multiply: Move selection of result bits into execute1

This puts the logic that selects which bits of the multiplier result
get written into the destination GPR into execute1, moved out from
multiply.

The multiplier is now expected to do an unsigned multiplication of
64-bit operands, optionally negate the result, detect 32-bit
or 64-bit signed overflow of the result, and return a full 128-bit
result.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
pull/208/head
Paul Mackerras 5 years ago
parent f80da65799
commit 9880fc7435

@ -158,13 +158,13 @@ package common is

type Execute1ToMultiplyType is record
valid: std_ulogic;
insn_type: insn_type_t;
data1: std_ulogic_vector(64 downto 0);
data2: std_ulogic_vector(64 downto 0);
data1: std_ulogic_vector(63 downto 0);
data2: std_ulogic_vector(63 downto 0);
is_32bit: std_ulogic;
neg_result: std_ulogic;
end record;
constant Execute1ToMultiplyInit : Execute1ToMultiplyType := (valid => '0', insn_type => OP_ILLEGAL,
is_32bit => '0',
constant Execute1ToMultiplyInit : Execute1ToMultiplyType := (valid => '0',
is_32bit => '0', neg_result => '0',
others => (others => '0'));

type Execute1ToDividerType is record
@ -356,7 +356,7 @@ package common is

type MultiplyToExecute1Type is record
valid: std_ulogic;
write_reg_data: std_ulogic_vector(63 downto 0);
result: std_ulogic_vector(127 downto 0);
overflow : std_ulogic;
end record;
constant MultiplyToExecute1Init : MultiplyToExecute1Type := (valid => '0', overflow => '0',

@ -53,6 +53,7 @@ architecture behaviour of execute1 is
mul_in_progress : std_ulogic;
div_in_progress : std_ulogic;
cntz_in_progress : std_ulogic;
slow_op_insn : insn_type_t;
slow_op_dest : gpr_index_t;
slow_op_rc : std_ulogic;
slow_op_oe : std_ulogic;
@ -63,7 +64,7 @@ architecture behaviour of execute1 is
constant reg_type_init : reg_type :=
(e => Execute1ToWritebackInit, lr_update => '0',
mul_in_progress => '0', div_in_progress => '0', cntz_in_progress => '0',
slow_op_rc => '0', slow_op_oe => '0', slow_op_xerc => xerc_init,
slow_op_insn => OP_ILLEGAL, slow_op_rc => '0', slow_op_oe => '0', slow_op_xerc => xerc_init,
next_lr => (others => '0'), ldst_nia => (others => '0'), others => (others => '0'));

signal r, rin : reg_type;
@ -346,32 +347,7 @@ begin
v.div_in_progress := '0';
v.cntz_in_progress := '0';

-- signals to multiply unit
x_to_multiply <= Execute1ToMultiplyInit;
x_to_multiply.insn_type <= e_in.insn_type;
x_to_multiply.is_32bit <= e_in.is_32bit;

if e_in.is_32bit = '1' then
if e_in.is_signed = '1' then
x_to_multiply.data1 <= (others => a_in(31));
x_to_multiply.data1(31 downto 0) <= a_in(31 downto 0);
x_to_multiply.data2 <= (others => b_in(31));
x_to_multiply.data2(31 downto 0) <= b_in(31 downto 0);
else
x_to_multiply.data1 <= '0' & x"00000000" & a_in(31 downto 0);
x_to_multiply.data2 <= '0' & x"00000000" & b_in(31 downto 0);
end if;
else
if e_in.is_signed = '1' then
x_to_multiply.data1 <= a_in(63) & a_in;
x_to_multiply.data2 <= b_in(63) & b_in;
else
x_to_multiply.data1 <= '0' & a_in;
x_to_multiply.data2 <= '0' & b_in;
end if;
end if;

-- signals to divide unit
-- signals to multiply and divide units
sign1 := '0';
sign2 := '0';
if e_in.is_signed = '1' then
@ -395,15 +371,22 @@ begin
abs2 := - signed(b_in);
end if;

x_to_multiply <= Execute1ToMultiplyInit;
x_to_multiply.is_32bit <= e_in.is_32bit;

x_to_divider <= Execute1ToDividerInit;
x_to_divider.is_signed <= e_in.is_signed;
x_to_divider.is_32bit <= e_in.is_32bit;
if e_in.insn_type = OP_MOD then
x_to_divider.is_modulus <= '1';
end if;

