You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
microwatt/decode2.vhdl

589 lines
21 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.decode_types.all;
use work.common.all;
use work.helpers.all;
use work.insn_helpers.all;
entity decode2 is
generic (
EX1_BYPASS : boolean := true;
HAS_FPU : boolean := true;
-- Non-zero to enable log data collection
LOG_LENGTH : natural := 0
);
port (
clk : in std_ulogic;
rst : in std_ulogic;
complete_in : in instr_tag_t;
busy_in : in std_ulogic;
stall_out : out std_ulogic;
stopped_out : out std_ulogic;
flush_in: in std_ulogic;
d_in : in Decode1ToDecode2Type;
e_out : out Decode2ToExecute1Type;
r_in : in RegisterFileToDecode2Type;
r_out : out Decode2ToRegisterFileType;
c_in : in CrFileToDecode2Type;
c_out : out Decode2ToCrFileType;
execute_bypass : in bypass_data_t;
execute_cr_bypass : in cr_bypass_data_t;
log_out : out std_ulogic_vector(9 downto 0)
);
end entity decode2;
architecture behaviour of decode2 is
type reg_type is record
e : Decode2ToExecute1Type;
repeat : std_ulogic;
end record;
signal r, rin : reg_type;
signal deferred : std_ulogic;
type decode_input_reg_t is record
reg_valid : std_ulogic;
reg : gspr_index_t;
data : std_ulogic_vector(63 downto 0);
end record;
type decode_output_reg_t is record
reg_valid : std_ulogic;
reg : gspr_index_t;
end record;
function decode_input_reg_a (t : input_reg_a_t; insn_in : std_ulogic_vector(31 downto 0);
reg_data : std_ulogic_vector(63 downto 0);
ispr : gspr_index_t;
instr_addr : std_ulogic_vector(63 downto 0))
return decode_input_reg_t is
begin
if t = RA or (t = RA_OR_ZERO and insn_ra(insn_in) /= "00000") then
return ('1', gpr_to_gspr(insn_ra(insn_in)), reg_data);
elsif t = SPR then
-- ISPR must be either a valid fast SPR number or all 0 for a slow SPR.
-- If it's all 0, we don't treat it as a dependency as slow SPRs
-- operations are single issue.
--
assert is_fast_spr(ispr) = '1' or ispr = "0000000"
report "Decode A says SPR but ISPR is invalid:" &
to_hstring(ispr) severity failure;
return (is_fast_spr(ispr), ispr, reg_data);
elsif t = CIA then
return ('0', (others => '0'), instr_addr);
elsif HAS_FPU and t = FRA then
return ('1', fpr_to_gspr(insn_fra(insn_in)), reg_data);
else
return ('0', (others => '0'), (others => '0'));
end if;
end;
function decode_input_reg_b (t : input_reg_b_t; insn_in : std_ulogic_vector(31 downto 0);
reg_data : std_ulogic_vector(63 downto 0);
ispr : gspr_index_t) return decode_input_reg_t is
variable ret : decode_input_reg_t;
begin
case t is
when RB =>
ret := ('1', gpr_to_gspr(insn_rb(insn_in)), reg_data);
when FRB =>
if HAS_FPU then
ret := ('1', fpr_to_gspr(insn_frb(insn_in)), reg_data);
else
ret := ('0', (others => '0'), (others => '0'));
end if;
when CONST_UI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_ui(insn_in)), 64)));
when CONST_SI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)), 64)));
when CONST_SI_HI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)) & x"0000", 64)));
when CONST_UI_HI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_si(insn_in)) & x"0000", 64)));
when CONST_LI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_li(insn_in)) & "00", 64)));
when CONST_BD =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_bd(insn_in)) & "00", 64)));
when CONST_DS =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_ds(insn_in)) & "00", 64)));
when CONST_DQ =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_dq(insn_in)) & "0000", 64)));
when CONST_DXHI4 =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_dx(insn_in)) & x"0004", 64)));
when CONST_M1 =>
ret := ('0', (others => '0'), x"FFFFFFFFFFFFFFFF");
when CONST_SH =>
ret := ('0', (others => '0'), x"00000000000000" & "00" & insn_in(1) & insn_in(15 downto 11));
when CONST_SH32 =>
ret := ('0', (others => '0'), x"00000000000000" & "000" & insn_in(15 downto 11));
when SPR =>
-- ISPR must be either a valid fast SPR number or all 0 for a slow SPR.
