-- The Potato Processor - A simple processor for FPGAs
-- (c) Kristian Klomsten Skordal 2014 - 2016 <kristian.skordal@wafflemail.net>

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

--! @brief Simple UART module.
--! The following registers are defined:
--! |--------------------|--------------------------------------------|
--! | Address            | Description                                |
--! |--------------------|--------------------------------------------|
--! | 0x00               | Transmit register (write-only)             |
--! | 0x08               | Receive register (read-only)               |
--! | 0x10               | Status register (read-only)                |
--! | 0x18               | Sample clock divisor register (read/write) |
--! | 0x20               | Interrupt enable register (read/write)     |
--! |--------------------|--------------------------------------------|
--!
--! The status register contains the following bits:
--! - Bit 0: receive buffer empty
--! - Bit 1: transmit buffer empty
--! - Bit 2: receive buffer full
--! - Bit 3: transmit buffer full
--!
--! The sample clock divisor should be set according to the formula:
--! sample_clk = (f_clk / (baudrate * 16)) - 1
--!
--! If the sample clock divisor register is set to 0, the sample clock
--! is stopped.
--!
--! Interrupts are enabled by setting the corresponding bit in the interrupt
--! enable register. The following bits are available:
--! - Bit 0: data received (receive buffer not empty)
--! - Bit 1: ready to send data (transmit buffer empty)
entity pp_soc_uart is
	generic(
		FIFO_DEPTH : natural := 64 --! Depth of the input and output FIFOs.
	);
	port(
		clk : in std_logic;
		reset : in std_logic;

		-- UART ports:
		txd : out std_logic;
		rxd : in  std_logic;

		-- Interrupt signal:
		irq : out std_logic;

		-- Wishbone ports:
		wb_adr_in  : in  std_logic_vector(11 downto 0);
		wb_dat_in  : in  std_logic_vector( 7 downto 0);
		wb_dat_out : out std_logic_vector( 7 downto 0);
		wb_we_in   : in  std_logic;
		wb_cyc_in  : in  std_logic;
		wb_stb_in  : in  std_logic;
		wb_ack_out : out std_logic
	);
end entity pp_soc_uart;

architecture behaviour of pp_soc_uart is

	subtype bitnumber is natural range 0 to 7; --! Type representing the index of a bit.

	-- UART sample clock signals:
	signal sample_clk         : std_logic;
	signal sample_clk_divisor : std_logic_vector(7 downto 0);
	signal sample_clk_counter : std_logic_vector(sample_clk_divisor'range);

	-- UART receive process signals:
	type rx_state_type is (IDLE, RECEIVE, STARTBIT, STOPBIT);
	signal rx_state : rx_state_type;
	signal rx_byte : std_logic_vector(7 downto 0);
	signal rx_current_bit : bitnumber;

	subtype rx_sample_counter_type is natural range 0 to 15;
	signal rx_sample_counter : rx_sample_counter_type;
	signal rx_sample_value   : rx_sample_counter_type;

	subtype rx_sample_delay_type is natural range 0 to 7;
	signal rx_sample_delay   : rx_sample_delay_type;

	-- UART transmit process signals:
	type tx_state_type is (IDLE, TRANSMIT, STOPBIT);
	signal tx_state : tx_state_type;
	signal tx_byte : std_logic_vector(7 downto 0);
	signal tx_current_bit : bitnumber;

	-- UART transmit clock:
	subtype uart_tx_counter_type is natural range 0 to 15;
	signal uart_tx_counter : uart_tx_counter_type := 0;
	signal uart_tx_clk : std_logic;

	-- Buffer signals:
	signal send_buffer_full, send_buffer_empty   : std_logic;
	signal recv_buffer_full, recv_buffer_empty   : std_logic;
	signal send_buffer_input, send_buffer_output : std_logic_vector(7 downto 0);
	signal recv_buffer_input, recv_buffer_output : std_logic_vector(7 downto 0);
	signal send_buffer_push, send_buffer_pop     : std_logic := '0';
	signal recv_buffer_push, recv_buffer_pop     : std_logic := '0';

	-- IRQ enable signals:
	signal irq_recv_enable, irq_tx_ready_enable : std_logic := '0';