x_to_multiply.neg_result <= sign1 xor sign2;
x_to_divider.neg_result <= sign1 xor (sign2 and not x_to_divider.is_modulus);
if e_in.is_32bit = '0' then
-- 64-bit forms
x_to_multiply.data1 <= std_ulogic_vector(abs1);
x_to_multiply.data2 <= std_ulogic_vector(abs2);
if e_in.insn_type = OP_DIVE then
x_to_divider.is_extended <= '1';
end if;
@ -411,6 +394,8 @@ begin
x_to_divider.divisor <= std_ulogic_vector(abs2);
else
-- 32-bit forms
x_to_multiply.data1 <= x"00000000" & std_ulogic_vector(abs1(31 downto 0));
x_to_multiply.data2 <= x"00000000" & std_ulogic_vector(abs2(31 downto 0));
x_to_divider.is_extended <= '0';
if e_in.insn_type = OP_DIVE then -- extended forms
x_to_divider.dividend <= std_ulogic_vector(abs1(31 downto 0)) & x"00000000";
@ -505,6 +490,7 @@ begin

v.e.valid := '1';
v.e.write_reg := e_in.write_reg;
v.slow_op_insn := e_in.insn_type;
v.slow_op_dest := gspr_to_gpr(e_in.write_reg);
v.slow_op_rc := e_in.rc;
v.slow_op_oe := e_in.oe;
@ -950,8 +936,18 @@ begin
if (r.mul_in_progress = '1' and multiply_to_x.valid = '1') or
(r.div_in_progress = '1' and divider_to_x.valid = '1') then
if r.mul_in_progress = '1' then
result := multiply_to_x.write_reg_data;
overflow := multiply_to_x.overflow;
overflow := '0';
case r.slow_op_insn is
when OP_MUL_H32 =>
result := multiply_to_x.result(63 downto 32) &
multiply_to_x.result(63 downto 32);
when OP_MUL_H64 =>
result := multiply_to_x.result(127 downto 64);
when others =>
-- i.e. OP_MUL_L64
result := multiply_to_x.result(63 downto 0);
overflow := multiply_to_x.overflow;
end case;
else
result := divider_to_x.write_reg_data;
overflow := divider_to_x.overflow;

@ -4,11 +4,10 @@ use ieee.numeric_std.all;

library work;
use work.common.all;
use work.decode_types.all;

entity multiply is
generic (
PIPELINE_DEPTH : natural := 16
PIPELINE_DEPTH : natural := 4
);
port (
clk : in std_logic;
@ -19,17 +18,16 @@ entity multiply is
end entity multiply;

architecture behaviour of multiply is
signal m: Execute1ToMultiplyType;
signal m: Execute1ToMultiplyType := Execute1ToMultiplyInit;

type multiply_pipeline_stage is record
valid : std_ulogic;
insn_type : insn_type_t;
data : signed(129 downto 0);
data : unsigned(127 downto 0);
is_32bit : std_ulogic;
neg_res : std_ulogic;
end record;
constant MultiplyPipelineStageInit : multiply_pipeline_stage := (valid => '0',
insn_type => OP_ILLEGAL,
is_32bit => '0',
is_32bit => '0', neg_res => '0',
data => (others => '0'));

type multiply_pipeline_type is array(0 to PIPELINE_DEPTH-1) of multiply_pipeline_stage;
@ -51,50 +49,35 @@ begin

multiply_1: process(all)
variable v : reg_type;
variable d : std_ulogic_vector(129 downto 0);
variable d : std_ulogic_vector(127 downto 0);
variable d2 : std_ulogic_vector(63 downto 0);
variable ov : std_ulogic;
begin
v := r;

m_out <= MultiplyToExecute1Init;

v.multiply_pipeline(0).valid := m.valid;
v.multiply_pipeline(0).insn_type := m.insn_type;
v.multiply_pipeline(0).data := signed(m.data1) * signed(m.data2);
v.multiply_pipeline(0).data := unsigned(m.data1) * unsigned(m.data2);
v.multiply_pipeline(0).is_32bit := m.is_32bit;
v.multiply_pipeline(0).neg_res := m.neg_result;

loop_0: for i in 1 to PIPELINE_DEPTH-1 loop
v.multiply_pipeline(i) := r.multiply_pipeline(i-1);
end loop;

d := std_ulogic_vector(v.multiply_pipeline(PIPELINE_DEPTH-1).data);
ov := '0';
if v.multiply_pipeline(PIPELINE_DEPTH-1).neg_res = '0' then
d := std_ulogic_vector(v.multiply_pipeline(PIPELINE_DEPTH-1).data);
else
d := std_ulogic_vector(- signed(v.multiply_pipeline(PIPELINE_DEPTH-1).data));
end if;

