library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.decode_types.all; use work.common.all; use work.helpers.all; use work.crhelpers.all; use work.insn_helpers.all; use work.ppc_fx_insns.all; entity execute1 is generic ( EX1_BYPASS : boolean := true; -- Non-zero to enable log data collection LOG_LENGTH : natural := 0 ); port ( clk : in std_ulogic; rst : in std_ulogic; -- asynchronous flush_out : out std_ulogic; busy_out : out std_ulogic; e_in : in Decode2ToExecute1Type; l_in : in Loadstore1ToExecute1Type; ext_irq_in : std_ulogic; -- asynchronous l_out : out Execute1ToLoadstore1Type; f_out : out Execute1ToFetch1Type; e_out : out Execute1ToWritebackType; dbg_msr_out : out std_ulogic_vector(63 downto 0); icache_inval : out std_ulogic; terminate_out : out std_ulogic; log_out : out std_ulogic_vector(14 downto 0); log_rd_addr : out std_ulogic_vector(31 downto 0); log_rd_data : in std_ulogic_vector(63 downto 0); log_wr_addr : in std_ulogic_vector(31 downto 0) ); end entity execute1; architecture behaviour of execute1 is type reg_type is record e : Execute1ToWritebackType; f : Execute1ToFetch1Type; busy: std_ulogic; terminate: std_ulogic; lr_update : std_ulogic; next_lr : std_ulogic_vector(63 downto 0); mul_in_progress : std_ulogic; mul_finish : std_ulogic; div_in_progress : std_ulogic; cntz_in_progress : std_ulogic; slow_op_insn : insn_type_t; slow_op_dest : gpr_index_t; slow_op_rc : std_ulogic; slow_op_oe : std_ulogic; slow_op_xerc : xer_common_t; last_nia : std_ulogic_vector(63 downto 0); log_addr_spr : std_ulogic_vector(31 downto 0); end record; constant reg_type_init : reg_type := (e => Execute1ToWritebackInit, f => Execute1ToFetch1Init, busy => '0', lr_update => '0', terminate => '0', mul_in_progress => '0', mul_finish => '0', div_in_progress => '0', cntz_in_progress => '0', slow_op_insn => OP_ILLEGAL, slow_op_rc => '0', slow_op_oe => '0', slow_op_xerc => xerc_init, next_lr => (others => '0'), last_nia => (others => '0'), others => (others => '0')); signal r, rin : reg_type; signal a_in, b_in, c_in : std_ulogic_vector(63 downto 0); signal cr_in : std_ulogic_vector(31 downto 0); signal valid_in : std_ulogic; signal ctrl: ctrl_t := (irq_state => WRITE_SRR0, others => (others => '0')); signal ctrl_tmp: ctrl_t := (irq_state => WRITE_SRR0, others => (others => '0')); signal right_shift, rot_clear_left, rot_clear_right: std_ulogic; signal rot_sign_ext: std_ulogic; signal rotator_result: std_ulogic_vector(63 downto 0); signal rotator_carry: std_ulogic; signal logical_result: std_ulogic_vector(63 downto 0); signal countzero_result: std_ulogic_vector(63 downto 0); -- multiply signals signal x_to_multiply: MultiplyInputType; signal multiply_to_x: MultiplyOutputType; -- divider signals signal x_to_divider: Execute1ToDividerType; signal divider_to_x: DividerToExecute1Type; -- random number generator signals signal random_raw : std_ulogic_vector(63 downto 0); signal random_cond : std_ulogic_vector(63 downto 0); signal random_err : std_ulogic; -- signals for logging signal exception_log : std_ulogic; signal irq_valid_log : std_ulogic; type privilege_level is (USER, SUPER); type op_privilege_array is array(insn_type_t) of privilege_level; constant op_privilege: op_privilege_array := ( OP_ATTN => SUPER, OP_MFMSR => SUPER, OP_MTMSRD => SUPER, OP_RFID => SUPER, OP_TLBIE => SUPER, others => USER ); function instr_is_privileged(op: insn_type_t; insn: std_ulogic_vector(31 downto 0)) return boolean is begin if op_privilege(op) = SUPER then return true; elsif op = OP_MFSPR or op = OP_MTSPR then return insn(20) = '1'; else return false; end if; end; procedure set_carry(e: inout Execute1ToWritebackType; carry32 : in std_ulogic; carry : in std_ulogic) is begin e.xerc.ca32 := carry32; e.xerc.ca := carry; e.write_xerc_enable := '1'; end; procedure set_ov(e: inout Execute1ToWritebackType; ov : in std_ulogic; ov32 : in std_ulogic) is begin e.xerc.ov32 := ov32; e.xerc.ov := ov; if ov = '1' then e.xerc.so := '1'; end if; e.write_xerc_enable := '1'; end; function calc_ov(msb_a : std_ulogic; msb_b: std_ulogic; ca: std_ulogic; msb_r: std_ulogic) return std_ulogic is begin return (ca xor msb_r) and not (msb_a xor msb_b); end; function decode_input_carry(ic : carry_in_t; xerc : xer_common_t) return