
                else
                    v.state := IDIV_OVFCHK;
                end if;
            when IDIV_OVFCHK =>
                if r.single_prec = '0' then
                    sign_bit := r.r(63);
                else
                    sign_bit := r.r(31);
                end if;
                v.int_ovf := sign_bit xor r.result_sign;
                if v.int_ovf = '1' then
                    v.state := IDIV_ZERO;
                else
                    v.state := IDIV_DONE;
                end if;
            when IDIV_DONE =>
                v.xerc_result := v.xerc;
                if r.oe = '1' then
                    v.xerc_result.ov := '0';
                    v.xerc_result.ov32 := '0';
                    v.writing_xer := '1';
                end if;
                if r.m32b = '0' then
                    v.cr_result(3) := r.r(63);
                    v.cr_result(2 downto 1) := "00";
                    if r.r = 64x"0" then
                        v.cr_result(1) := '1';
                    else
                        v.cr_result(2) := not r.r(63);
                    end if;
                else
                    v.cr_result(3) := r.r(31);
                    v.cr_result(2 downto 1) := "00";
                    if r.r(31 downto 0) = 32x"0" then
                        v.cr_result(1) := '1';
                    else
                        v.cr_result(2) := not r.r(31);
                    end if;
                end if;
                v.cr_result(0) := v.xerc.so;
                int_result := '1';
                v.writing_fpr := '1';
                v.instr_done := '1';
            when IDIV_ZERO =>
                opsel_r <= RES_MISC;
                misc_sel <= "0101";
                v.xerc_result := v.xerc;
                if r.oe = '1' then
                    v.xerc_result.ov := r.int_ovf;
                    v.xerc_result.ov32 := r.int_ovf;
                    v.xerc_result.so := r.xerc.so or r.int_ovf;
                    v.writing_xer := '1';
                end if;
                v.cr_result := "001" & v.xerc_result.so;
                int_result := '1';
                v.writing_fpr := '1';
                v.instr_done := '1';

        end case;

        rsign := v.result_sign;
        if zero_divide = '1' then
            v.fpscr(FPSCR_ZX) := '1';
        end if;
        if qnan_result = '1' then
            invalid := '1';
            v.result_class := NAN;
            rsign := '0';
            misc_sel <= "0001";
            opsel_r <= RES_MISC;
            arith_done := '1';
        end if;
        if invalid = '1' then
            v.invalid := '1';
        end if;
        if arith_done = '1' then
            -- Enabled invalid exception doesn't write result or FPRF
            -- Neither does enabled zero-divide exception
            if (v.invalid and r.fpscr(FPSCR_VE)) = '0' and
                (zero_divide and r.fpscr(FPSCR_ZE)) = '0' then
                v.writing_fpr := '1';
                v.update_fprf := '1';
            end if;
            if v.is_subtract = '1' and v.result_class = ZERO then
                rsign := r.round_mode(0) and r.round_mode(1);
            end if;
            if v.negate = '1' and v.result_class /= NAN then
                rsign := not rsign;
            end if;
            v.instr_done := '1';
            update_fx := '1';
        end if;

        -- Multiplier and divide/square root data path
        case msel_1 is
            when MUL1_A =>
                f_to_multiply.data1 <= r.a.mantissa;
            when MUL1_B =>
                f_to_multiply.data1 <= r.b.mantissa;
            when MUL1_Y =>
                f_to_multiply.data1 <= r.y;
            when others =>
                f_to_multiply.data1 <= r.r;
        end case;
        case msel_2 is
            when MUL2_C =>
                f_to_multiply.data2 <= r.c.mantissa;
            when MUL2_LUT =>
                f_to_multiply.data2 <= std_ulogic_vector(shift_left(resize(unsigned(inverse_est), 64),
                                                                    UNIT_BIT - 19));
            when MUL2_P =>
                f_to_multiply.data2 <= r.p;
            when others =>
                f_to_multiply.data2 <= r.r;
        end case;
        maddend := (others => '0');
        case msel_add is
            when MULADD_CONST =>
                -- addend is 2.0 or 1.5 in 16.112 format
                if r.is_sqrt = '0' then
                    maddend(2*UNIT_BIT + 1) := '1';                       -- 2.0
                else
                    maddend(2*UNIT_BIT downto 2*UNIT_BIT - 1) := "11";    -- 1.5
                end if;
            when MULADD_A =>
                -- addend is A in 16.112 format
                maddend(127 downto UNIT_BIT + 64) := r.a_hi;
                maddend(UNIT_BIT + 63 downto UNIT_BIT) := r.a.mantissa;
                maddend(UNIT_BIT - 1 downto 0) := r.a_lo;
            when MULADD_RS =>
                -- addend is concatenation of R and S in 16.112 format
                maddend(UNIT_BIT + 63 downto UNIT_BIT) := r.r;
                maddend(UNIT_BIT - 1 downto 0) := r.s;
            when others =>
        end case;
        f_to_multiply.addend <= maddend;
        f_to_multiply.subtract <= msel_inv;
        if set_y = '1' then
            v.y := f_to_multiply.data2;
        end if;
        if multiply_to_f.valid = '1' then
            if pshift = '0' then
                v.p := multiply_to_f.result(63 downto 0);
            else
                v.p := multiply_to_f.result(UNIT_BIT + 63 downto UNIT_BIT);
            end if;
        end if;

