Merge remote-tracking branch 'remotes/origin/master'

pull/166/head
Paul Mackerras 5 years ago
commit 102b304db7

@ -70,7 +70,8 @@ rotator.o: common.o
rotator_tb.o: common.o glibc_random.o ppc_fx_insns.o insn_helpers.o rotator.o
sim_console.o:
sim_uart.o: wishbone_types.o sim_console.o
soc.o: common.o wishbone_types.o core.o wishbone_arbiter.o sim_uart.o wishbone_bram_wrapper.o dmi_dtm_xilinx.o wishbone_debug_master.o
xics.o: wishbone_types.o common.o
soc.o: common.o wishbone_types.o core.o wishbone_arbiter.o sim_uart.o wishbone_bram_wrapper.o dmi_dtm_xilinx.o wishbone_debug_master.o xics.o
wishbone_arbiter.o: wishbone_types.o
wishbone_types.o:
writeback.o: common.o crhelpers.o

@ -316,6 +316,11 @@ package common is
constant WritebackToCrFileInit : WritebackToCrFileType := (write_cr_enable => '0', write_xerc_enable => '0',
write_xerc_data => xerc_init,
others => (others => '0'));

type XicsToExecute1Type is record
irq : std_ulogic;
end record;

end common;

package body common is

@ -29,6 +29,8 @@ entity core is
dmi_wr : in std_ulogic;
dmi_ack : out std_ulogic;

xics_in : in XicsToExecute1Type;

terminated_out : out std_logic
);
end core;
@ -237,6 +239,7 @@ begin
flush_out => flush,
stall_out => ex1_stall_out,
e_in => decode2_to_execute1,
i_in => xics_in,
l_out => execute1_to_loadstore1,
f_out => execute1_to_fetch1,
e_out => execute1_to_writeback,

@ -24,6 +24,8 @@ entity execute1 is

e_in : in Decode2ToExecute1Type;

i_in : in XicsToExecute1Type;

-- asynchronous
l_out : out Execute1ToLoadstore1Type;
f_out : out Execute1ToFetch1Type;
@ -403,9 +405,16 @@ begin
ctrl_tmp.dec <= std_ulogic_vector(unsigned(ctrl.dec) - 1);

irq_valid := '0';
if ctrl.msr(MSR_EE) = '1' and ctrl.dec(63) = '1' then
report "IRQ valid";
irq_valid := '1';
if ctrl.msr(MSR_EE) = '1' then
if ctrl.dec(63) = '1' then
ctrl_tmp.irq_nia <= std_logic_vector(to_unsigned(16#900#, 64));
report "IRQ valid: DEC";
irq_valid := '1';
elsif i_in.irq = '1' then
ctrl_tmp.irq_nia <= std_logic_vector(to_unsigned(16#500#, 64));
report "IRQ valid: External";
irq_valid := '1';
end if;
end if;

terminate_out <= '0';
@ -451,7 +460,6 @@ begin
-- Don't deliver the interrupt until we have a valid instruction
-- coming in, so we have a valid NIA to put in SRR0.
exception := e_in.valid;
ctrl_tmp.irq_nia <= std_logic_vector(to_unsigned(16#900#, 64));
ctrl_tmp.srr1 <= msr_copy(ctrl.msr);

elsif e_in.valid = '1' and ctrl.msr(MSR_PR) = '1' and
@ -466,6 +474,8 @@ begin
elsif e_in.valid = '1' and e_in.unit = ALU then

report "execute nia " & to_hstring(e_in.nia);

v.e.valid := '1';
v.e.write_reg := e_in.write_reg;
v.slow_op_dest := gspr_to_gpr(e_in.write_reg);

@ -91,6 +91,16 @@ void potato_uart_init(void)
potato_uart_reg_write(POTATO_CONSOLE_CLOCK_DIV, potato_uart_divisor(PROC_FREQ, UART_FREQ));
}

void potato_uart_irq_en(void)
{
potato_uart_reg_write(POTATO_CONSOLE_IRQ_EN, 0xff);
}

void potato_uart_irq_dis(void)
{
potato_uart_reg_write(POTATO_CONSOLE_IRQ_EN, 0x00);
}

int getchar(void)
{
while (potato_uart_rx_empty())