std_ulogic is begin case ic is when ZERO => return '0'; when CA => return xerc.ca; when OV => return xerc.ov; when ONE => return '1'; end case; end; function msr_copy(msr: std_ulogic_vector(63 downto 0)) return std_ulogic_vector is variable msr_out: std_ulogic_vector(63 downto 0); begin -- ISA says this: -- Defined MSR bits are classified as either full func- -- tion or partial function. Full function MSR bits are -- saved in SRR1 or HSRR1 when an interrupt other -- than a System Call Vectored interrupt occurs and -- restored by rfscv, rfid, or hrfid, while partial func- -- tion MSR bits are not saved or restored. -- Full function MSR bits lie in the range 0:32, 37:41, and -- 48:63, and partial function MSR bits lie in the range -- 33:36 and 42:47. (Note this is IBM bit numbering). msr_out := (others => '0'); msr_out(63 downto 31) := msr(63 downto 31); msr_out(26 downto 22) := msr(26 downto 22); msr_out(15 downto 0) := msr(15 downto 0); return msr_out; end; -- Tell vivado to keep the hierarchy for the random module so that the -- net names in the xdc file match. attribute keep_hierarchy : string; attribute keep_hierarchy of random_0 : label is "yes"; begin rotator_0: entity work.rotator port map ( rs => c_in, ra => a_in, shift => b_in(6 downto 0), insn => e_in.insn, is_32bit => e_in.is_32bit, right_shift => right_shift, arith => e_in.is_signed, clear_left => rot_clear_left, clear_right => rot_clear_right, sign_ext_rs => rot_sign_ext, result => rotator_result, carry_out => rotator_carry ); logical_0: entity work.logical port map ( rs => c_in, rb => b_in, op => e_in.insn_type, invert_in => e_in.invert_a, invert_out => e_in.invert_out, result => logical_result, datalen => e_in.data_len ); countzero_0: entity work.zero_counter port map ( clk => clk, rs => c_in, count_right => e_in.insn(10), is_32bit => e_in.is_32bit, result => countzero_result ); multiply_0: entity work.multiply port map ( clk => clk, m_in => x_to_multiply, m_out => multiply_to_x ); divider_0: entity work.divider port map ( clk => clk, rst => rst, d_in => x_to_divider, d_out => divider_to_x ); random_0: entity work.random port map ( clk => clk, data => random_cond, raw => random_raw, err => random_err ); dbg_msr_out <= ctrl.msr; log_rd_addr <= r.log_addr_spr; a_in <= r.e.write_data when EX1_BYPASS and e_in.bypass_data1 = '1' else e_in.read_data1; b_in <= r.e.write_data when EX1_BYPASS and e_in.bypass_data2 = '1' else e_in.read_data2; c_in <= r.e.write_data when EX1_BYPASS and e_in.bypass_data3 = '1' else e_in.read_data3; busy_out <= l_in.busy or r.busy; valid_in <= e_in.valid and not busy_out; terminate_out <= r.terminate; execute1_0: process(clk) begin if rising_edge(clk) then if rst = '1' then r <= reg_type_init; ctrl.msr <= (MSR_SF => '1', MSR_LE => '1', others => '0'); ctrl.irq_state <= WRITE_SRR0; else r <= rin; ctrl <= ctrl_tmp; assert not (r.lr_update = '1' and valid_in = '1') report "LR update collision with valid in EX1" severity failure; if r.lr_update = '1' then report "LR update to " & to_hstring(r.next_lr); end if; end if; end if; end process; execute1_1: process(all) variable v : reg_type; variable a_inv : std_ulogic_vector(63 downto 0); variable result : std_ulogic_vector(63 downto 0); variable newcrf : std_ulogic_vector(3 downto 0); variable sum_with_carry : std_ulogic_vector(64 downto 0); variable result_en : std_ulogic; variable crnum : crnum_t; variable crbit : integer range 0 to 31; variable scrnum : crnum_t; variable lo, hi : integer; variable sh, mb, me : std_ulogic_vector(5 downto 0); variable sh32, mb32, me32 : std_ulogic_vector(4 downto 0); variable bo, bi : std_ulogic_vector(4 downto 0); variable bf, bfa : std_ulogic_vector(2 downto 0); variable cr_op : std_ulogic_vector(9 downto 0); variable cr_operands : std_ulogic_vector(1 downto 0); variable bt, ba, bb : std_ulogic_vector(4 downto 0); variable btnum, banum, bbnum : integer range 0 to 31; variable crresult : std_ulogic; variable l : std_ulogic; variable next_nia : std_ulogic_vector(63 downto 0); variable carry_32, carry_64 : std_ulogic; variable sign1, sign2 : std_ulogic; variable abs1, abs2 : signed(63 downto 0); variable overflow : std_ulogic; variable zerohi, zerolo : std_ulogic; variable msb_a, msb_b : std_ulogic; variable