        -- Data path.
        -- This has A and B input multiplexers, an adder, a shifter,
        -- count-leading-zeroes logic, and a result mux.
        if r.longmask = '1' then
            mshift := r.shift + to_signed(-29, EXP_BITS);
        else
            mshift := r.shift;
        end if;
	if is_X(mshift) then
	    mask := (others => 'X');
        elsif mshift < to_signed(-64, EXP_BITS) then
            mask := (others => '1');
        elsif mshift >= to_signed(0, EXP_BITS) then
            mask := (others => '0');
        else
            mask := right_mask(unsigned(mshift(5 downto 0)));
        end if;
        case r.opsel_a is
            when AIN_R =>
                in_a0 := r.r;
            when AIN_A =>
                in_a0 := r.a.mantissa;
            when AIN_B =>
                in_a0 := r.b.mantissa;
            when others =>
                in_a0 := r.c.mantissa;
        end case;
        if (or (mask and in_a0)) = '1' and set_x = '1' then
            v.x := '1';
        end if;
        if opsel_ainv = '1' then
            in_a0 := not in_a0;
        end if;
        in_a <= in_a0;
        case opsel_b is
            when BIN_ZERO =>
                in_b0 := (others => '0');
            when BIN_R =>
                in_b0 := r.r;
            when BIN_RND =>
                if rnd_b32 = '1' then
                    round_inc := (32 => r.result_sign and r.single_prec, others => '0');
                elsif rbit_inc = '0' then
                    round_inc := (SP_LSB => r.single_prec, DP_LSB => not r.single_prec, others => '0');
                else
                    round_inc := (DP_RBIT => '1', others => '0');
                end if;
                in_b0 := round_inc;
            when others =>
                -- BIN_PS8, 8 LSBs of P sign-extended to 64
                in_b0 := std_ulogic_vector(resize(signed(r.p(7 downto 0)), 64));
        end case;
        if opsel_binv = '1' then
            in_b0 := not in_b0;
        end if;
        in_b <= in_b0;
	if is_X(r.shift) then
            shift_res := (others => 'X');
	elsif r.shift >= to_signed(-64, EXP_BITS) and r.shift <= to_signed(63, EXP_BITS) then
            shift_res := shifter_64(r.r(63 downto 1) & (shiftin0 or r.r(0)) &
                                    (shiftin or r.s(55)) & r.s(54 downto 0),
                                    std_ulogic_vector(r.shift(6 downto 0)));
        else
            shift_res := (others => '0');
        end if;
        sum := std_ulogic_vector(unsigned(in_a) + unsigned(in_b) + carry_in);
        if opsel_mask = '1' then
            sum(DP_LSB - 1 downto 0) := "0000";
            if r.single_prec = '1' then
                sum(SP_LSB - 1 downto DP_LSB) := (others => '0');
            end if;
        end if;
        case opsel_r is
            when RES_SUM =>
                result <= sum;
            when RES_SHIFT =>
                result <= shift_res;
            when RES_MULT =>
                result <= multiply_to_f.result(UNIT_BIT + 63 downto UNIT_BIT);
                if mult_mask = '1' then
                    -- trim to 54 fraction bits if mult_mask = 1, for quotient when dividing
                    result(UNIT_BIT - 55 downto 0) <= (others => '0');
                end if;
            when others =>
                misc := (others => '0');
                case misc_sel is
                    when "0000" =>
                        misc := x"00000000" & (r.fpscr and fpscr_mask);
                    when "0001" =>
                        -- generated QNaN mantissa
                        misc(QNAN_BIT) := '1';
                    when "0010" =>
                        -- mantissa of max representable DP number
                        misc(UNIT_BIT downto DP_LSB) := (others => '1');
                    when "0011" =>
                        -- mantissa of max representable SP number
                        misc(UNIT_BIT downto SP_LSB) := (others => '1');
                    when "0100" =>
                        -- fmrgow result
                        misc := r.a.mantissa(31 downto 0) & r.b.mantissa(31 downto 0);
                    when "0110" =>
                        -- fmrgew result
                        misc := r.a.mantissa(63 downto 32) & r.b.mantissa(63 downto 32);
                    when "0111" =>
                        misc := std_ulogic_vector(shift_left(resize(unsigned(inverse_est), 64),
                                                             UNIT_BIT - 19));
                    when "1000" =>
                        -- max positive result for fctiw[z]
                        misc := x"000000007fffffff";
                    when "1001" =>
                        -- max negative result for fctiw[z]
                        misc := x"ffffffff80000000";
                    when "1010" =>
                        -- max positive result for fctiwu[z]
                        misc := x"00000000ffffffff";
                    when "1011" =>
                        -- max negative result for fctiwu[z]
                        misc := x"0000000000000000";
                    when "1100" =>
                        -- max positive result for fctid[z]
                        misc := x"7fffffffffffffff";
                    when "1101" =>
                        -- max negative result for fctid[z]
                        misc := x"8000000000000000";
                    when "1110" =>
                        -- max positive result for fctidu[z]
                        misc := x"ffffffffffffffff";
                    when "1111" =>
                        -- max negative result for fctidu[z]
                        misc := x"0000000000000000";
                    when others =>
                end case;
                result <= misc;
        end case;
        v.r := result;
        if set_s = '1' then
            case opsel_s is
                when S_NEG =>
                    v.s := std_ulogic_vector(unsigned(not r.s) + (not r.x));
                when S_MULT =>
                    v.s := multiply_to_f.result(55 downto 0);
                when S_SHIFT =>
                    v.s := shift_res(63 downto 8);
                    if shift_res(7 downto 0) /= x"00" then
                        v.x := '1';
                    end if;
                when others =>
                    v.s := (others => '0');
            end case;
        end if;