-- If it's all 0, we don't treat it as a dependency as slow SPRs
-- operations are single issue.
assert is_fast_spr(ispr) = '1' or ispr = "0000000"
report "Decode B says SPR but ISPR is invalid:" &
to_hstring(ispr) severity failure;
ret := (is_fast_spr(ispr), ispr, reg_data);
when NONE =>
ret := ('0', (others => '0'), (others => '0'));
end case;
return ret;
end;
function decode_input_reg_c (t : input_reg_c_t; insn_in : std_ulogic_vector(31 downto 0);
reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is
begin
case t is
when RS =>
return ('1', gpr_to_gspr(insn_rs(insn_in)), reg_data);
when RCR =>
return ('1', gpr_to_gspr(insn_rcreg(insn_in)), reg_data);
when FRS =>
if HAS_FPU then
return ('1', fpr_to_gspr(insn_frt(insn_in)), reg_data);
else
return ('0', (others => '0'), (others => '0'));
end if;
when FRC =>
if HAS_FPU then
return ('1', fpr_to_gspr(insn_frc(insn_in)), reg_data);
else
return ('0', (others => '0'), (others => '0'));
end if;
when NONE =>
return ('0', (others => '0'), (others => '0'));
end case;
end;
function decode_output_reg (t : output_reg_a_t; insn_in : std_ulogic_vector(31 downto 0);
ispr : gspr_index_t) return decode_output_reg_t is
begin
case t is
when RT =>
return ('1', gpr_to_gspr(insn_rt(insn_in)));
when RA =>
return ('1', gpr_to_gspr(insn_ra(insn_in)));
when FRT =>
if HAS_FPU then
return ('1', fpr_to_gspr(insn_frt(insn_in)));
else
return ('0', "0000000");
end if;
when SPR =>
-- ISPR must be either a valid fast SPR number or all 0 for a slow SPR.
-- If it's all 0, we don't treat it as a dependency as slow SPRs
-- operations are single issue.
assert is_fast_spr(ispr) = '1' or ispr = "0000000"
report "Decode B says SPR but ISPR is invalid:" &
to_hstring(ispr) severity failure;
return (is_fast_spr(ispr), ispr);
when NONE =>
return ('0', "0000000");
end case;
end;
function decode_rc (t : rc_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic is
begin
case t is
when RC =>
return insn_rc(insn_in);
when ONE =>
return '1';
when NONE =>
return '0';
end case;
end;
-- control signals that are derived from insn_type
type mux_select_array_t is array(insn_type_t) of std_ulogic_vector(2 downto 0);
constant result_select : mux_select_array_t := (
OP_AND => "001", -- logical_result
OP_OR => "001",
OP_XOR => "001",
OP_PRTY => "001",
OP_CMPB => "001",
OP_EXTS => "001",
OP_BPERM => "001",
OP_BCD => "001",
OP_MTSPR => "001",
OP_RLC => "010", -- rotator_result
OP_RLCL => "010",
OP_RLCR => "010",
OP_SHL => "010",
OP_SHR => "010",
OP_EXTSWSLI => "010",
OP_MUL_L64 => "011", -- muldiv_result
OP_B => "110", -- next_nia
OP_BC => "110",
OP_BCREG => "110",
OP_ADDG6S => "111", -- misc_result
OP_ISEL => "111",
OP_DARN => "111",
OP_MFMSR => "111",
OP_MFCR => "111",
OP_SETB => "111",
others => "000" -- default to adder_result
);
constant subresult_select : mux_select_array_t := (
OP_MUL_L64 => "000", -- muldiv_result
OP_MUL_H64 => "001",
OP_MUL_H32 => "010",
OP_DIV => "011",