a_lt : std_ulogic; variable lv : Execute1ToLoadstore1Type; variable irq_valid : std_ulogic; variable exception : std_ulogic; variable exception_nextpc : std_ulogic; variable trapval : std_ulogic_vector(4 downto 0); variable illegal : std_ulogic; variable is_branch : std_ulogic; variable taken_branch : std_ulogic; variable abs_branch : std_ulogic; variable spr_val : std_ulogic_vector(63 downto 0); variable addend : std_ulogic_vector(127 downto 0); begin result := (others => '0'); sum_with_carry := (others => '0'); result_en := '0'; newcrf := (others => '0'); is_branch := '0'; taken_branch := '0'; abs_branch := '0'; v := r; v.e := Execute1ToWritebackInit; lv := Execute1ToLoadstore1Init; v.f.redirect := '0'; -- XER forwarding. To avoid having to track XER hazards, we -- use the previously latched value. -- -- If the XER was modified by a multiply or a divide, those are -- single issue, we'll get the up to date value from decode2 from -- the register file. -- -- If it was modified by an instruction older than the previous -- one in EX1, it will have also hit writeback and will be up -- to date in decode2. -- -- That leaves us with the case where it was updated by the previous -- instruction in EX1. In that case, we can forward it back here. -- -- This will break if we allow pipelining of multiply and divide, -- but ideally, those should go via EX1 anyway and run as a state -- machine from here. -- -- One additional hazard to beware of is an XER:SO modifying instruction -- in EX1 followed immediately by a store conditional. Due to our -- writeback latency, the store will go down the LSU with the previous -- XER value, thus the stcx. will set CR0:SO using an obsolete SO value. -- -- We will need to handle that if we ever make stcx. not single issue -- -- We always pass a valid XER value downto writeback even when -- we aren't updating it, in order for XER:SO -> CR0:SO transfer -- to work for RC instructions. -- if r.e.write_xerc_enable = '1' then v.e.xerc := r.e.xerc; else v.e.xerc := e_in.xerc; end if; -- CR forwarding cr_in <= e_in.cr; if EX1_BYPASS and e_in.bypass_cr = '1' and r.e.write_cr_enable = '1' then for i in 0 to 7 loop if r.e.write_cr_mask(i) = '1' then cr_in(i * 4 + 3 downto i * 4) <= r.e.write_cr_data(i * 4 + 3 downto i * 4); end if; end loop; end if; v.lr_update := '0'; v.mul_in_progress := '0'; v.div_in_progress := '0'; v.cntz_in_progress := '0'; v.mul_finish := '0'; -- Main adder if e_in.invert_a = '0' then a_inv := a_in; else a_inv := not a_in; end if; sum_with_carry := ppc_adde(a_inv, b_in, decode_input_carry(e_in.input_carry, v.e.xerc)); -- signals to multiply and divide units sign1 := '0'; sign2 := '0'; if e_in.is_signed = '1' then if e_in.is_32bit = '1' then sign1 := a_in(31); sign2 := b_in(31); else sign1 := a_in(63); sign2 := b_in(63); end if; end if; -- take absolute values if sign1 = '0' then abs1 := signed(a_in); else abs1 := - signed(a_in); end if; if sign2 = '0' then abs2 := signed(b_in); else abs2 := - signed(b_in); end if; x_to_multiply <= MultiplyInputInit; x_to_multiply.is_32bit <= e_in.is_32bit; x_to_divider <= Execute1ToDividerInit; x_to_divider.is_signed <= e_in.is_signed; x_to_divider.is_32bit <= e_in.is_32bit; if e_in.insn_type = OP_MOD then x_to_divider.is_modulus <= '1'; end if; addend := (others => '0'); if e_in.insn(26) = '0' then -- integer multiply-add, major op 4 (if it is a multiply) addend(63 downto 0) := c_in; if e_in.is_signed = '1' then addend(127 downto 64) := (others => c_in(63)); end if; end if; if (sign1 xor sign2) = '1' then addend := not addend; end if; x_to_multiply.not_result <= sign1 xor sign2; x_to_multiply.addend <= addend; x_to_divider.neg_result <= sign1 xor (sign2 and not x_to_divider.is_modulus); if e_in.is_32bit = '0' then -- 64-bit forms x_to_multiply.data1 <= std_ulogic_vector(abs1); x_to_multiply.data2 <= std_ulogic_vector(abs2); if e_in.insn_type = OP_DIVE then x_to_divider.is_extended <= '1'; end if; x_to_divider.dividend <= std_ulogic_vector(abs1); x_to_divider.divisor <= std_ulogic_vector(abs2); else -- 32-bit forms x_to_multiply.data1 <= x"00000000" & std_ulogic_vector(abs1(31 downto 0)); x_to_multiply.data2 <= x"00000000" & std_ulogic_vector(abs2(31 downto 0)); x_to_divider.is_extended <= '0'; if