	-- Wishbone signals:
	type wb_state_type is (IDLE, WRITE_ACK, READ_ACK);
	signal wb_state : wb_state_type;

	signal wb_ack : std_logic; --! Wishbone acknowledge signal

begin

	irq <= (irq_recv_enable and (not recv_buffer_empty))
		or (irq_tx_ready_enable and send_buffer_empty);

	---------- UART receive ----------

	recv_buffer_input <= rx_byte;

	uart_receive: process(clk)
	begin
		if rising_edge(clk) then
			if reset = '1' then
				rx_state <= IDLE;
				recv_buffer_push <= '0';
			else
				case rx_state is
					when IDLE =>
						if recv_buffer_push = '1' then
							recv_buffer_push <= '0';
						end if;

						if sample_clk = '1' and rxd = '0' then
							rx_sample_value <= rx_sample_counter;
							rx_sample_delay <= 0;
							rx_current_bit <= 0;
							rx_state <= STARTBIT;
						end if;
					when STARTBIT =>
						if sample_clk = '1' then
							if rx_sample_delay = 7 then
								rx_state <= RECEIVE;
								rx_sample_value <= rx_sample_counter;
								rx_sample_delay <= 0;
							else
								rx_sample_delay <= rx_sample_delay + 1;
							end if;
						end if;
					when RECEIVE =>
						if sample_clk = '1' and rx_sample_counter = rx_sample_value then
							if rx_current_bit /= 7 then
								rx_byte(rx_current_bit) <= rxd;
								rx_current_bit <= rx_current_bit + 1;
							else
								rx_byte(rx_current_bit) <= rxd;
								rx_state <= STOPBIT;
							end if;
						end if;
					when STOPBIT =>
						if sample_clk = '1' and rx_sample_counter = rx_sample_value then
							rx_state <= IDLE;

							if recv_buffer_full = '0' then
								recv_buffer_push <= '1';
							end if;
						end if;
				end case;
			end if;
		end if;
	end process uart_receive;

	sample_counter: process(clk)
	begin
		if rising_edge(clk) then
			if reset = '1' then
				rx_sample_counter <= 0;
			elsif sample_clk = '1' then
				if rx_sample_counter = 15 then
					rx_sample_counter <= 0;
				else
					rx_sample_counter <= rx_sample_counter + 1;
				end if;
			end if;
		end if;
	end process sample_counter;

	---------- UART transmit ----------

	tx_byte <= send_buffer_output;

	uart_transmit: process(clk)
	begin
		if rising_edge(clk) then
			if reset = '1' then
				txd <= '1';
				tx_state <= IDLE;
				send_buffer_pop <= '0';
				tx_current_bit <= 0;
			else
				case tx_state is
					when IDLE =>
						if send_buffer_empty = '0' and uart_tx_clk = '1' then
							txd <= '0';
							send_buffer_pop <= '1';
							tx_current_bit <= 0;
							tx_state <= TRANSMIT;
						elsif uart_tx_clk = '1' then
							txd <= '1';
						end if;
					when TRANSMIT =>
						if send_buffer_pop = '1' then
							send_buffer_pop <= '0';
						elsif uart_tx_clk = '1' and tx_current_bit = 7 then
							txd <= tx_byte(tx_current_bit);
							tx_state <= STOPBIT;
						elsif uart_tx_clk = '1' then
							txd <= tx_byte(tx_current_bit);
							tx_current_bit <= tx_current_bit + 1;
						end if;
					when STOPBIT =>
						if uart_tx_clk = '1' then
							txd <= '1';
							tx_state <= IDLE;
						end if;
				end case;
			end if;
		end if;
	end process uart_transmit;

	uart_tx_clock_generator: process(clk)
	begin
		if rising_edge(clk) then
			if reset = '1' then
				uart_tx_counter <= 0;
				uart_tx_clk <= '0';
			else
				if sample_clk = '1' then
					if uart_tx_counter = 15 then
						uart_tx_counter <= 0;
						uart_tx_clk <= '1';
					else
						uart_tx_counter <= uart_tx_counter + 1;
						uart_tx_clk <= '0';
					end if;
				else
					uart_tx_clk <= '0';
				end if;
			end if;
		end if;
	end process uart_tx_clock_generator;