@ -1,6 +1,8 @@
#include <stddef.h>

void potato_uart_init(void);
void potato_uart_irq_en(void);
void potato_uart_irq_dis(void);
int getchar(void);
void putchar(unsigned char c);
void putstr(const char *str, unsigned long len);

@ -8,7 +8,7 @@ Steps:
$ rustup default nightly

$ rustup target add powerpc64le-unknown-linux-gnu
```

$ rustup component add rust-src

$ cargo install xargo

@ -43,6 +43,9 @@ entity pp_soc_uart is
txd : out std_logic;
rxd : in std_logic;

-- Interrupt signal:
irq : out std_logic;

-- Wishbone ports:
wb_adr_in : in std_logic_vector(11 downto 0);
wb_dat_in : in std_logic_vector( 7 downto 0);
@ -70,6 +73,10 @@ begin

wb_ack_out <= wb_ack and wb_cyc_in and wb_stb_in;

-- For the sim console, the transmit buffer is always empty, so always
-- interrupt if enabled. No recieve interrupt.
irq <= irq_tx_ready_enable;

wishbone: process(clk)
variable sim_tmp : std_logic_vector(63 downto 0);
begin

@ -12,6 +12,7 @@ use work.wishbone_types.all;

-- 0x00000000: Main memory (1 MB)
-- 0xc0002000: UART0 (for host communication)
-- 0xc0004000: XICS ICP
entity soc is
generic (
MEMORY_SIZE : positive;
@ -55,6 +56,13 @@ architecture behaviour of soc is
signal wb_uart0_out : wishbone_slave_out;
signal uart_dat8 : std_ulogic_vector(7 downto 0);

-- XICS0 signals:
signal wb_xics0_in : wishbone_master_out;
signal wb_xics0_out : wishbone_slave_out;
signal int_level_in : std_ulogic_vector(15 downto 0);

signal xics_to_execute1 : XicsToExecute1Type;

-- Main memory signals:
signal wb_bram_in : wishbone_master_out;
signal wb_bram_out : wishbone_slave_out;
@ -95,7 +103,8 @@ begin
dmi_din => dmi_dout,
dmi_wr => dmi_wr,
dmi_ack => dmi_core_ack,
dmi_req => dmi_core_req
dmi_req => dmi_core_req,
xics_in => xics_to_execute1
);

-- Wishbone bus master arbiter & mux
@ -122,6 +131,7 @@ begin
-- Selected slave
type slave_type is (SLAVE_UART_0,
SLAVE_MEMORY,
SLAVE_ICP_0,
SLAVE_NONE);
variable slave : slave_type;
begin
@ -133,6 +143,9 @@ begin
if wb_master_out.adr(23 downto 12) = x"002" then
slave := SLAVE_UART_0;
end if;
if wb_master_out.adr(23 downto 12) = x"004" then
slave := SLAVE_ICP_0;
end if;
end if;

-- Wishbone muxing. Defaults:
@ -140,6 +153,12 @@ begin
wb_bram_in.cyc <= '0';
wb_uart0_in <= wb_master_out;
wb_uart0_in.cyc <= '0';

-- Only give xics 8 bits of wb addr
wb_xics0_in <= wb_master_out;
wb_xics0_in.adr <= (others => '0');
wb_xics0_in.adr(7 downto 0) <= wb_master_out.adr(7 downto 0);
wb_xics0_in.cyc <= '0';
case slave is
when SLAVE_MEMORY =>
wb_bram_in.cyc <= wb_master_out.cyc;
@ -147,6 +166,9 @@ begin
when SLAVE_UART_0 =>
wb_uart0_in.cyc <= wb_master_out.cyc;
wb_master_in <= wb_uart0_out;
when SLAVE_ICP_0 =>
wb_xics0_in.cyc <= wb_master_out.cyc;
wb_master_in <= wb_xics0_out;
when others =>
wb_master_in.dat <= (others => '1');
wb_master_in.ack <= wb_master_out.stb and wb_master_out.cyc;
@ -170,6 +192,7 @@ begin
reset => rst,
txd => uart0_txd,
rxd => uart0_rxd,
irq => int_level_in(0),