e_in.insn_type = OP_DIVE then -- extended forms x_to_divider.dividend <= std_ulogic_vector(abs1(31 downto 0)) & x"00000000"; else x_to_divider.dividend <= x"00000000" & std_ulogic_vector(abs1(31 downto 0)); end if; x_to_divider.divisor <= x"00000000" & std_ulogic_vector(abs2(31 downto 0)); end if; ctrl_tmp <= ctrl; -- FIXME: run at 512MHz not core freq ctrl_tmp.tb <= std_ulogic_vector(unsigned(ctrl.tb) + 1); ctrl_tmp.dec <= std_ulogic_vector(unsigned(ctrl.dec) - 1); irq_valid := '0'; if ctrl.msr(MSR_EE) = '1' then if ctrl.dec(63) = '1' then v.f.redirect_nia := std_logic_vector(to_unsigned(16#900#, 64)); report "IRQ valid: DEC"; irq_valid := '1'; elsif ext_irq_in = '1' then v.f.redirect_nia := std_logic_vector(to_unsigned(16#500#, 64)); report "IRQ valid: External"; irq_valid := '1'; end if; end if; v.terminate := '0'; icache_inval <= '0'; v.busy := '0'; -- send MSR[IR], ~MSR[PR], ~MSR[LE] and ~MSR[SF] up to fetch1 v.f.virt_mode := ctrl.msr(MSR_IR); v.f.priv_mode := not ctrl.msr(MSR_PR); v.f.big_endian := not ctrl.msr(MSR_LE); v.f.mode_32bit := not ctrl.msr(MSR_SF); -- Next insn adder used in a couple of places next_nia := std_ulogic_vector(unsigned(e_in.nia) + 4); -- rotator control signals right_shift <= '1' when e_in.insn_type = OP_SHR else '0'; rot_clear_left <= '1' when e_in.insn_type = OP_RLC or e_in.insn_type = OP_RLCL else '0'; rot_clear_right <= '1' when e_in.insn_type = OP_RLC or e_in.insn_type = OP_RLCR else '0'; rot_sign_ext <= '1' when e_in.insn_type = OP_EXTSWSLI else '0'; ctrl_tmp.srr1 <= msr_copy(ctrl.msr); ctrl_tmp.irq_state <= WRITE_SRR0; exception := '0'; illegal := '0'; exception_nextpc := '0'; v.e.exc_write_enable := '0'; v.e.exc_write_reg := fast_spr_num(SPR_SRR0); v.e.exc_write_data := e_in.nia; if valid_in = '1' then v.last_nia := e_in.nia; end if; v.e.mode_32bit := not ctrl.msr(MSR_SF); if ctrl.irq_state = WRITE_SRR1 then v.e.exc_write_reg := fast_spr_num(SPR_SRR1); v.e.exc_write_data := ctrl.srr1; v.e.exc_write_enable := '1'; ctrl_tmp.msr(MSR_SF) <= '1'; ctrl_tmp.msr(MSR_EE) <= '0'; ctrl_tmp.msr(MSR_PR) <= '0'; ctrl_tmp.msr(MSR_IR) <= '0'; ctrl_tmp.msr(MSR_DR) <= '0'; ctrl_tmp.msr(MSR_RI) <= '0'; ctrl_tmp.msr(MSR_LE) <= '1'; v.e.valid := '1'; report "Writing SRR1: " & to_hstring(ctrl.srr1); elsif irq_valid = '1' and valid_in = '1' then -- we need two cycles to write srr0 and 1 -- will need more when we have to write HEIR -- Don't deliver the interrupt until we have a valid instruction -- coming in, so we have a valid NIA to put in SRR0. exception := '1'; elsif valid_in = '1' and ctrl.msr(MSR_PR) = '1' and instr_is_privileged(e_in.insn_type, e_in.insn) then -- generate a program interrupt exception := '1'; v.f.redirect_nia := std_logic_vector(to_unsigned(16#700#, 64)); -- set bit 45 to indicate privileged instruction type interrupt ctrl_tmp.srr1(63 - 45) <= '1'; report "privileged instruction"; elsif valid_in = '1' and e_in.unit = ALU then report "execute nia " & to_hstring(e_in.nia); v.e.valid := '1'; v.e.write_reg := e_in.write_reg; v.slow_op_insn := e_in.insn_type; v.slow_op_dest := gspr_to_gpr(e_in.write_reg); v.slow_op_rc := e_in.rc; v.slow_op_oe := e_in.oe; v.slow_op_xerc := v.e.xerc; case_0: case e_in.insn_type is when OP_ILLEGAL => -- we need two cycles to write srr0 and 1 -- will need more when we have to write HEIR illegal := '1'; when OP_SC => -- check bit 1 of the instruction is 1 so we know this is sc; -- 0 would mean scv, so generate an illegal instruction interrupt -- we need two cycles to write srr0 and 1 if e_in.insn(1) = '1' then exception := '1'; exception_nextpc := '1'; v.f.redirect_nia := std_logic_vector(to_unsigned(16#C00#, 64)); report "sc"; else illegal := '1'; end if; when OP_ATTN => -- check bits 1-10 of the instruction to make sure it's attn -- if not then it is illegal if e_in.insn(10 downto 1) = "0100000000" then v.terminate := '1'; report "ATTN"; else illegal := '1'; end if; when OP_NOP => -- Do nothing when OP_ADD | OP_CMP | OP_TRAP => result := sum_with_carry(63 downto 0); carry_32 := result(32) xor a_inv(32) xor b_in(32); carry_64 := sum_with_carry(64); if e_in.insn_type = OP_ADD then if e_in.output_carry = '1' then if e_in.input_carry /= OV then set_carry(v.e, carry_32, carry_64); else v.e.xerc.ov := carry_64; v.e.xerc.ov32 := carry_32; v.e.write_xerc_enable := '1'; end if; end if; if e_in.oe = '1' then set_ov(v.e, calc_ov(a_inv(63), b_in(63), carry_64, sum_with_carry(63)), calc_ov(a_inv(31), b_in(31), carry_32, sum_with_carry(31))); end if; result_en := '1'; else -- trap, CMP and CMPL instructions -- Note, we have done RB - RA, not RA - RB if e_in.insn_type = OP_CMP then l := insn_l(e_in.insn); else l := not e_in.is_32bit; end if; zerolo := not (or (a_in(31 downto 0) xor b_in(31 downto 0))); zerohi := not (or (a_in(63 downto 32) xor b_in(63 downto 32))); if zerolo = '1' and (l = '0' or zerohi = '1') then -- values are equal trapval := "00100"; else if l = '1' then -- 64-bit comparison msb_a := a_in(63); msb_b := b_in(63); else -- 32-bit comparison msb_a := a_in(31); msb_b := b_in(31); end if; if msb_a /= msb_b then -- Subtraction might overflow, but -- comparison is clear from MSB difference. -- for signed, 0 is greater; for unsigned, 1 is greater trapval := msb_a & msb_b & '0' & msb_b & msb_a; else -- Subtraction cannot overflow since MSBs are equal. -- carry = 1 indicates RA is smaller (signed or unsigned) a_lt := (not l and carry_32) or (l and carry_64); trapval := a_lt & not a_lt & '0' & a_lt & not a_lt; end if; end if; if e_in.insn_type = OP_CMP then if e_in.is_signed = '1' then newcrf := trapval(4 downto 2) & v.e.xerc.so; else newcrf := trapval(1 downto 0) & trapval(2) & v.e.xerc.so; end if; bf := insn_bf(e_in.insn); crnum := to_integer(unsigned(bf)); v.e.write_cr_enable := '1'; v.e.write_cr_mask := num_to_fxm(crnum); for i in 0 to 7 loop lo := i*4; hi := lo + 3; v.e.write_cr_data(hi downto lo) := newcrf; end loop; else -- trap instructions (tw, twi, td, tdi) v.f.redirect_nia := std_logic_vector(to_unsigned(16#700#, 64)); -- set bit 46 to say trap occurred ctrl_tmp.srr1(63 - 46) <= '1'; if or (trapval and insn_to(e_in.insn)) = '1' then -- generate trap-type program interrupt exception := '1'; report "trap"; end if; end if; end if; when OP_ADDG6S => result := (others => '0'); for i in 0 to 14 loop lo := i * 4; hi := (i + 1) * 4; if (a_in(hi) xor b_in(hi) xor sum_with_carry(hi)) = '0' then result(lo + 3 downto lo) := "0110"; end if; end loop; if sum_with_carry(64) = '0' then result(63 downto 60) := "0110"; end if; result_en := '1'; when OP_CMPRB => newcrf := ppc_cmprb(a_in, b_in, insn_l(e_in.insn)); bf := insn_bf(e_in.insn); crnum := to_integer(unsigned(bf)); v.e.write_cr_enable := '1'; v.e.write_cr_mask := num_to_fxm(crnum); v.e.write_cr_data := newcrf & newcrf & newcrf & newcrf & newcrf & newcrf & newcrf & newcrf; when OP_CMPEQB => newcrf := ppc_cmpeqb(a_in, b_in); bf := insn_bf(e_in.insn); crnum := to_integer(unsigned(bf)); v.e.write_cr_enable := '1'; v.e.write_cr_mask := num_to_fxm(crnum); v.e.write_cr_data := newcrf & newcrf & newcrf & newcrf & newcrf & newcrf & newcrf & newcrf; when OP_AND | OP_OR | OP_XOR | OP_POPCNT | OP_PRTY | OP_CMPB | OP_EXTS | OP_BPERM | OP_BCD => result := logical_result; result_en := '1'; when OP_B => is_branch := '1'; taken_branch := '1'; abs_branch := insn_aa(e_in.insn); when OP_BC => -- read_data1 is CTR bo := insn_bo(e_in.insn); bi := insn_bi(e_in.insn); if bo(4-2) = '0' then result := std_ulogic_vector(unsigned(a_in) - 1); result_en := '1'; v.e.write_reg := fast_spr_num(SPR_CTR); end if; is_branch := '1'; taken_branch := ppc_bc_taken(bo, bi, cr_in, a_in); abs_branch := insn_aa(e_in.insn); when OP_BCREG => -- read_data1 is CTR -- read_data2 is target register (CTR, LR or TAR) bo := insn_bo(e_in.insn); bi := insn_bi(e_in.insn); if bo(4-2) = '0' and e_in.insn(10) = '0' then result := std_ulogic_vector(unsigned(a_in) - 1); result_en := '1'; v.e.write_reg := fast_spr_num(SPR_CTR); end if; is_branch := '1'; taken_branch := ppc_bc_taken(bo, bi, cr_in, a_in); abs_branch := '1'; when OP_RFID => v.f.virt_mode := a_in(MSR_IR) or a_in(MSR_PR); v.f.priv_mode := not a_in(MSR_PR); v.f.big_endian := not a_in(MSR_LE); v.f.mode_32bit := not a_in(MSR_SF); -- Can't use msr_copy here because the partial function MSR -- bits should be left unchanged, not zeroed. ctrl_tmp.msr(63 downto 31) <= a_in(63 downto 31); ctrl_tmp.msr(26 downto 22) <= a_in(26 downto 22); ctrl_tmp.msr(15 downto 0) <= a_in(15 downto 0); if a_in(MSR_PR) = '1' then