You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
microwatt/multiply_tb.vhdl

264 lines
6.0 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.common.all;
use work.glibc_random.all;
use work.ppc_fx_insns.all;
entity multiply_tb is
end multiply_tb;
architecture behave of multiply_tb is
signal clk : std_ulogic;
constant clk_period : time := 10 ns;
constant pipeline_depth: integer := 6;
signal m1 : DecodeToMultiplyType;
signal m2 : MultiplyToWritebackType;
begin
multiply_0: entity work.multiply
generic map (PIPELINE_DEPTH => pipeline_depth)
port map (clk => clk, m_in => m1, m_out => m2);
clk_process: process
begin
clk <= '0';
wait for clk_period/2;
clk <= '1';
wait for clk_period/2;
end process;
stim_process: process
variable ra, rb, rt, behave_rt: std_ulogic_vector(63 downto 0);
variable si: std_ulogic_vector(15 downto 0);
begin
wait for clk_period;
m1.valid <= '1';
m1.mul_type <= LOWER_64;
m1.nia <= (others => '0');
m1.write_reg <= "10001";
m1.data1 <= '0' & x"0000000000001000";
m1.data2 <= '0' & x"0000000000001111";
m1.rc <= '0';
wait for clk_period;
assert m2.valid = '0';
m1.valid <= '0';
wait for clk_period;
assert m2.valid = '0';
wait for clk_period;
assert m2.valid = '0';
wait for clk_period;
assert m2.valid = '1';
assert m2.write_enable = '1';
assert m2.write_reg = "10001";
assert m2.write_data = x"0000000001111000";
assert m2.write_cr_enable = '0';
wait for clk_period;
assert m2.valid = '0';
m1.valid <= '1';
m1.rc <= '1';
wait for clk_period;
assert m2.valid = '0';
m1.valid <= '0';
wait for clk_period * (pipeline_depth-1);
assert m2.valid = '1';
assert m2.write_enable = '1';
assert m2.write_reg = "10001";
assert m2.write_data = x"0000000001111000";
assert m2.write_cr_enable = '1';
assert m2.cr = x"4";
-- test mulld
mulld_loop : for i in 0 to 1000 loop
ra := pseudorand(ra'length);
rb := pseudorand(rb'length);
behave_rt := ppc_mulld(ra, rb);
m1.data1 <= '0' & ra;
m1.data2 <= '0' & rb;
m1.valid <= '1';
m1.mul_type <= LOWER_64;
wait for clk_period;
m1.valid <= '0';
wait for clk_period * (pipeline_depth-1);
assert m2.valid = '1';
assert to_hstring(behave_rt) = to_hstring(m2.write_data)
report "bad mulld expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.write_data);
end loop;
-- test mulhdu
mulhdu_loop : for i in 0 to 1000 loop
ra := pseudorand(ra'length);
rb := pseudorand(rb'length);
behave_rt := ppc_mulhdu(ra, rb);
m1.data1 <= '0' & ra;
m1.data2 <= '0' & rb;
m1.valid <= '1';
m1.mul_type <= UPPER_64;
wait for clk_period;
m1.valid <= '0';
wait for clk_period * (pipeline_depth-1);
assert m2.valid = '1';
assert to_hstring(behave_rt) = to_hstring(m2.write_data)
report "bad mulhdu expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.write_data);
end loop;
-- test mulhd
mulhd_loop : for i in 0 to 1000 loop
ra := pseudorand(ra'length);
rb := pseudorand(rb'length);
behave_rt := ppc_mulhd(ra, rb);
m1.data1 <= ra(63) & ra;
m1.data2 <= rb(63) & rb;
m1.valid <= '1';
m1.mul_type <= UPPER_64;
wait for clk_period;
m1.valid <= '0';
wait for clk_period * (pipeline_depth-1);
assert m2.valid = '1';
assert to_hstring(behave_rt) = to_hstring(m2.write_data)
report "bad mulhd expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.write_data);
end loop;
-- test mullw
mullw_loop : for i in 0 to 1000 loop
ra := pseudorand(ra'length);
rb := pseudorand(rb'length);
behave_rt := ppc_mullw(ra, rb);
m1.data1 <= (others => ra(31));
m1.data1(31 downto 0) <= ra(31 downto 0);
m1.data2 <= (others => rb(31));
m1.data2(31 downto 0) <= rb(31 downto 0);
m1.valid <= '1';
m1.mul_type <= LOWER_64;
wait for clk_period;
m1.valid <= '0';
wait for clk_period * (pipeline_depth-1);
assert m2.valid = '1';
assert to_hstring(behave_rt) = to_hstring(m2.write_data)
report "bad mullw expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.write_data);
end loop;
-- test mulhw
mulhw_loop : for i in 0 to 1000 loop
ra := pseudorand(ra'length);
rb := pseudorand(rb'length);
behave_rt := ppc_mulhw(ra, rb);
m1.data1 <= (others => ra(31));
m1.data1(31 downto 0) <= ra(31 downto 0);
m1.data2 <= (others => rb(31));
m1.data2(31 downto 0) <= rb(31 downto 0);
m1.valid <= '1';
m1.mul_type <= UPPER_32;
wait for clk_period;
m1.valid <= '0';
wait for clk_period * (pipeline_depth-1);
assert m2.valid = '1';
assert to_hstring(behave_rt) = to_hstring(m2.write_data)
report "bad mulhw expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.write_data);
end loop;
-- test mulhwu
mulhwu_loop : for i in 0 to 1000 loop
ra := pseudorand(ra'length);
rb := pseudorand(rb'length);
behave_rt := ppc_mulhwu(ra, rb);
m1.data1 <= (others => '0');
m1.data1(31 downto 0) <= ra(31 downto 0);
m1.data2 <= (others => '0');
m1.data2(31 downto 0) <= rb(31 downto 0);
m1.valid <= '1';
m1.mul_type <= UPPER_32;
wait for clk_period;
m1.valid <= '0';
wait for clk_period * (pipeline_depth-1);
assert m2.valid = '1';
assert to_hstring(behave_rt) = to_hstring(m2.write_data)
report "bad mulhwu expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.write_data);
end loop;
-- test mulli
mulli_loop : for i in 0 to 1000 loop
ra := pseudorand(ra'length);
si := pseudorand(si'length);
behave_rt := ppc_mulli(ra, si);
m1.data1 <= ra(63) & ra;
m1.data2 <= (others => si(15));
m1.data2(15 downto 0) <= si;
m1.valid <= '1';
m1.mul_type <= LOWER_64;
wait for clk_period;
m1.valid <= '0';
wait for clk_period * (pipeline_depth-1);
assert m2.valid = '1';
assert to_hstring(behave_rt) = to_hstring(m2.write_data)
report "bad mulli expected " & to_hstring(behave_rt) & " got " & to_hstring(m2.write_data);
end loop;
assert false report "end of test" severity failure;
wait;
end process;
end behave;