OP_DIVE => "011",
OP_MOD => "011",
OP_ADDG6S => "001", -- misc_result
OP_ISEL => "010",
OP_DARN => "011",
OP_MFMSR => "100",
OP_MFCR => "101",
OP_SETB => "110",
OP_CMP => "000", -- cr_result
OP_CMPRB => "001",
OP_CMPEQB => "010",
OP_CROP => "011",
OP_MCRXRX => "100",
OP_MTCRF => "101",
others => "000"
);
-- issue control signals
signal control_valid_in : std_ulogic;
signal control_valid_out : std_ulogic;
signal control_stall_out : std_ulogic;
signal control_sgl_pipe : std_logic;
signal gpr_write_valid : std_ulogic;
signal gpr_write : gspr_index_t;
signal gpr_a_read_valid : std_ulogic;
signal gpr_a_read : gspr_index_t;
signal gpr_a_bypass : std_ulogic;
signal gpr_b_read_valid : std_ulogic;
signal gpr_b_read : gspr_index_t;
signal gpr_b_bypass : std_ulogic;
signal gpr_c_read_valid : std_ulogic;
signal gpr_c_read : gspr_index_t;
signal gpr_c_bypass : std_ulogic;
signal cr_read_valid : std_ulogic;
signal cr_write_valid : std_ulogic;
signal cr_bypass : std_ulogic;
signal instr_tag : instr_tag_t;
begin
control_0: entity work.control
generic map (
EX1_BYPASS => EX1_BYPASS
)
port map (
clk => clk,
rst => rst,
complete_in => complete_in,
valid_in => control_valid_in,
repeated => r.repeat,
busy_in => busy_in,
deferred => deferred,
flush_in => flush_in,
sgl_pipe_in => control_sgl_pipe,
stop_mark_in => d_in.stop_mark,
gpr_write_valid_in => gpr_write_valid,
gpr_write_in => gpr_write,
gpr_a_read_valid_in => gpr_a_read_valid,
gpr_a_read_in => gpr_a_read,
gpr_b_read_valid_in => gpr_b_read_valid,
gpr_b_read_in => gpr_b_read,
gpr_c_read_valid_in => gpr_c_read_valid,
gpr_c_read_in => gpr_c_read,
execute_next_tag => execute_bypass.tag,
execute_next_cr_tag => execute_cr_bypass.tag,
cr_read_in => cr_read_valid,
cr_write_in => cr_write_valid,
cr_bypass => cr_bypass,
valid_out => control_valid_out,
stall_out => control_stall_out,
stopped_out => stopped_out,
gpr_bypass_a => gpr_a_bypass,
gpr_bypass_b => gpr_b_bypass,
gpr_bypass_c => gpr_c_bypass,
instr_tag_out => instr_tag
);
deferred <= r.e.valid and busy_in;
decode2_0: process(clk)
begin
if rising_edge(clk) then
if rst = '1' or flush_in = '1' or deferred = '0' then
if rin.e.valid = '1' then
report "execute " & to_hstring(rin.e.nia);
end if;
r <= rin;
end if;
end if;
end process;
c_out.read <= d_in.decode.input_cr;
decode2_1: process(all)
variable v : reg_type;
variable mul_a : std_ulogic_vector(63 downto 0);
variable mul_b : std_ulogic_vector(63 downto 0);
variable decoded_reg_a : decode_input_reg_t;
variable decoded_reg_b : decode_input_reg_t;
variable decoded_reg_c : decode_input_reg_t;
variable decoded_reg_o : decode_output_reg_t;
variable length : std_ulogic_vector(3 downto 0);
variable op : insn_type_t;
begin
v := r;
v.e := Decode2ToExecute1Init;
mul_a := (others => '0');
mul_b := (others => '0');
--v.e.input_cr := d_in.decode.input_cr;
v.e.output_cr := d_in.decode.output_cr;
-- Work out whether XER common bits are set