ctrl_tmp.msr(MSR_EE) <= '1'; ctrl_tmp.msr(MSR_IR) <= '1'; ctrl_tmp.msr(MSR_DR) <= '1'; end if; -- mark this as a branch so CFAR gets updated is_branch := '1'; taken_branch := '1'; abs_branch := '1'; when OP_CNTZ => v.e.valid := '0'; v.cntz_in_progress := '1'; v.busy := '1'; when OP_ISEL => crbit := to_integer(unsigned(insn_bc(e_in.insn))); if cr_in(31-crbit) = '1' then result := a_in; else result := b_in; end if; result_en := '1'; when OP_CROP => cr_op := insn_cr(e_in.insn); report "CR OP " & to_hstring(cr_op); if cr_op(0) = '0' then -- MCRF bf := insn_bf(e_in.insn); bfa := insn_bfa(e_in.insn); v.e.write_cr_enable := '1'; crnum := to_integer(unsigned(bf)); scrnum := to_integer(unsigned(bfa)); v.e.write_cr_mask := num_to_fxm(crnum); for i in 0 to 7 loop lo := (7-i)*4; hi := lo + 3; if i = scrnum then newcrf := cr_in(hi downto lo); end if; end loop; for i in 0 to 7 loop lo := i*4; hi := lo + 3; v.e.write_cr_data(hi downto lo) := newcrf; end loop; else v.e.write_cr_enable := '1'; bt := insn_bt(e_in.insn); ba := insn_ba(e_in.insn); bb := insn_bb(e_in.insn); btnum := 31 - to_integer(unsigned(bt)); banum := 31 - to_integer(unsigned(ba)); bbnum := 31 - to_integer(unsigned(bb)); -- Bits 5-8 of cr_op give the truth table of the requested -- logical operation cr_operands := cr_in(banum) & cr_in(bbnum); crresult := cr_op(5 + to_integer(unsigned(cr_operands))); v.e.write_cr_mask := num_to_fxm((31-btnum) / 4); for i in 0 to 31 loop if i = btnum then v.e.write_cr_data(i) := crresult; else v.e.write_cr_data(i) := cr_in(i); end if; end loop; end if; when OP_MCRXRX => newcrf := v.e.xerc.ov & v.e.xerc.ca & v.e.xerc.ov32 & v.e.xerc.ca32; bf := insn_bf(e_in.insn); crnum := to_integer(unsigned(bf)); v.e.write_cr_enable := '1'; v.e.write_cr_mask := num_to_fxm(crnum); v.e.write_cr_data := newcrf & newcrf & newcrf & newcrf & newcrf & newcrf & newcrf & newcrf; when OP_DARN => if random_err = '0' then case e_in.insn(17 downto 16) is when "00" => result := x"00000000" & random_cond(31 downto 0); when "10" => result := random_raw; when others => result := random_cond; end case; else result := (others => '1'); end if; result_en := '1'; when OP_MFMSR => result := ctrl.msr; result_en := '1'; when OP_MFSPR => report "MFSPR to SPR " & integer'image(decode_spr_num(e_in.insn)) & "=" & to_hstring(a_in); result_en := '1'; if is_fast_spr(e_in.read_reg1) then result := a_in; if decode_spr_num(e_in.insn) = SPR_XER then -- bits 0:31 and 35:43 are treated as reserved and return 0s when read using mfxer result(63 downto 32) := (others => '0'); result(63-32) := v.e.xerc.so; result(63-33) := v.e.xerc.ov; result(63-34) := v.e.xerc.ca; result(63-35 downto 63-43) := "000000000"; result(63-44) := v.e.xerc.ov32; result(63-45) := v.e.xerc.ca32; end if; else spr_val := c_in; case decode_spr_num(e_in.insn) is when SPR_TB => spr_val := ctrl.tb; when SPR_TBU => spr_val(63 downto 32) := (others => '0'); spr_val(31 downto 0) := ctrl.tb(63 downto 32); when SPR_DEC => spr_val := ctrl.dec; when SPR_CFAR => spr_val := ctrl.cfar; when SPR_PVR => spr_val(63 downto 32) := (others => '0'); spr_val(31 downto 0) := PVR_MICROWATT; when 724 => -- LOG_ADDR SPR spr_val := log_wr_addr & r.log_addr_spr; when 725 => -- LOG_DATA SPR spr_val := log_rd_data; v.log_addr_spr := std_ulogic_vector(unsigned(r.log_addr_spr) + 1); when others => -- mfspr from unimplemented SPRs should be a nop in -- supervisor mode and a program interrupt for user mode if ctrl.msr(MSR_PR) = '1' then illegal := '1'; end if; end case; result := spr_val; end if; when OP_MFCR => if e_in.insn(20) = '0' then -- mfcr result := x"00000000" & cr_in; else -- mfocrf crnum := fxm_to_num(insn_fxm(e_in.insn)); result := (others => '0'); for i in 0 to 7 loop lo := (7-i)*4; hi := lo + 3; if crnum = i then result(hi downto lo) := cr_in(hi downto lo); end if; end loop; end if; result_en := '1'; when OP_MTCRF => v.e.write_cr_enable := '1'; if e_in.insn(20) = '0' then -- mtcrf v.e.write_cr_mask := insn_fxm(e_in.insn); else -- mtocrf: We require one hot priority encoding here crnum := fxm_to_num(insn_fxm(e_in.insn)); v.e.write_cr_mask := num_to_fxm(crnum); end if; v.e.write_cr_data := c_in(31 downto 0); when OP_MTMSRD => if e_in.insn(16) = '1' then -- just update EE and RI