You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174378b190
This makes the BRAMs use an output buffer, introducing an extra cycle latency. Without this, Vivado won't make timing at 100Mhz. We stash all the necessary response data in delayed latches, the extra cycle is NOT a state in the state machine, thus it's fully pipelined and doesn't involve stalling. This introduces an extra non-pipelined cycle for loads with update to avoid collision on the writeback output between the now delayed load data and the register update. We could avoid it by moving the register update in the pipeline bubble created by the extra update state, but it's a bit trickier, so I leave that for a latter optimization. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> |
5 years ago | |
---|---|---|
fpga | 5 years ago | |
hello_world | ||
media | ||
scripts | 5 years ago | |
sim-unisim | ||
tests | ||
.gitignore | ||
.travis.yml | ||
LICENSE | ||
Makefile | 5 years ago | |
README.md | 5 years ago | |
cache_ram.vhdl | 5 years ago | |
common.vhdl | 5 years ago | |
control.vhdl | 5 years ago | |
core.vhdl | 5 years ago | |
core_debug.vhdl | ||
core_tb.vhdl | ||
countzero.vhdl | 5 years ago | |
countzero_tb.vhdl | 5 years ago | |
cr_file.vhdl | ||
cr_hazard.vhdl | 5 years ago | |
crhelpers.vhdl | 5 years ago | |
dcache.vhdl | 5 years ago | |
decode1.vhdl | 5 years ago | |
decode2.vhdl | 5 years ago | |
decode_types.vhdl | 5 years ago | |
divider.vhdl | 5 years ago | |
divider_tb.vhdl | 5 years ago | |
dmi_dtm_dummy.vhdl | ||
dmi_dtm_tb.vhdl | ||
dmi_dtm_xilinx.vhdl | ||
execute1.vhdl | 5 years ago | |
fetch1.vhdl | ||
fetch2.vhdl | ||
glibc_random.vhdl | ||
glibc_random_helpers.vhdl | ||
gpr_hazard.vhdl | 5 years ago | |
helpers.vhdl | ||
icache.vhdl | 5 years ago | |
icache_tb.vhdl | 5 years ago | |
icache_test.bin | 5 years ago | |
insn_helpers.vhdl | ||
loadstore1.vhdl | 5 years ago | |
logical.vhdl | ||
microwatt.core | 5 years ago | |
multiply.vhdl | 5 years ago | |
multiply_tb.vhdl | 5 years ago | |
plru.vhdl | 5 years ago | |
plru_tb.vhdl | ||
ppc_fx_insns.vhdl | ||
register_file.vhdl | 5 years ago | |
rotator.vhdl | ||
rotator_tb.vhdl | ||
sim_console.vhdl | ||
sim_console_c.c | ||
sim_jtag.vhdl | ||
sim_jtag_socket.vhdl | ||
sim_jtag_socket_c.c | ||
sim_uart.vhdl | ||
simple_ram_behavioural.vhdl | ||
simple_ram_behavioural_helpers.vhdl | ||
simple_ram_behavioural_helpers_c.c | ||
simple_ram_behavioural_tb.bin | ||
simple_ram_behavioural_tb.vhdl | ||
soc.vhdl | ||
wishbone_arbiter.vhdl | ||
wishbone_debug_master.vhdl | 5 years ago | |
wishbone_types.vhdl | 5 years ago | |
writeback.vhdl | 5 years ago |
README.md
Microwatt
A tiny Open POWER ISA softcore written in VHDL 2008. It aims to be simple and easy to understand.
Simulation using ghdl
You can try out Microwatt/Micropython without hardware by using the ghdl simulator. If you want to build directly for a hardware target board, see below.
- Build micropython. If you aren't building on a ppc64le box you will need a cross compiler. If it isn't available on your distro grab the powerpc64le-power8 toolchain from https://toolchains.bootlin.com
git clone https://github.com/mikey/micropython
cd micropython
git checkout powerpc
cd ports/powerpc
make -j$(nproc)
cd ../../../
- Microwatt uses ghdl for simulation. Either install this from your distro or build it. Next build microwatt:
git clone https://github.com/antonblanchard/microwatt
cd microwatt
make
- Link in the micropython image:
ln -s ../micropython/ports/powerpc/build/firmware.bin simple_ram_behavioural.bin
- Now run microwatt, sending debug output to /dev/null:
./core_tb > /dev/null
Synthesis on Xilinx FPGAs using Vivado
-
Install Vivado (I'm using the free 2019.1 webpack edition).
-
Setup Vivado paths:
source /opt/Xilinx/Vivado/2019.1/settings64.sh
- Install FuseSoC:
pip3 install --user -U fusesoc
- Create a working directory and point FuseSoC at microwatt:
mkdir microwatt-fusesoc
cd microwatt-fusesoc
fusesoc library add microwatt /path/to/microwatt/
- Build using FuseSoC. For hello world (Replace nexys_video with your FPGA board such as --target=arty_a7-100):
fusesoc run --target=nexys_video microwatt --memory_size=8192 --ram_init_file=/path/to/microwatt/fpga/hello_world.hex
You should then be able to see output via the serial port of the board (/dev/ttyUSB1, 115200 for example assuming standard clock speeds). There is a know bug where initial output may not be sent - try the reset (not programming button on your board if you don't see anything.
- To build micropython (currently requires 1MB of BRAM eg an Artix-7 A200):
fusesoc run --target=nexys_video microwatt
Testing
- A simple test suite containing random execution test cases and a couple of micropython test cases can be run with:
make -j$(nproc) check
Issues
This is functional, but very simple. We still have quite a lot to do:
- There are a few instructions still to be implemented
- Need to add caches and bypassing (in progress)
- Need to add supervisor state (in progress)