-- TODO: Handle overflows
case_0: case v.multiply_pipeline(PIPELINE_DEPTH-1).insn_type is
when OP_MUL_L64 =>
d2 := d(63 downto 0);
if v.multiply_pipeline(PIPELINE_DEPTH-1).is_32bit = '1' then
ov := (or d(63 downto 31)) and not (and d(63 downto 31));
else
ov := (or d(127 downto 63)) and not (and d(127 downto 63));
end if;
when OP_MUL_H32 =>
d2 := d(63 downto 32) & d(63 downto 32);
when OP_MUL_H64 =>
d2 := d(127 downto 64);
when others =>
--report "Illegal insn type in multiplier";
d2 := (others => '0');
end case;
ov := '0';
if v.multiply_pipeline(PIPELINE_DEPTH-1).is_32bit = '1' then
ov := (or d(63 downto 31)) and not (and d(63 downto 31));
else
ov := (or d(127 downto 63)) and not (and d(127 downto 63));
end if;

m_out.write_reg_data <= d2;
m_out.result <= d;
m_out.overflow <= ov;

if v.multiply_pipeline(PIPELINE_DEPTH-1).valid = '1' then
m_out.valid <= '1';
end if;
m_out.valid <= v.multiply_pipeline(PIPELINE_DEPTH-1).valid;

rin <= v;
end process;

@ -17,8 +17,18 @@ architecture behave of multiply_tb is

constant pipeline_depth : integer := 4;

signal m1 : Execute1ToMultiplyType;
signal m1 : Execute1ToMultiplyType := Execute1ToMultiplyInit;
signal m2 : MultiplyToExecute1Type;

function absval(x: std_ulogic_vector) return std_ulogic_vector is
begin
if x(x'left) = '1' then
return std_ulogic_vector(- signed(x));
else
return x;
end if;
end;

begin
multiply_0: entity work.multiply
generic map (PIPELINE_DEPTH => pipeline_depth)
@ -39,9 +49,8 @@ begin
wait for clk_period;

m1.valid <= '1';
m1.insn_type <= OP_MUL_L64;
m1.data1 <= '0' & x"0000000000001000";
m1.data2 <= '0' & x"0000000000001111";
m1.data1 <= x"0000000000001000";
m1.data2 <= x"0000000000001111";

wait for clk_period;
assert m2.valid = '0';
@ -56,7 +65,7 @@ begin

wait for clk_period;
assert m2.valid = '1';
assert m2.write_reg_data = x"0000000001111000";
assert m2.result = x"00000000000000000000000001111000";

wait for clk_period;
assert m2.valid = '0';
@ -70,7 +79,7 @@ begin

wait for clk_period * (pipeline_depth-1);
assert m2.valid = '1';
assert m2.write_reg_data = x"0000000001111000";
assert m2.result = x"00000000000000000000000001111000";

-- test mulld
mulld_loop : for i in 0 to 1000 loop
@ -79,10 +88,10 @@ begin

behave_rt := ppc_mulld(ra, rb);

m1.data1 <= '0' & ra;
m1.data2 <= '0' & rb;
m1.data1 <= absval(ra);
m1.data2 <= absval(rb);
m1.neg_result <= ra(63) xor rb(63);
m1.valid <= '1';
m1.insn_type <= OP_MUL_L64;

wait for clk_period;

@ -92,8 +101,8 @@ begin

assert m2.valid = '1';

assert to_hstring(behave_rt) = to_hstring(m2.write_reg_data)
report "bad mulld expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.write_reg_data);
assert to_hstring(behave_rt) = to_hstring(m2.result(63 downto 0))
report "bad mulld expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.result(63 downto 0));
end loop;

-- test mulhdu
@ -103,10 +112,10 @@ begin

behave_rt := ppc_mulhdu(ra, rb);

m1.data1 <= '0' & ra;
m1.data2 <= '0' & rb;
m1.data1 <= ra;
m1.data2 <= rb;
m1.neg_result <= '0';
m1.valid <= '1';
m1.insn_type <= OP_MUL_H64;

wait for clk_period;

@ -116,8 +125,8 @@ begin

assert m2.valid = '1';

assert to_hstring(behave_rt) = to_hstring(m2.write_reg_data)
report "bad mulhdu expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.write_reg_data);
assert to_hstring(behave_rt) = to_hstring(m2.result(127 downto 64))
report "bad mulhdu expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.result(127 downto 64));
end loop;

-- test mulhd
@ -127,10 +136,10 @@ begin

behave_rt := ppc_mulhd(ra, rb);

m1.data1 <= ra(63) & ra;
m1.data2 <= rb(63) & rb;
m1.data1 <= absval(ra);
m1.data2 <= absval(rb);
m1.neg_result <= ra(63) xor rb(63);
m1.valid <= '1';
m1.insn_type <= OP_MUL_H64;

wait for clk_period;