ctrl_tmp.msr(MSR_EE) <= c_in(MSR_EE); ctrl_tmp.msr(MSR_RI) <= c_in(MSR_RI); else -- Architecture says to leave out bits 3 (HV), 51 (ME) -- and 63 (LE) (IBM bit numbering) ctrl_tmp.msr(63 downto 61) <= c_in(63 downto 61); ctrl_tmp.msr(59 downto 13) <= c_in(59 downto 13); ctrl_tmp.msr(11 downto 1) <= c_in(11 downto 1); if c_in(MSR_PR) = '1' then ctrl_tmp.msr(MSR_EE) <= '1'; ctrl_tmp.msr(MSR_IR) <= '1'; ctrl_tmp.msr(MSR_DR) <= '1'; end if; end if; when OP_MTSPR => report "MTSPR to SPR " & integer'image(decode_spr_num(e_in.insn)) & "=" & to_hstring(c_in); if is_fast_spr(e_in.write_reg) then result := c_in; result_en := '1'; if decode_spr_num(e_in.insn) = SPR_XER then v.e.xerc.so := c_in(63-32); v.e.xerc.ov := c_in(63-33); v.e.xerc.ca := c_in(63-34); v.e.xerc.ov32 := c_in(63-44); v.e.xerc.ca32 := c_in(63-45); v.e.write_xerc_enable := '1'; end if; else -- slow spr case decode_spr_num(e_in.insn) is when SPR_DEC => ctrl_tmp.dec <= c_in; when 724 => -- LOG_ADDR SPR v.log_addr_spr := c_in(31 downto 0); when others => -- mtspr to unimplemented SPRs should be a nop in -- supervisor mode and a program interrupt for user mode if ctrl.msr(MSR_PR) = '1' then illegal := '1'; end if; end case; end if; when OP_RLC | OP_RLCL | OP_RLCR | OP_SHL | OP_SHR | OP_EXTSWSLI => result := rotator_result; if e_in.output_carry = '1' then set_carry(v.e, rotator_carry, rotator_carry); end if; result_en := '1'; when OP_SETB => bfa := insn_bfa(e_in.insn); crbit := to_integer(unsigned(bfa)) * 4; result := (others => '0'); if cr_in(31 - crbit) = '1' then result := (others => '1'); elsif cr_in(30 - crbit) = '1' then result(0) := '1'; end if; when OP_ISYNC => v.f.redirect := '1'; v.f.redirect_nia := next_nia; when OP_ICBI => icache_inval <= '1'; when OP_MUL_L64 | OP_MUL_H64 | OP_MUL_H32 => v.e.valid := '0'; v.mul_in_progress := '1'; v.busy := '1'; x_to_multiply.valid <= '1'; when OP_DIV | OP_DIVE | OP_MOD => v.e.valid := '0'; v.div_in_progress := '1'; v.busy := '1'; x_to_divider.valid <= '1'; when others => v.terminate := '1'; report "illegal"; end case; v.e.rc := e_in.rc and valid_in; -- Mispredicted branches cause a redirect if is_branch = '1' then if taken_branch = '1' then ctrl_tmp.cfar <= e_in.nia; end if; if e_in.br_pred = '0' then if abs_branch = '1' then v.f.redirect_nia := b_in; else v.f.redirect_nia := std_ulogic_vector(signed(e_in.nia) + signed(b_in)); end if; else v.f.redirect_nia := next_nia; end if; if taken_branch /= e_in.br_pred then v.f.redirect := '1'; end if; end if; -- Update LR on the next cycle after a branch link -- If we're not writing back anything else, we can write back LR -- this cycle, otherwise we take an extra cycle. We use the -- exc_write path since next_nia is written through that path -- in other places. if e_in.lr = '1' then if result_en = '0' then v.e.exc_write_enable := '1'; v.e.exc_write_data := next_nia; v.e.exc_write_reg := fast_spr_num(SPR_LR); else v.lr_update := '1'; v.next_lr := next_nia; v.e.valid := '0'; report "Delayed LR update to " & to_hstring(next_nia); v.busy := '1'; end if; end if; elsif valid_in = '1' then -- instruction for other units, i.e. LDST if e_in.unit = LDST then lv.valid := '1'; end if; elsif r.f.redirect = '1' then v.e.valid := '1'; elsif r.lr_update = '1' then v.e.exc_write_enable := '1'; v.e.exc_write_data := r.next_lr; v.e.exc_write_reg := fast_spr_num(SPR_LR); v.e.valid := '1'; elsif r.cntz_in_progress = '1' then -- cnt[lt]z always takes two cycles result := countzero_result; result_en := '1'; v.e.write_reg := gpr_to_gspr(r.slow_op_dest); v.e.rc := r.slow_op_rc; v.e.xerc := r.slow_op_xerc; v.e.valid := '1'; elsif r.mul_in_progress = '1' or r.div_in_progress = '1' then if (r.mul_in_progress = '1' and multiply_to_x.valid = '1') or (r.div_in_progress = '1' and divider_to_x.valid = '1') then if r.mul_in_progress = '1' then overflow := '0'; case r.slow_op_insn is when OP_MUL_H32 => result := multiply_to_x.result(63 downto 32) & multiply_to_x.result(63 downto 32); when OP_MUL_H64 => result := multiply_to_x.result(127 downto 64); when others => -- i.e. OP_MUL_L64 result := multiply_to_x.result(63 downto 0); end case; else result := divider_to_x.write_reg_data; overflow := divider_to_x.overflow; end if; if r.mul_in_progress = '1' and r.slow_op_oe = '1' then -- have to