wb_adr_in => wb_uart0_in.adr(11 downto 0),
wb_dat_in => wb_uart0_in.dat(7 downto 0),
wb_dat_out => uart_dat8,
@ -181,6 +204,19 @@ begin
wb_uart0_out.dat <= x"00000000000000" & uart_dat8;
wb_uart0_out.stall <= '0' when wb_uart0_in.cyc = '0' else not wb_uart0_out.ack;

xics0: entity work.xics
generic map(
LEVEL_NUM => 16
)
port map(
clk => system_clk,
rst => rst,
wb_in => wb_xics0_in,
wb_out => wb_xics0_out,
int_level_in => int_level_in,
e_out => xics_to_execute1
);

-- BRAM Memory slave
bram0: entity work.wishbone_bram_wrapper
generic map(

Binary file not shown.

@ -0,0 +1,3 @@
Test 0:PASS
Test 1:PASS
Test 2:PASS

@ -3,7 +3,7 @@
# Script to update console related tests from source
#

for i in sc illegal decrementer privileged ; do
for i in sc illegal decrementer xics privileged ; do
cd $i
make
cd -

@ -0,0 +1,5 @@
TEST=xics

include ../Makefile.test

xics.o : xics.h

@ -0,0 +1,186 @@
/* Copyright 2013-2014 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#define STACK_TOP 0x4000

/* Load an immediate 64-bit value into a register */
#define LOAD_IMM64(r, e) \
lis r,(e)@highest; \
ori r,r,(e)@higher; \
rldicr r,r, 32, 31; \
oris r,r, (e)@h; \
ori r,r, (e)@l;

.section ".head","ax"

/* Microwatt currently enters in LE mode at 0x0 */
. = 0
.global _start
_start:
LOAD_IMM64(%r12, 0x000000000ffffff)
mtdec %r12
LOAD_IMM64(%r12, 0x9000000000008003)
mtmsrd %r12 // EE on
/* setup stack */
LOAD_IMM64(%r1, STACK_TOP - 0x100)
LOAD_IMM64(%r12, main)
mtctr %r12
bctrl
attn // terminate on exit
b .

#define EXCEPTION(nr) \
.= nr ;\
b .

/* More exception stubs */
EXCEPTION(0x300)
EXCEPTION(0x380)
EXCEPTION(0x400)
EXCEPTION(0x480)
. = 0x500
b __isr

EXCEPTION(0x600)
EXCEPTION(0x700)
EXCEPTION(0x800)
EXCEPTION(0x900)
EXCEPTION(0x980)
EXCEPTION(0xa00)
EXCEPTION(0xb00)
EXCEPTION(0xc00)
EXCEPTION(0xd00)

// ISR data

#define REDZONE_SIZE (512)
#define REG_SAVE_SIZE ((32 + 5)*8)
#define STACK_FRAME_C_MINIMAL 64

#define SAVE_NIA (32*8)
#define SAVE_LR (33*8)
#define SAVE_CTR (34*8)
#define SAVE_CR (35*8)
#define SAVE_SRR1 (36*8)

__isr:
/*
* Assume where we are coming from has a stack and can save there.
* We save the full register set. Since we are calling out to C, we
* could just save the ABI volatile registers
*/
stdu %r1,-(REG_SAVE_SIZE+REDZONE_SIZE)(%r1)
std %r0, 1*8(%r1)
// std %r1, 1*8(%r1)
std %r2, 2*8(%r1)
std %r3, 3*8(%r1)
std %r4, 4*8(%r1)
std %r5, 5*8(%r1)
std %r6, 6*8(%r1)
std %r7, 7*8(%r1)
std %r8, 8*8(%r1)
std %r9, 9*8(%r1)
std %r10, 10*8(%r1)
std %r11, 11*8(%r1)
std %r12, 12*8(%r1)
std %r13, 13*8(%r1)
std %r14, 14*8(%r1)
std %r15, 15*8(%r1)
std %r16, 16*8(%r1)
std %r17, 17*8(%r1)
std %r18, 18*8(%r1)
std %r19, 19*8(%r1)
std %r20, 20*8(%r1)
std %r21, 21*8(%r1)
std %r22, 22*8(%r1)
std %r23, 23*8(%r1)
std %r24, 24*8(%r1)
std %r25, 25*8(%r1)
std %r26, 26*8(%r1)
std %r27, 27*8(%r1)
std %r28, 28*8(%r1)
std %r29, 29*8(%r1)
std %r30, 30*8(%r1)
std %r31, 31*8(%r1)
mfsrr0 %r0
std %r0, SAVE_NIA*8(%r1)