        if set_a = '1' or set_a_exp = '1' then
            v.a.exponent := new_exp;
        end if;
        if set_a = '1' or set_a_mant = '1' then
            v.a.mantissa := shift_res;
        end if;
        if e_in.valid = '1' then
            v.a_hi := (others => '0');
            v.a_lo := (others => '0');
        else
            if set_a_hi = '1' then
                v.a_hi := r.r(63 downto 56);
            end if;
            if set_a_lo = '1' then
                v.a_lo := r.r(55 downto 0);
            end if;
        end if;
        if set_b = '1' then
            v.b.exponent := new_exp;
        end if;
        if set_b = '1' or set_b_mant = '1' then
            v.b.mantissa := shift_res;
        end if;
        if set_c = '1' then
            v.c.exponent := new_exp;
            v.c.mantissa := shift_res;
        end if;

        -- exponent data path
        case re_sel1 is
            when REXP1_R =>
                rexp_in1 := r.result_exp;
            when REXP1_A =>
                rexp_in1 := r.a.exponent;
            when REXP1_BHALF =>
                rexp_in1 := r.b.exponent(EXP_BITS-1) & r.b.exponent(EXP_BITS-1 downto 1);
            when others =>
                rexp_in1 := to_signed(0, EXP_BITS);
        end case;
        if re_neg1 = '1' then
            rexp_in1 := not rexp_in1;
        end if;
        case re_sel2 is
            when REXP2_NE =>
                rexp_in2 := new_exp;
            when REXP2_C =>
                rexp_in2 := r.c.exponent;
            when REXP2_B =>
                rexp_in2 := r.b.exponent;
            when others =>
                case re_con2 is
                    when RECON2_UNIT =>
                        rexp_in2 := to_signed(UNIT_BIT, EXP_BITS);
                    when RECON2_MAX =>
                        rexp_in2 := max_exp;
                    when RECON2_BIAS =>
                        rexp_in2 := bias_exp;
                    when others =>
                        rexp_in2 := to_signed(0, EXP_BITS);
                end case;
        end case;
        if re_neg2 = '1' then
            rexp_in2 := not rexp_in2;
        end if;
        rexp_cin := re_neg1 or re_neg2;
        rexp_sum := rexp_in1 + rexp_in2 + rexp_cin;
        if re_set_result = '1' then
            v.result_exp := rexp_sum;
        end if;
        case rs_sel1 is
            when RSH1_B =>
                rsh_in1 := r.b.exponent;
            when RSH1_NE =>
                rsh_in1 := new_exp;
            when RSH1_S =>
                rsh_in1 := r.shift;
            when others =>
                rsh_in1 := to_signed(0, EXP_BITS);
        end case;
        if rs_neg1 = '1' then
            rsh_in1 := not rsh_in1;
        end if;
        case rs_sel2 is
            when RSH2_A =>
                rsh_in2 := r.a.exponent;
            when others =>
                case rs_con2 is
                    when RSCON2_1 =>
                        rsh_in2 := to_signed(1, EXP_BITS);
                    when RSCON2_UNIT_52 =>
                        rsh_in2 := to_signed(UNIT_BIT - 52, EXP_BITS);
                    when RSCON2_64_UNIT =>
                        rsh_in2 := to_signed(64 - UNIT_BIT, EXP_BITS);
                    when RSCON2_32 =>
                        rsh_in2 := to_signed(32, EXP_BITS);
                    when RSCON2_52 =>
                        rsh_in2 := to_signed(52, EXP_BITS);
                    when RSCON2_UNIT =>
                        rsh_in2 := to_signed(UNIT_BIT, EXP_BITS);
                    when RSCON2_63 =>
                        rsh_in2 := to_signed(63, EXP_BITS);
                    when RSCON2_64 =>
                        rsh_in2 := to_signed(64, EXP_BITS);
                    when RSCON2_MINEXP =>
                        rsh_in2 := min_exp;
                    when others =>
                        rsh_in2 := to_signed(0, EXP_BITS);
                end case;
        end case;
        if rs_neg2 = '1' then
            rsh_in2 := not rsh_in2;
        end if;
        if rs_norm = '1' then
            clz := count_left_zeroes(r.r);
            if renorm_sqrt = '1' then
                -- make denormalized value end up with even exponent
                clz(0) := '1';
            end if;
            -- do this as a separate dedicated 7-bit adder for timing reasons
            v.shift := resize(signed('0' & clz) - (63 - UNIT_BIT), EXP_BITS);
        else
            v.shift := rsh_in1 + rsh_in2 + (rs_neg1 or rs_neg2);
        end if;