wait until next cycle for overflow indication v.mul_finish := '1'; v.busy := '1'; else result_en := '1'; v.e.write_reg := gpr_to_gspr(r.slow_op_dest); v.e.rc := r.slow_op_rc; v.e.xerc := r.slow_op_xerc; v.e.write_xerc_enable := r.slow_op_oe; -- We must test oe because the RC update code in writeback -- will use the xerc value to set CR0:SO so we must not clobber -- xerc if OE wasn't set. if r.slow_op_oe = '1' then v.e.xerc.ov := overflow; v.e.xerc.ov32 := overflow; v.e.xerc.so := r.slow_op_xerc.so or overflow; end if; v.e.valid := '1'; end if; else v.busy := '1'; v.mul_in_progress := r.mul_in_progress; v.div_in_progress := r.div_in_progress; end if; elsif r.mul_finish = '1' then result := r.e.write_data; result_en := '1'; v.e.write_reg := gpr_to_gspr(r.slow_op_dest); v.e.rc := r.slow_op_rc; v.e.xerc := r.slow_op_xerc; v.e.write_xerc_enable := r.slow_op_oe; v.e.xerc.ov := multiply_to_x.overflow; v.e.xerc.ov32 := multiply_to_x.overflow; v.e.xerc.so := r.slow_op_xerc.so or multiply_to_x.overflow; v.e.valid := '1'; end if; if illegal = '1' then exception := '1'; v.f.redirect_nia := std_logic_vector(to_unsigned(16#700#, 64)); -- Since we aren't doing Hypervisor emulation assist (0xe40) we -- set bit 44 to indicate we have an illegal ctrl_tmp.srr1(63 - 44) <= '1'; report "illegal"; end if; if exception = '1' then v.e.exc_write_enable := '1'; if exception_nextpc = '1' then v.e.exc_write_data := next_nia; end if; end if; v.e.write_data := result; v.e.write_enable := result_en and not exception; -- generate DSI or DSegI for load/store exceptions -- or ISI or ISegI for instruction fetch exceptions if l_in.exception = '1' then if l_in.alignment = '1' then v.f.redirect_nia := std_logic_vector(to_unsigned(16#600#, 64)); elsif l_in.instr_fault = '0' then if l_in.segment_fault = '0' then v.f.redirect_nia := std_logic_vector(to_unsigned(16#300#, 64)); else v.f.redirect_nia := std_logic_vector(to_unsigned(16#380#, 64)); end if; else if l_in.segment_fault = '0' then ctrl_tmp.srr1(63 - 33) <= l_in.invalid; ctrl_tmp.srr1(63 - 35) <= l_in.perm_error; -- noexec fault ctrl_tmp.srr1(63 - 44) <= l_in.badtree; ctrl_tmp.srr1(63 - 45) <= l_in.rc_error; v.f.redirect_nia := std_logic_vector(to_unsigned(16#400#, 64)); else v.f.redirect_nia := std_logic_vector(to_unsigned(16#480#, 64)); end if; end if; v.e.exc_write_enable := '1'; v.e.exc_write_reg := fast_spr_num(SPR_SRR0); v.e.exc_write_data := r.last_nia; report "ldst exception writing srr0=" & to_hstring(r.last_nia); end if; if exception = '1' or l_in.exception = '1' then ctrl_tmp.irq_state <= WRITE_SRR1; v.f.redirect := '1'; v.f.virt_mode := '0'; v.f.priv_mode := '1'; -- XXX need an interrupt LE bit here, e.g. from LPCR v.f.big_endian := '0'; v.f.mode_32bit := '0'; end if; if v.f.redirect = '1' then v.busy := '1'; v.e.valid := '0'; end if; -- Outputs to loadstore1 (async) lv.op := e_in.insn_type; lv.nia := e_in.nia; lv.addr1 := a_in; lv.addr2 := b_in; lv.data := c_in; lv.write_reg := gspr_to_gpr(e_in.write_reg); lv.length := e_in.data_len; lv.byte_reverse := e_in.byte_reverse xnor ctrl.msr(MSR_LE); lv.sign_extend := e_in.sign_extend; lv.update := e_in.update; lv.update_reg := gspr_to_gpr(e_in.read_reg1); lv.xerc := v.e.xerc; lv.reserve := e_in.reserve; lv.rc := e_in.rc; lv.insn := e_in.insn; -- decode l*cix and st*cix instructions here if e_in.insn(31 downto 26) = "011111" and e_in.insn(10 downto 9) = "11" and e_in.insn(5 downto 1) = "10101" then lv.ci := '1'; end if; lv.virt_mode := ctrl.msr(MSR_DR); lv.priv_mode := not ctrl.msr(MSR_PR); lv.mode_32bit := not ctrl.msr(MSR_SF); -- Update registers rin <= v; -- update outputs f_out <= r.f; l_out <= lv; e_out <= r.e; flush_out <= f_out.redirect; exception_log <= exception; irq_valid_log <= irq_valid; end process; e1_log: if LOG_LENGTH > 0 generate signal log_data : std_ulogic_vector(14 downto 0); begin ex1_log : process(clk) begin if rising_edge(clk) then log_data <= ctrl.msr(MSR_EE) & ctrl.msr(MSR_PR) & ctrl.msr(MSR_IR) & ctrl.msr(MSR_DR) & exception_log & irq_valid_log & std_ulogic_vector(to_unsigned(irq_state_t'pos(ctrl.irq_state), 1)) & "000" & r.e.write_enable & r.e.valid & f_out.redirect & r.busy & flush_out; end if; end process; log_out <= log_data; end generate; end architecture behaviour;