mflr %r0
std %r0, SAVE_LR*8(%r1)
mfctr %r0
std %r0, SAVE_CTR*8(%r1)
mfcr %r0
std %r0, SAVE_CR*8(%r1)
mfsrr1 %r0
std %r0, SAVE_SRR1*8(%r1)

stdu %r1,-STACK_FRAME_C_MINIMAL(%r1)
LOAD_IMM64(%r3, isr)
mtctr %r3,
bctrl
nop
ld %r1, 0(%r1)

ld %r0, 1*8(%r1)
// ld %r1, 1*8(%r1) // do this at rfid
ld %r2, 2*8(%r1)
// ld %r3, 3*8(%r1) // do this at rfid
ld %r4, 4*8(%r1)
ld %r5, 5*8(%r1)
ld %r6, 6*8(%r1)
ld %r7, 7*8(%r1)
ld %r8, 8*8(%r1)
ld %r9, 9*8(%r1)
ld %r10, 10*8(%r1)
ld %r11, 11*8(%r1)
ld %r12, 12*8(%r1)
ld %r13, 13*8(%r1)
ld %r14, 14*8(%r1)
ld %r15, 15*8(%r1)
ld %r16, 16*8(%r1)
ld %r17, 17*8(%r1)
ld %r18, 18*8(%r1)
ld %r19, 19*8(%r1)
ld %r20, 20*8(%r1)
ld %r21, 21*8(%r1)
ld %r22, 22*8(%r1)
ld %r23, 23*8(%r1)
ld %r24, 24*8(%r1)
ld %r25, 25*8(%r1)
ld %r26, 26*8(%r1)
ld %r27, 27*8(%r1)
ld %r28, 28*8(%r1)
ld %r29, 29*8(%r1)
ld %r30, 30*8(%r1)
ld %r31, 31*8(%r1)

ld %r3, SAVE_LR*8(%r1)
mtlr %r3
ld %r3, SAVE_CTR*8(%r1)
mtctr %r3
ld %r3, SAVE_CR*8(%r1)
mtcr %r3
ld %r3, SAVE_SRR1*8(%r1)
mtsrr1 %r3
ld %r3, SAVE_NIA*8(%r1)
mtsrr0 %r3

/* restore %r3 */
ld %r3, 3*8(%r1)

/* do final fixup r1 */
ld %r1, 0*8(%r1)

rfid

@ -0,0 +1,13 @@
SECTIONS
{
_start = .;
. = 0;
.head : {
KEEP(*(.head))
}
. = 0x1000;
.text : { *(.text) }
. = 0x3000;
.data : { *(.data) }
.bss : { *(.bss) }
}

@ -0,0 +1,262 @@
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#include <limits.h>

#include "console.h"
#include "xics.h"

#undef DEBUG
//#define DEBUG 1

void print_number(unsigned int i) // only for i = 0-999
{
unsigned int j, k, m;
bool zeros = false;

k = 1000000000;

for (m = 0; m < 10 ; m++) {
j = i/k;
if (m == 9) zeros = true;
if (zeros || (j != 0)) {
putchar(48 + j);
zeros = true;
}
i = i % k;
k = k / 10;
}
}

#ifdef DEBUG
#define DEBUG_STR "\r\nDEBUG: "
void debug_print(int i)
{
putstr(DEBUG_STR, strlen(DEBUG_STR));
print_number(i);
putstr("\r\n", 2);
}

#define debug_putstr(a, b) putstr(a,b)
#else
#define debug_putstr(a, b)
#define debug_print(i)
#endif

#define ASSERT_FAIL "() ASSERT_FAILURE!\r\n "
#define assert(cond) \
if (!(cond)) { \
putstr(__FILE__, strlen(__FILE__)); \
putstr(":", 1); \
print_number(__LINE__); \
putstr(":", 1); \
putstr(__FUNCTION__, strlen(__FUNCTION__));\
putstr(ASSERT_FAIL, strlen(ASSERT_FAIL)); \
__asm__ ("attn"); \
}


volatile uint64_t isrs_run;

#define ISR_IPI 0x0000000000000001
#define ISR_UART 0x0000000000000002
#define ISR_SPURIOUS 0x0000000000000004

#define IPI "IPI\r\n"
void ipi_isr(void) {
debug_putstr(IPI, strlen(IPI));

isrs_run |= ISR_IPI;
}


#define UART "UART\r\n"
void uart_isr(void) {
debug_putstr(UART, strlen(UART));

potato_uart_irq_dis(); // disable interrupt to ack it

isrs_run |= ISR_UART;
}

// The hardware doesn't support this but it's part of XICS so add it.
#define SPURIOUS "SPURIOUS\r\n"
void spurious_isr(void) {
debug_putstr(SPURIOUS, strlen(SPURIOUS));

isrs_run |= ISR_SPURIOUS;
}

struct isr_op {
void (*func)(void);
int source_id;
};