        if r.update_fprf = '1' then
            v.fpscr(FPSCR_C downto FPSCR_FU) := result_flags(r.res_sign, r.result_class,
                                                             r.r(UNIT_BIT) and not r.denorm);
        end if;

        v.fpscr(FPSCR_VX) := (or (v.fpscr(FPSCR_VXSNAN downto FPSCR_VXVC))) or
                             (or (v.fpscr(FPSCR_VXSOFT downto FPSCR_VXCVI)));
        v.fpscr(FPSCR_FEX) := or (v.fpscr(FPSCR_VX downto FPSCR_XX) and
                                  v.fpscr(FPSCR_VE downto FPSCR_XE));
        if update_fx = '1' and
            (v.fpscr(FPSCR_VX downto FPSCR_XX) and not r.old_exc) /= "00000" then
            v.fpscr(FPSCR_FX) := '1';
        end if;

        if v.instr_done = '1' then
            if r.state /= IDLE then
                v.state := IDLE;
                v.busy := '0';
                v.f2stall := '0';
                if r.fp_rc = '1' then
                    v.cr_result := v.fpscr(FPSCR_FX downto FPSCR_OX);
                end if;
                v.sp_result := r.single_prec;
                v.int_result := int_result;
                v.illegal := illegal;
                v.nsnan_result := v.quieten_nan;
                v.res_sign := rsign;
                if r.integer_op = '1' then
                    v.cr_mask := num_to_fxm(0);
                elsif r.is_cmp = '0' then
                    v.cr_mask := num_to_fxm(1);
                elsif is_X(insn_bf(r.insn)) then
		    v.cr_mask := (others => 'X');
		else
                    v.cr_mask := num_to_fxm(to_integer(unsigned(insn_bf(r.insn))));
                end if;
                v.writing_cr := r.is_cmp or r.rc;
                v.write_reg := r.dest_fpr;
                v.complete_tag := r.instr_tag;
            end if;
            if e_in.stall = '0' then
                v.complete := not v.illegal;
                v.do_intr := (v.fpscr(FPSCR_FEX) and r.fe_mode) or v.illegal;
            end if;
            -- N.B. We rely on execute1 to prevent any new instruction
            -- coming in while e_in.stall = 1, without us needing to
            -- have busy asserted.
        else
            if r.state /= IDLE and e_in.stall = '0' then
                v.f2stall := '1';
            end if;
        end if;

        -- This mustn't depend on any fields of r that are modified in IDLE state.
        if r.int_result = '1' then
            fp_result <= r.r;
        else
            fp_result <= pack_dp(r.res_sign, r.result_class, r.result_exp, r.r,
                                 r.sp_result, r.nsnan_result);
        end if;

        rin <= v;
    end process;

end architecture behaviour;