You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
microwatt/decode2.vhdl

736 lines
27 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.decode_types.all;
use work.common.all;
use work.helpers.all;
use work.insn_helpers.all;
entity decode2 is
generic (
EX1_BYPASS : boolean := true;
HAS_FPU : boolean := true;
-- Non-zero to enable log data collection
LOG_LENGTH : natural := 0
);
port (
clk : in std_ulogic;
rst : in std_ulogic;
complete_in : in instr_tag_t;
busy_in : in std_ulogic;
stall_out : out std_ulogic;
stopped_out : out std_ulogic;
flush_in: in std_ulogic;
d_in : in Decode1ToDecode2Type;
e_out : out Decode2ToExecute1Type;
r_in : in RegisterFileToDecode2Type;
r_out : out Decode2ToRegisterFileType;
c_in : in CrFileToDecode2Type;
c_out : out Decode2ToCrFileType;
execute_bypass : in bypass_data_t;
execute_cr_bypass : in cr_bypass_data_t;
execute2_bypass : in bypass_data_t;
execute2_cr_bypass : in cr_bypass_data_t;
writeback_bypass : in bypass_data_t;
-- Access to SPRs from core_debug module
dbg_spr_req : in std_ulogic;
dbg_spr_addr : in std_ulogic_vector(7 downto 0);
log_out : out std_ulogic_vector(9 downto 0)
);
end entity decode2;
architecture behaviour of decode2 is
type reg_type is record
e : Decode2ToExecute1Type;
repeat : repeat_t;
busy : std_ulogic;
sgl_pipe : std_ulogic;
prev_sgl : std_ulogic;
input_ov : std_ulogic;
output_ov : std_ulogic;
read_rspr : std_ulogic;
end record;
constant reg_type_init : reg_type :=
(e => Decode2ToExecute1Init, repeat => NONE, others => '0');
signal dc2, dc2in : reg_type;
signal deferred : std_ulogic;
type decode_input_reg_t is record
reg_valid : std_ulogic;
reg : gspr_index_t;
data : std_ulogic_vector(63 downto 0);
end record;
constant decode_input_reg_init : decode_input_reg_t := ('0', (others => '0'), (others => '0'));
type decode_output_reg_t is record
reg_valid : std_ulogic;
reg : gspr_index_t;
end record;
constant decode_output_reg_init : decode_output_reg_t := ('0', (others => '0'));
function decode_input_reg_a (t : input_reg_a_t; insn_in : std_ulogic_vector(31 downto 0);
prefix : std_ulogic_vector(25 downto 0);
instr_addr : std_ulogic_vector(63 downto 0))
return decode_input_reg_t is
begin
if t = RA or ((t = RA_OR_ZERO or t = RA0_OR_CIA) and insn_ra(insn_in) /= "00000") then
return ('1', gpr_to_gspr(insn_ra(insn_in)), (others => '0'));
elsif t = CIA or (t = RA0_OR_CIA and insn_prefix_r(prefix) = '1') then
return ('0', (others => '0'), instr_addr);
elsif HAS_FPU and t = FRA then
return ('1', fpr_to_gspr(insn_fra(insn_in)), (others => '0'));
else
return ('0', (others => '0'), (others => '0'));
end if;
end;
function decode_input_reg_b (t : input_reg_b_t; insn_in : std_ulogic_vector(31 downto 0);
prefix : std_ulogic_vector(25 downto 0))
return decode_input_reg_t is
variable ret : decode_input_reg_t;
begin
case t is
when RB =>
ret := ('1', gpr_to_gspr(insn_rb(insn_in)), (others => '0'));
when FRB =>
if HAS_FPU then
ret := ('1', fpr_to_gspr(insn_frb(insn_in)), (others => '0'));
else
ret := ('0', (others => '0'), (others => '0'));
end if;
when CONST_UI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_ui(insn_in)), 64)));
when CONST_SI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)), 64)));
when CONST_PSI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_prefixed_si(prefix, insn_in)), 64)));
when CONST_SI_HI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)) & x"0000", 64)));
