|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright (c) 2015 Jason Power
|
|
|
|
# All rights reserved.
|
|
|
|
#
|
|
|
|
# Redistribution and use in source and binary forms, with or without
|
|
|
|
# modification, are permitted provided that the following conditions are
|
|
|
|
# met: redistributions of source code must retain the above copyright
|
|
|
|
# notice, this list of conditions and the following disclaimer;
|
|
|
|
# redistributions in binary form must reproduce the above copyright
|
|
|
|
# notice, this list of conditions and the following disclaimer in the
|
|
|
|
# documentation and/or other materials provided with the distribution;
|
|
|
|
# neither the name of the copyright holders nor the names of its
|
|
|
|
# contributors may be used to endorse or promote products derived from
|
|
|
|
# this software without specific prior written permission.
|
|
|
|
#
|
|
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# import the m5 (gem5) library created when gem5 is built
|
|
|
|
import m5
|
|
|
|
|
|
|
|
# import all of the SimObjects
|
|
|
|
from m5.objects import *
|
|
|
|
# Add the common scripts to our path
|
|
|
|
m5.util.addToPath('../../')
|
|
|
|
|
|
|
|
# import the caches which we made
|
|
|
|
from caches import *
|
|
|
|
import argparse
|
|
|
|
# import the SimpleOpts module
|
|
|
|
from common import SimpleOpts
|
|
|
|
# create the system we are going to simulate
|
|
|
|
from common import Options
|
|
|
|
from common import ObjectList
|
|
|
|
system = System()
|
|
|
|
|
|
|
|
# Set the clock fequency of the system (and all of its children)
|
|
|
|
system.clk_domain = SrcClockDomain()
|
|
|
|
system.clk_domain.clock = '1GHz'
|
|
|
|
system.clk_domain.voltage_domain = VoltageDomain()
|
|
|
|
|
|
|
|
# Set up the system
|
|
|
|
system.mem_mode = 'timing' # Use timing accesses
|
|
|
|
#system.mem_mode = 'atomic' # Use timing accesses
|
|
|
|
|
|
|
|
system.mem_ranges = [AddrRange('8192MB')] # Create an address range
|
|
|
|
|
|
|
|
# Create a simple CPU
|
|
|
|
system.cpu = TimingSimpleCPU()
|
|
|
|
# system.cpu = DerivO3CPU()
|
|
|
|
#system.cpu = MinorCPU()
|
|
|
|
#system.cpu = AtomicSimpleCPU()
|
|
|
|
#system.cpu = O3CPU()
|
|
|
|
parser = argparse.ArgumentParser(description='CPU with 2-Level cache and branch predictor')
|
|
|
|
|
|
|
|
parser.add_argument("--bp-type", default=None,
|
|
|
|
choices=ObjectList.bp_list.get_names(),
|
|
|
|
help="""
|
|
|
|
type of branch predictor to run with
|
|
|
|
(if not set, use the default branch predictor of
|
|
|
|
the selected CPU)""")
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.bp_type:
|
|
|
|
bpClass = ObjectList.bp_list.get(args.bp_type)
|
|
|
|
system.cpu.branchPred = bpClass()
