You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
137 lines
4.6 KiB
Verilog
137 lines
4.6 KiB
Verilog
// © IBM Corp. 2020
|
|
// Licensed under the Apache License, Version 2.0 (the "License"), as modified by
|
|
// the terms below; you may not use the files in this repository except in
|
|
// compliance with the License as modified.
|
|
// You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Modified Terms:
|
|
//
|
|
// 1) For the purpose of the patent license granted to you in Section 3 of the
|
|
// License, the "Work" hereby includes implementations of the work of authorship
|
|
// in physical form.
|
|
//
|
|
// 2) Notwithstanding any terms to the contrary in the License, any licenses
|
|
// necessary for implementation of the Work that are available from OpenPOWER
|
|
// via the Power ISA End User License Agreement (EULA) are explicitly excluded
|
|
// hereunder, and may be obtained from OpenPOWER under the terms and conditions
|
|
// of the EULA.
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, the reference design
|
|
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License
|
|
// for the specific language governing permissions and limitations under the License.
|
|
//
|
|
// Additional rights, including the ability to physically implement a softcore that
|
|
// is compliant with the required sections of the Power ISA Specification, are
|
|
// available at no cost under the terms of the OpenPOWER Power ISA EULA, which can be
|
|
// obtained (along with the Power ISA) here: https://openpowerfoundation.org.
|
|
|
|
`timescale 1 ns / 1 ns
|
|
|
|
// Description: XU CPL - Configurable Flush Delay Counter
|
|
//
|
|
//*****************************************************************************
|
|
`include "tri_a2o.vh"
|
|
|
|
module xu_fctr
|
|
#(
|
|
parameter CLOCKGATE = 1,
|
|
parameter PASSTHRU = 1,
|
|
parameter DELAY_WIDTH = 4,
|
|
parameter WIDTH = 2
|
|
)
|
|
(
|
|
input clk,
|
|
input rst,
|
|
|
|
input force_t,
|
|
input thold_b,
|
|
input sg,
|
|
input d_mode,
|
|
input delay_lclkr,
|
|
input mpw1_b,
|
|
input mpw2_b,
|
|
|
|
input scin,
|
|
output scout,
|
|
|
|
input [0:WIDTH-1] din,
|
|
output [0:WIDTH-1] dout,
|
|
input [0:DELAY_WIDTH-1] delay,
|
|
|
|
inout vdd,
|
|
inout gnd
|
|
);
|
|
|
|
|
|
// Latches
|
|
wire [0:DELAY_WIDTH-1] delay_q[0:WIDTH-1];
|
|
wire [0:DELAY_WIDTH-1] delay_d[0:WIDTH-1];
|
|
// Scanchains
|
|
localparam delay_offset = 0;
|
|
localparam scan_right = delay_offset + DELAY_WIDTH*WIDTH;
|
|
wire [0:scan_right-1] siv;
|
|
wire [0:scan_right-1] sov;
|
|
// Signals
|
|
wire [0:WIDTH-1] set;
|
|
wire [0:WIDTH-1] zero_b;
|
|
wire [0:WIDTH-1] act;
|
|
|
|
generate
|
|
genvar t;
|
|
for (t=0;t<=WIDTH-1;t=t+1)
|
|
begin : threads_gen
|
|
wire [0:DELAY_WIDTH-1] delay_m1;
|
|
|
|
assign set[t] = din[t];
|
|
assign zero_b[t] = |(delay_q[t]);
|
|
assign delay_m1 = delay_q[t] - {{DELAY_WIDTH-1{1'b0}},1'b1};
|
|
|
|
if (CLOCKGATE == 0) begin : clockgate_0
|
|
assign act[t] = set[t] | zero_b[t];
|
|
|
|
assign delay_d[t] = ({set[t], zero_b[t]} == 2'b11) ? delay :
|
|
({set[t], zero_b[t]} == 2'b10) ? delay :
|
|
({set[t], zero_b[t]} == 2'b01) ? delay_m1 :
|
|
delay_q[t];
|
|
end
|
|
if (CLOCKGATE == 1) begin : clockgate_1
|
|
assign act[t] = set[t] | zero_b[t];
|
|
|
|
assign delay_d[t] = (set[t] == 1'b1) ? delay :
|
|
delay_m1;
|
|
end
|
|
|
|
if (PASSTHRU == 1)begin : PASSTHRU_gen_1
|
|
assign dout[t] = zero_b[t] | din[t];
|
|
end
|
|
if (PASSTHRU == 0) begin : PASSTHRU_gen_0
|
|
assign dout[t] = zero_b[t];
|
|
end
|
|
|
|
tri_rlmreg_p #(.WIDTH(DELAY_WIDTH), .INIT(0), .NEEDS_SRESET(1)) delay_latch(
|
|
.clk(clk),
|
|
.rst(rst),
|
|
.vd(vdd),
|
|
.gd(gnd),
|
|
.act(act[t]),
|
|
.force_t(force_t),
|
|
.d_mode(d_mode),
|
|
.delay_lclkr(delay_lclkr),
|
|
.mpw1_b(mpw1_b),
|
|
.mpw2_b(mpw2_b),
|
|
.thold_b(thold_b),
|
|
.sg(sg),
|
|
.scin(siv[delay_offset+DELAY_WIDTH*t:delay_offset+DELAY_WIDTH*(t+1)-1]),
|
|
.scout(sov[delay_offset+DELAY_WIDTH*t:delay_offset+DELAY_WIDTH*(t+1)-1]),
|
|
.din(delay_d[t]),
|
|
.dout(delay_q[t])
|
|
);
|
|
end
|
|
endgenerate
|
|
|
|
assign siv[0:scan_right - 1] = {sov[1:scan_right - 1], scin};
|
|
assign scout = sov[0];
|
|
|
|
endmodule
|