struct isr_op isr_table[] = {
{ .func = ipi_isr, .source_id = 2 },
{ .func = uart_isr, .source_id = 16 },
{ .func = spurious_isr, .source_id = 0 },
{ .func = NULL, .source_id = 0 }
};

bool ipi_running;

#define ISR "ISR XISR="
void isr(void)
{
struct isr_op *op;
uint32_t xirr;

assert(!ipi_running); // check we aren't reentrant
ipi_running = true;

xirr = xics_read32(XICS_XIRR); // read hardware irq source

#ifdef DEBUG
putstr(ISR, strlen(ISR));
print_number(xirr & 0xff);
putstr("\r\n", 2);
#endif

op = isr_table;
while (1) {
assert(op->func); // didn't find isr
if (op->source_id == (xirr & 0x00ffffff)) {
op->func();
break;
}
op++;
}

xics_write32(XICS_XIRR, xirr); // EOI

ipi_running = false;
}

/*****************************************/

int xics_test_0(void)
{
// setup
xics_write8(XICS_XIRR, 0x00); // mask all interrupts
isrs_run = 0;

xics_write8(XICS_XIRR, 0x00); // mask all interrupts

// trigger two interrupts
potato_uart_irq_en(); // cause 0x500 interrupt
xics_write8(XICS_MFRR, 0x05); // cause 0x500 interrupt

// still masked, so shouldn't happen yet
assert(isrs_run == 0);

// unmask IPI only
xics_write8(XICS_XIRR, 0x40);
assert(isrs_run == ISR_IPI);

// unmask UART
xics_write8(XICS_XIRR, 0xc0);
assert(isrs_run == (ISR_IPI | ISR_UART));

// cleanup
xics_write8(XICS_XIRR, 0x00); // mask all interrupts
isrs_run = 0;

return 0;
}

int xics_test_1(void)
{
// setup
xics_write8(XICS_XIRR, 0x00); // mask all interrupts
isrs_run = 0;

xics_write8(XICS_XIRR, 0xff); // allow all interrupts

// should be none pending
assert(isrs_run == 0);

// trigger both
potato_uart_irq_en(); // cause 0x500 interrupt
xics_write8(XICS_MFRR, 0x05); // cause 0x500 interrupt

assert(isrs_run == (ISR_IPI | ISR_UART));

// cleanup
xics_write8(XICS_XIRR, 0x00); // mask all interrupts
isrs_run = 0;

return 0;
}

void mtmsrd(uint64_t val)
{
__asm__ volatile("mtmsrd %0" : : "r" (val));
}

int xics_test_2(void)
{
// setup
xics_write8(XICS_XIRR, 0x00); // mask all interrupts
isrs_run = 0;

// trigger interrupts with MSR[EE]=0 and show they are not run
mtmsrd(0x9000000000000003); // EE off

xics_write8(XICS_XIRR, 0xff); // allow all interrupts

// trigger an IPI
xics_write8(XICS_MFRR, 0x05); // cause 0x500 interrupt

assert(isrs_run == 0);

mtmsrd(0x9000000000008003); // EE on
assert(isrs_run == ISR_IPI);

// cleanup
xics_write8(XICS_XIRR, 0x00); // mask all interrupts
isrs_run = 0;

return 0;
}

#define TEST "Test "
#define PASS "PASS\r\n"
#define FAIL "FAIL\r\n"

int (*tests[])(void) = {
xics_test_0,
xics_test_1,
xics_test_2,
NULL
};

int main(void)
{
int fail = 0;
int i = 0;
int (*t)(void);

potato_uart_init();
ipi_running = false;

/* run the tests */
while (1) {
t = tests[i];
if (!t)
break;

putstr(TEST, strlen(TEST));
print_number(i);
putstr(": ", 1);
if (t() != 0) {
fail = 1;
putstr(FAIL, strlen(FAIL));
} else
putstr(PASS, strlen(PASS));

i++;
}

return fail;
}

@ -0,0 +1,36 @@
#include <stdint.h>