	---------- Sample clock generator ----------

	sample_clock_generator: process(clk)
	begin
		if rising_edge(clk) then
			if reset = '1' then
				sample_clk_counter <= (others => '0');
				sample_clk <= '0';
			else
				if sample_clk_divisor /= x"00" then
					if sample_clk_counter = sample_clk_divisor then
						sample_clk_counter <= (others => '0');
						sample_clk <= '1';
					else
						sample_clk_counter <= std_logic_vector(unsigned(sample_clk_counter) + 1);
						sample_clk <= '0';
					end if;
				end if;
			end if;
		end if;
	end process sample_clock_generator;

	---------- Data Buffers ----------

	send_buffer: entity work.pp_fifo
		generic map(
			DEPTH => FIFO_DEPTH,
			WIDTH => 8
		) port map(
			clk => clk,
			reset => reset,
			full => send_buffer_full,
			empty => send_buffer_empty,
			data_in => send_buffer_input,
			data_out => send_buffer_output,
			push => send_buffer_push,
			pop => send_buffer_pop
		);

	recv_buffer: entity work.pp_fifo
		generic map(
			DEPTH => FIFO_DEPTH,
			WIDTH => 8
		) port map(
			clk => clk,
			reset => reset,
			full => recv_buffer_full,
			empty => recv_buffer_empty,
			data_in => recv_buffer_input,
			data_out => recv_buffer_output,
			push => recv_buffer_push,
			pop => recv_buffer_pop
		);

	---------- Wishbone Interface ---------- 

	wb_ack_out <= wb_ack and wb_cyc_in and wb_stb_in;

	wishbone: process(clk)
	begin
		if rising_edge(clk) then
			if reset = '1' then
				wb_ack <= '0';
				wb_state <= IDLE;
				send_buffer_push <= '0';
				recv_buffer_pop <= '0';
				sample_clk_divisor <= (others => '0');
				irq_recv_enable <= '0';
				irq_tx_ready_enable <= '0';
			else
				case wb_state is
					when IDLE =>
						if wb_cyc_in = '1' and wb_stb_in = '1' then
							if wb_we_in = '1' then -- Write to register
								if wb_adr_in = x"000" then
									send_buffer_input <= wb_dat_in;
									send_buffer_push <= '1';
								elsif wb_adr_in = x"018" then
									sample_clk_divisor <= wb_dat_in;
								elsif wb_adr_in = x"020" then
									irq_recv_enable <= wb_dat_in(0);
									irq_tx_ready_enable <= wb_dat_in(1);
								end if;

								-- Invalid writes are acked and ignored.

								wb_ack <= '1';
								wb_state <= WRITE_ACK;
							else -- Read from register
								if wb_adr_in = x"008" then
									recv_buffer_pop <= '1';
								elsif wb_adr_in = x"010" then
									wb_dat_out <= x"0" & send_buffer_full & recv_buffer_full & send_buffer_empty & recv_buffer_empty;
									wb_ack <= '1';
								elsif wb_adr_in = x"018" then
									wb_dat_out <= sample_clk_divisor;
									wb_ack <= '1';
								elsif wb_adr_in = x"020" then
									wb_dat_out <= (0 => irq_recv_enable, 1 => irq_tx_ready_enable, others => '0');
									wb_ack <= '1';
								else
									wb_dat_out <= (others => '0');
									wb_ack <= '1';
								end if;
								wb_state <= READ_ACK;
							end if;
						end if;
					when WRITE_ACK =>
						send_buffer_push <= '0';

						if wb_stb_in = '0' then
							wb_ack <= '0';
							wb_state <= IDLE;
						end if;
					when READ_ACK =>
						if recv_buffer_pop = '1' then
							recv_buffer_pop <= '0';
						else
							wb_dat_out <= recv_buffer_output;
							wb_ack <= '1';
						end if;

						if wb_stb_in = '0' then
							wb_ack <= '0';
							wb_state <= IDLE;
						end if;
				end case;
			end if;
		end if;
	end process wishbone;

end architecture behaviour;