@ -140,8 +149,8 @@ begin

assert m2.valid = '1';

assert to_hstring(behave_rt) = to_hstring(m2.write_reg_data)
report "bad mulhd expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.write_reg_data);
assert to_hstring(behave_rt) = to_hstring(m2.result(127 downto 64))
report "bad mulhd expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.result(127 downto 64));
end loop;

-- test mullw
@ -151,12 +160,12 @@ begin

behave_rt := ppc_mullw(ra, rb);

m1.data1 <= (others => ra(31));
m1.data1(31 downto 0) <= ra(31 downto 0);
m1.data2 <= (others => rb(31));
m1.data2(31 downto 0) <= rb(31 downto 0);
m1.data1 <= (others => '0');
m1.data1(31 downto 0) <= absval(ra(31 downto 0));
m1.data2 <= (others => '0');
m1.data2(31 downto 0) <= absval(rb(31 downto 0));
m1.neg_result <= ra(31) xor rb(31);
m1.valid <= '1';
m1.insn_type <= OP_MUL_L64;

wait for clk_period;

@ -166,8 +175,8 @@ begin

assert m2.valid = '1';

assert to_hstring(behave_rt) = to_hstring(m2.write_reg_data)
report "bad mullw expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.write_reg_data);
assert to_hstring(behave_rt) = to_hstring(m2.result(63 downto 0))
report "bad mullw expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.result(63 downto 0));
end loop;

-- test mulhw
@ -177,12 +186,12 @@ begin

behave_rt := ppc_mulhw(ra, rb);

m1.data1 <= (others => ra(31));
m1.data1(31 downto 0) <= ra(31 downto 0);
m1.data2 <= (others => rb(31));
m1.data2(31 downto 0) <= rb(31 downto 0);
m1.data1 <= (others => '0');
m1.data1(31 downto 0) <= absval(ra(31 downto 0));
m1.data2 <= (others => '0');
m1.data2(31 downto 0) <= absval(rb(31 downto 0));
m1.neg_result <= ra(31) xor rb(31);
m1.valid <= '1';
m1.insn_type <= OP_MUL_H32;

wait for clk_period;

@ -192,8 +201,9 @@ begin

assert m2.valid = '1';

assert to_hstring(behave_rt) = to_hstring(m2.write_reg_data)
report "bad mulhw expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.write_reg_data);
assert to_hstring(behave_rt) = to_hstring(m2.result(63 downto 32) & m2.result(63 downto 32))
report "bad mulhw expected " & to_hstring(behave_rt) & " got " &
to_hstring(m2.result(63 downto 32) & m2.result(63 downto 32));
end loop;

-- test mulhwu
@ -207,8 +217,8 @@ begin
m1.data1(31 downto 0) <= ra(31 downto 0);
m1.data2 <= (others => '0');
m1.data2(31 downto 0) <= rb(31 downto 0);
m1.neg_result <= '0';
m1.valid <= '1';
m1.insn_type <= OP_MUL_H32;

wait for clk_period;

@ -218,8 +228,9 @@ begin

assert m2.valid = '1';

assert to_hstring(behave_rt) = to_hstring(m2.write_reg_data)
report "bad mulhwu expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.write_reg_data);
assert to_hstring(behave_rt) = to_hstring(m2.result(63 downto 32) & m2.result(63 downto 32))
report "bad mulhwu expected " & to_hstring(behave_rt) & " got " &
to_hstring(m2.result(63 downto 32) & m2.result(63 downto 32));
end loop;

-- test mulli
@ -229,11 +240,11 @@ begin

behave_rt := ppc_mulli(ra, si);

m1.data1 <= ra(63) & ra;
m1.data2 <= (others => si(15));
m1.data2(15 downto 0) <= si;
m1.data1 <= absval(ra);
m1.data2 <= (others => '0');
m1.data2(15 downto 0) <= absval(si);
m1.neg_result <= ra(63) xor si(15);
m1.valid <= '1';
m1.insn_type <= OP_MUL_L64;

wait for clk_period;

@ -243,8 +254,8 @@ begin

assert m2.valid = '1';

assert to_hstring(behave_rt) = to_hstring(m2.write_reg_data)
report "bad mulli expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.write_reg_data);
assert to_hstring(behave_rt) = to_hstring(m2.result(63 downto 0))
report "bad mulli expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.result(63 downto 0));
end loop;

std.env.finish;

Loading…
Cancel
Save