#define XICS_BASE 0xc0004000

static uint64_t xics_base = XICS_BASE;

#define XICS_XIRR_POLL 0x0
#define XICS_XIRR 0x4
#define XICS_RESV 0x8
#define XICS_MFRR 0xC

uint8_t xics_read8(int offset)
{
uint32_t val;

__asm__ volatile("lbzcix %0,%1,%2" : "=r" (val) : "b" (xics_base), "r" (offset));
return val;
}

void xics_write8(int offset, uint8_t val)
{
__asm__ volatile("stbcix %0,%1,%2" : : "r" (val), "b" (xics_base), "r" (offset));
}

uint32_t xics_read32(int offset)
{
uint32_t val;

__asm__ volatile("lwzcix %0,%1,%2" : "=r" (val) : "b" (xics_base), "r" (offset));
return val;
}

void xics_write32(int offset, uint32_t val)
{
__asm__ volatile("stwcix %0,%1,%2" : : "r" (val), "b" (xics_base), "r" (offset));
}

@ -0,0 +1,207 @@
--
-- This is a simple XICS compliant interrupt controller. This is a
-- Presenter (ICP) and Source (ICS) in a single unit with no routing
-- layer.
--
-- The sources have a fixed IRQ priority set by HW_PRIORITY. The
-- source id starts at 16 for int_level_in(0) and go up from
-- there (ie int_level_in(1) is source id 17).
--
-- The presentation layer will pick an interupt that is more
-- favourable than the current CPPR and present it via the XISR and
-- send an interrpt to the processor (via e_out). This may not be the
-- highest priority interrupt currently presented (which is allowed
-- via XICS)
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

library work;
use work.common.all;
use work.wishbone_types.all;

entity xics is
generic (
LEVEL_NUM : positive := 16
);
port (
clk : in std_logic;
rst : in std_logic;

wb_in : in wishbone_master_out;
wb_out : out wishbone_slave_out;

int_level_in : in std_ulogic_vector(LEVEL_NUM - 1 downto 0);

e_out : out XicsToExecute1Type
);
end xics;

architecture behaviour of xics is
type reg_internal_t is record
xisr : std_ulogic_vector(23 downto 0);
cppr : std_ulogic_vector(7 downto 0);
pending_priority : std_ulogic_vector(7 downto 0);
mfrr : std_ulogic_vector(7 downto 0);
mfrr_pending : std_ulogic;
irq : std_ulogic;
wb_rd_data : wishbone_data_type;
wb_ack : std_ulogic;
end record;
constant reg_internal_init : reg_internal_t :=
(wb_ack => '0',
mfrr_pending => '0',
mfrr => x"00", -- mask everything on reset
irq => '0',
others => (others => '0'));

signal r, r_next : reg_internal_t;

-- hardwire the hardware IRQ priority
constant HW_PRIORITY : std_ulogic_vector(7 downto 0) := x"80";

-- 32 bit offsets for each presentation
constant XIRR_POLL : std_ulogic_vector(31 downto 0) := x"00000000";
constant XIRR : std_ulogic_vector(31 downto 0) := x"00000004";
constant RESV0 : std_ulogic_vector(31 downto 0) := x"00000008";
constant MFRR : std_ulogic_vector(31 downto 0) := x"0000000c";

begin

regs : process(clk)
begin
if rising_edge(clk) then
r <= r_next;
end if;
end process;

wb_out.dat <= r.wb_rd_data;
wb_out.ack <= r.wb_ack;
wb_out.stall <= '0'; -- never stall wishbone
e_out.irq <= r.irq;

comb : process(all)
variable v : reg_internal_t;