|
|
|
|
|
|
|
|
#parser.add_argument("binary", default="", nargs="?", type=str,
|
|
|
|
# help="Path to the binary to execute.")
|
|
|
|
#parser.add_argument("--l1i_size",
|
|
|
|
# help=f"L1 instruction cache size. Default: 16kB.")
|
|
|
|
#parser.add_argument("--l1d_size",
|
|
|
|
# help="L1 data cache size. Default: Default: 64kB.")
|
|
|
|
#parser.add_argument("--l2_size",
|
|
|
|
# help="L2 cache size. Default: 256kB.")
|
|
|
|
|
|
|
|
options = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Create an L1 instruction and data cache
|
|
|
|
system.cpu.icache = L1ICache()
|
|
|
|
system.cpu.dcache = L1DCache()
|
|
|
|
|
|
|
|
|
|
|
|
# Connect the instruction and data caches to the CPU
|
|
|
|
system.cpu.icache.connectCPU(system.cpu)
|
|
|
|
system.cpu.dcache.connectCPU(system.cpu)
|
|
|
|
|
|
|
|
# Create a memory bus, a coherent crossbar, in this case
|
|
|
|
system.l2bus = L2XBar()
|
|
|
|
|
|
|
|
# Hook the CPU ports up to the l2bus
|
|
|
|
system.cpu.icache.connectBus(system.l2bus)
|
|
|
|
system.cpu.dcache.connectBus(system.l2bus)
|
|
|
|
|
|
|
|
# Create an L2 cache and connect it to the l2bus
|
|
|
|
system.l2cache = L2Cache()
|
|
|
|
system.l2cache.connectCPUSideBus(system.l2bus)
|
|
|
|
|
|
|
|
# Create a memory bus
|
|
|
|
system.membus = SystemXBar()
|
|
|
|
|
|
|
|
# Connect the L2 cache to the membus
|
|
|
|
system.l2cache.connectMemSideBus(system.membus)
|
|
|
|
|
|
|
|
# create the interrupt controller for the CPU
|
|
|
|
system.cpu.createInterruptController()
|
|
|
|
|
|
|
|
# For x86 only, make sure the interrupts are connected to the memory
|
|
|
|
# Note: these are directly connected to the memory bus and are not cached
|
|
|
|
if m5.defines.buildEnv['TARGET_ISA'] == "x86":
|
|
|
|
system.cpu.interrupts[0].pio = system.membus.mem_side_ports
|
|
|
|
system.cpu.interrupts[0].int_requestor = system.membus.cpu_side_ports
|
|
|
|
system.cpu.interrupts[0].int_responder = system.membus.mem_side_ports
|
|
|
|
|
|
|
|
# Connect the system up to the membus
|
|
|
|
system.system_port = system.membus.cpu_side_ports
|
|
|
|
|
|
|
|
# Create a DDR3 memory controller
|
|
|
|
system.mem_ctrl = MemCtrl()
|
|
|
|
system.mem_ctrl.dram = DDR3_1600_8x8()
|
|
|
|
system.mem_ctrl.dram.range = system.mem_ranges[0]
|
|
|
|
system.mem_ctrl.port = system.membus.mem_side_ports
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# get ISA for the binary to run.
|
|
|
|
isa = str(m5.defines.buildEnv['TARGET_ISA']).lower()
|
|
|
|
|
|
|
|
# Default to running 'hello', use the compiled ISA to find the binary
|
|
|
|
# grab the specific path to the binary
|
|
|
|
thispath = os.path.dirname(os.path.realpath(__file__))
|
|
|
|
print (thispath)
|
|
|
|
|
|
|
|
binary = os.path.join(thispath, '../../tests/test-progs/matmul_ijk_128.out')
|
|
|
|
print (binary)
|
|
|
|
|
|
|
|
system.workload = SEWorkload.init_compatible(binary)
|
|
|
|
|
|
|
|
|
|
|
|
# Create a process for a simple "Hello World" application
|
|
|
|
process = Process()
|
|
|
|
# Set the command
|
|
|
|
# cmd is a list which begins with the executable (like argv)
|
|
|
|
process.cmd = [binary]
|
|
|
|
# Set the cpu to use the process as its workload and create thread contexts
|
|
|
|
system.cpu.workload = process
|
|
|
|
system.cpu.createThreads()
|
|
|
|
|
|
|
|
# set up the root SimObject and start the simulation
|
|
|
|
root = Root(full_system = False, system = system)
|
|
|
|
# instantiate all of the objects we've created above
|
|
|
|
m5.instantiate()
|
|
|
|
|
|
|
|
print("Beginning simulation!")
|
|
|
|
exit_event = m5.simulate()
|
|
|
|
print('Exiting @ tick %i because %s' % (m5.curTick(), exit_event.getCause()))
|