v.e.output_xer := d_in.decode.output_carry;
case d_in.decode.insn_type is
when OP_ADD | OP_MUL_L64 | OP_DIV | OP_DIVE =>
-- OE field is valid in OP_ADD/OP_MUL_L64 with major opcode 31 only
if d_in.insn(31 downto 26) = "011111" and insn_oe(d_in.insn) = '1' then
v.e.oe := '1';
v.e.output_xer := '1';
end if;
when OP_MTSPR =>
if decode_spr_num(d_in.insn) = SPR_XER then
v.e.output_xer := '1';
end if;
when others =>
end case;
decoded_reg_a := decode_input_reg_a (d_in.decode.input_reg_a, d_in.insn, r_in.read1_data, d_in.ispr1,
d_in.nia);
decoded_reg_b := decode_input_reg_b (d_in.decode.input_reg_b, d_in.insn, r_in.read2_data, d_in.ispr2);
decoded_reg_c := decode_input_reg_c (d_in.decode.input_reg_c, d_in.insn, r_in.read3_data);
decoded_reg_o := decode_output_reg (d_in.decode.output_reg_a, d_in.insn, d_in.ispro);
if d_in.decode.lr = '1' then
v.e.lr := insn_lk(d_in.insn);
-- b and bc have even major opcodes; bcreg is considered absolute
v.e.br_abs := insn_aa(d_in.insn) or d_in.insn(26);
end if;
op := d_in.decode.insn_type;
if d_in.decode.repeat /= NONE then
v.e.repeat := '1';
v.e.second := r.repeat;
case d_in.decode.repeat is
when DRSE =>
-- do RS|1,RS for LE; RS,RS|1 for BE
if r.repeat = d_in.big_endian then
decoded_reg_c.reg(0) := '1';
end if;
when DRTE =>
-- do RT|1,RT for LE; RT,RT|1 for BE
if r.repeat = d_in.big_endian then
decoded_reg_o.reg(0) := '1';
end if;
when DUPD =>
-- update-form loads, 2nd instruction writes RA
if r.repeat = '1' then
decoded_reg_o.reg := decoded_reg_a.reg;
end if;
when others =>
end case;
elsif v.e.lr = '1' and decoded_reg_a.reg_valid = '1' then
-- bcl/bclrl/bctarl that needs to write both CTR and LR has to be doubled
v.e.repeat := '1';
v.e.second := r.repeat;
-- first one does CTR, second does LR
decoded_reg_o.reg(0) := not r.repeat;
end if;
v.e.spr_select := d_in.spr_info;
r_out.read1_enable <= decoded_reg_a.reg_valid and d_in.valid;
r_out.read1_reg <= decoded_reg_a.reg;
r_out.read2_enable <= decoded_reg_b.reg_valid and d_in.valid;
r_out.read2_reg <= decoded_reg_b.reg;
r_out.read3_enable <= decoded_reg_c.reg_valid and d_in.valid;
r_out.read3_reg <= decoded_reg_c.reg;
case d_in.decode.length is
when is1B =>
length := "0001";
when is2B =>
length := "0010";
when is4B =>
length := "0100";
when is8B =>
length := "1000";
when NONE =>
length := "0000";
end case;
-- execute unit
v.e.nia := d_in.nia;
v.e.unit := d_in.decode.unit;
v.e.fac := d_in.decode.facility;
v.e.instr_tag := instr_tag;
v.e.read_reg1 := decoded_reg_a.reg;
v.e.read_reg2 := decoded_reg_b.reg;
v.e.write_reg := decoded_reg_o.reg;
v.e.write_reg_enable := decoded_reg_o.reg_valid;
v.e.rc := decode_rc(d_in.decode.rc, d_in.insn);
v.e.xerc := c_in.read_xerc_data;
v.e.invert_a := d_in.decode.invert_a;
v.e.addm1 := '0';
v.e.insn_type := op;
v.e.invert_out := d_in.decode.invert_out;
v.e.input_carry := d_in.decode.input_carry;
v.e.output_carry := d_in.decode.output_carry;
v.e.is_32bit := d_in.decode.is_32bit;