variable xirr_accept_rd : std_ulogic;
variable irq_eoi : std_ulogic;
begin
v := r;

v.wb_ack := '0';

xirr_accept_rd := '0';
irq_eoi := '0';

if wb_in.cyc = '1' and wb_in.stb = '1' then
-- wishbone addresses we get are 64 bit alligned, so we
-- need to use the sel bits to get 32 bit chunks.
v.wb_ack := '1'; -- always ack
if wb_in.we = '1' then -- write
-- writes to both XIRR are the same
if wb_in.adr = XIRR_POLL then
report "XICS XIRR_POLL/XIRR write";
if wb_in.sel = x"0f" then -- 4 bytes
v.cppr := wb_in.dat(31 downto 24);
elsif wb_in.sel = x"f0" then -- 4 byte
v.cppr := wb_in.dat(63 downto 56);
irq_eoi := '1';
elsif wb_in.sel = x"01" then -- 1 byte
v.cppr := wb_in.dat(7 downto 0);
elsif wb_in.sel = x"10" then -- 1 byte
v.cppr := wb_in.dat(39 downto 32);
end if;

elsif wb_in.adr = RESV0 then
report "XICS MFRR write";
if wb_in.sel = x"f0" then -- 4 bytes
v.mfrr_pending := '1';
v.mfrr := wb_in.dat(63 downto 56);
elsif wb_in.sel = x"10" then -- 1 byte
v.mfrr_pending := '1';
v.mfrr := wb_in.dat(39 downto 32);
end if;

end if;

else -- read
v.wb_rd_data := (others => '0');

if wb_in.adr = XIRR_POLL then
report "XICS XIRR_POLL/XIRR read";
if wb_in.sel = x"0f" then
v.wb_rd_data(23 downto 0) := r.xisr;
v.wb_rd_data(31 downto 24) := r.cppr;
elsif wb_in.sel = x"f0" then
v.wb_rd_data(55 downto 32) := r.xisr;
v.wb_rd_data(63 downto 56) := r.cppr;
xirr_accept_rd := '1';
elsif wb_in.sel = x"01" then
v.wb_rd_data(7 downto 0) := r.cppr;
elsif wb_in.sel = x"10" then
v.wb_rd_data(39 downto 32) := r.cppr;
end if;

elsif wb_in.adr = RESV0 then
report "XICS MFRR read";
if wb_in.sel = x"f0" then -- 4 bytes
v.wb_rd_data(63 downto 56) := r.mfrr;
elsif wb_in.sel = x"10" then -- 1 byte
v.wb_rd_data( 7 downto 0) := r.mfrr;
end if;
end if;
end if;
end if;

-- generate interrupt
if r.irq = '0' then
-- Here we just present any interrupt that's valid and
-- below cppr. For ordering, we ignore hardware
-- priorities.
if unsigned(HW_PRIORITY) < unsigned(r.cppr) then --
-- lower HW sources are higher priority
for i in LEVEL_NUM - 1 downto 0 loop
if int_level_in(i) = '1' then
v.irq := '1';
v.xisr := std_ulogic_vector(to_unsigned(16 + i, 24));
v.pending_priority := HW_PRIORITY; -- hardware HW IRQs
end if;
end loop;
end if;

-- Do mfrr as a higher priority so mfrr_pending is cleared
if unsigned(r.mfrr) < unsigned(r.cppr) then --
report "XICS: MFRR INTERRUPT";
-- IPI
if r.mfrr_pending = '1' then
v.irq := '1';
v.xisr := x"000002"; -- special XICS MFRR IRQ source number
v.pending_priority := r.mfrr;
v.mfrr_pending := '0';
end if;
end if;
end if;

-- Accept the interrupt
if xirr_accept_rd = '1' then
report "XICS: ACCEPT" &
" cppr:" & to_hstring(r.cppr) &
" xisr:" & to_hstring(r.xisr) &
" mfrr:" & to_hstring(r.mfrr);
v.cppr := r.pending_priority;
end if;

if irq_eoi = '1' then
v.irq := '0';
end if;

if rst = '1' then
v := reg_internal_init;
end if;

r_next <= v;

end process;

end architecture behaviour;
Loading…
Cancel
Save