v.e.is_signed := d_in.decode.is_signed;
v.e.insn := d_in.insn;
v.e.data_len := length;
v.e.byte_reverse := d_in.decode.byte_reverse;
v.e.sign_extend := d_in.decode.sign_extend;
v.e.update := d_in.decode.update;
v.e.reserve := d_in.decode.reserve;
v.e.br_pred := d_in.br_pred;
v.e.result_sel := result_select(op);
v.e.sub_select := subresult_select(op);
if op = OP_BC or op = OP_BCREG then
if d_in.insn(23) = '0' and r.repeat = '0' and
not (d_in.decode.insn_type = OP_BCREG and d_in.insn(10) = '0') then
-- decrement CTR if BO(2) = 0 and not bcctr
v.e.addm1 := '1';
v.e.result_sel := "000"; -- select adder output
end if;
end if;
if op = OP_MFSPR then
if is_fast_spr(d_in.ispr1) = '1' then
v.e.result_sel := "000"; -- adder_result, effectively a_in
elsif d_in.spr_info.valid = '0' then
-- Privileged mfspr to invalid/unimplemented SPR numbers
-- writes the contents of RT back to RT (i.e. it's a no-op)
v.e.result_sel := "001"; -- logical_result
elsif d_in.spr_info.ispmu = '1' then
v.e.result_sel := "100"; -- pmuspr_result
end if;
end if;
-- See if any of the operands can get their value via the bypass path.
case gpr_a_bypass is
when '1' =>
v.e.read_data1 := execute_bypass.data;
when others =>
v.e.read_data1 := decoded_reg_a.data;
end case;
case gpr_b_bypass is
when '1' =>
v.e.read_data2 := execute_bypass.data;
when others =>
v.e.read_data2 := decoded_reg_b.data;
end case;
case gpr_c_bypass is
when '1' =>
v.e.read_data3 := execute_bypass.data;
when others =>
v.e.read_data3 := decoded_reg_c.data;
end case;
v.e.cr := c_in.read_cr_data;
if cr_bypass = '1' then
v.e.cr := execute_cr_bypass.data;
end if;
-- issue control
control_valid_in <= d_in.valid;
control_sgl_pipe <= d_in.decode.sgl_pipe;
gpr_write_valid <= v.e.write_reg_enable;
gpr_write <= decoded_reg_o.reg;
gpr_a_read_valid <= decoded_reg_a.reg_valid;
gpr_a_read <= decoded_reg_a.reg;
gpr_b_read_valid <= decoded_reg_b.reg_valid;
gpr_b_read <= decoded_reg_b.reg;
gpr_c_read_valid <= decoded_reg_c.reg_valid;
gpr_c_read <= decoded_reg_c.reg;
cr_write_valid <= d_in.decode.output_cr or decode_rc(d_in.decode.rc, d_in.insn);
-- Since ops that write CR only write some of the fields,
-- any op that writes CR effectively also reads it.
cr_read_valid <= cr_write_valid or d_in.decode.input_cr;
v.e.valid := control_valid_out;
if control_valid_out = '1' then
v.repeat := v.e.repeat and not r.repeat;
end if;
stall_out <= control_stall_out or v.repeat;
if rst = '1' or flush_in = '1' then
v.e := Decode2ToExecute1Init;
v.repeat := '0';
end if;
-- Update registers
rin <= v;
-- Update outputs
e_out <= r.e;
end process;
d2_log: if LOG_LENGTH > 0 generate
signal log_data : std_ulogic_vector(9 downto 0);
begin
dec2_log : process(clk)
begin
if rising_edge(clk) then
log_data <= r.e.nia(5 downto 2) &
r.e.valid &
stopped_out &
stall_out &
gpr_a_bypass &
gpr_b_bypass &
gpr_c_bypass;
end if;
end process;
log_out <= log_data;
end generate;
end architecture behaviour;