when CONST_UI_HI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_si(insn_in)) & x"0000", 64)));
when CONST_LI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_li(insn_in)) & "00", 64)));
when CONST_BD =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_bd(insn_in)) & "00", 64)));
when CONST_DS =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_ds(insn_in)) & "00", 64)));
when CONST_DQ =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_dq(insn_in)) & "0000", 64)));
when CONST_DXHI4 =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_dx(insn_in)) & x"0004", 64)));
when CONST_M1 =>
ret := ('0', (others => '0'), x"FFFFFFFFFFFFFFFF");
when CONST_SH =>
ret := ('0', (others => '0'), x"00000000000000" & "00" & insn_in(1) & insn_in(15 downto 11));
when CONST_SH32 =>
ret := ('0', (others => '0'), x"00000000000000" & "000" & insn_in(15 downto 11));
when NONE =>
ret := ('0', (others => '0'), (others => '0'));
end case;
return ret;
end;
function decode_input_reg_c (t : input_reg_c_t; insn_in : std_ulogic_vector(31 downto 0))
return decode_input_reg_t is
begin
case t is
when RS =>
return ('1', gpr_to_gspr(insn_rs(insn_in)), (others => '0'));
when RCR =>
return ('1', gpr_to_gspr(insn_rcreg(insn_in)), (others => '0'));
when FRS =>
if HAS_FPU then
return ('1', fpr_to_gspr(insn_frt(insn_in)), (others => '0'));
else
return ('0', (others => '0'), (others => '0'));
end if;
when FRC =>
if HAS_FPU then
return ('1', fpr_to_gspr(insn_frc(insn_in)), (others => '0'));
else
return ('0', (others => '0'), (others => '0'));
end if;
when NONE =>
return ('0', (others => '0'), (others => '0'));
end case;
end;
function decode_output_reg (t : output_reg_a_t; insn_in : std_ulogic_vector(31 downto 0))
return decode_output_reg_t is
begin
case t is
when RT =>
return ('1', gpr_to_gspr(insn_rt(insn_in)));
when RA =>
return ('1', gpr_to_gspr(insn_ra(insn_in)));
when FRT =>
if HAS_FPU then
return ('1', fpr_to_gspr(insn_frt(insn_in)));
else
return ('0', "000000");
end if;
when NONE =>
return ('0', "000000");
end case;
end;
function decode_rc (t : rc_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic is
begin
case t is
when RC | RCOE =>
return insn_rc(insn_in);
when ONE =>
return '1';
when NONE =>
return '0';
end case;
end;
-- control signals that are derived from insn_type
type mux_select_array_t is array(insn_type_t) of std_ulogic_vector(2 downto 0);
constant result_select : mux_select_array_t := (
OP_LOGIC => "001", -- logical_result
OP_XOR => "001",
OP_PRTY => "001",
OP_CMPB => "001",
OP_EXTS => "001",
OP_BPERM => "001",
OP_BREV => "001",
OP_BCD => "001",
OP_MTSPR => "001",
OP_RLC => "010", -- rotator_result
OP_RLCL => "010",
OP_RLCR => "010",
OP_SHL => "010",
OP_SHR => "010",
OP_EXTSWSLI => "010",
OP_MUL_L64 => "011", -- muldiv_result
OP_BCREG => "101", -- ramspr_result
OP_RFID => "101",
OP_ADDG6S => "111", -- misc_result
OP_ISEL => "111",
OP_DARN => "111",
OP_MFMSR => "111",
OP_MFCR => "111",
OP_SETB => "111",
others => "000" -- default to adder_result
);
constant subresult_select : mux_select_array_t := (
OP_MUL_L64 => "000", -- muldiv_result
OP_MUL_H64 => "001",
OP_MUL_H32 => "010",
OP_DIV => "011",
OP_DIVE => "011",
OP_MOD => "011",
OP_ADDG6S => "001", -- misc_result
OP_ISEL => "010",
OP_DARN => "011",
OP_MFMSR => "100",
OP_MFCR => "101",
OP_SETB => "110",
OP_CMP => "000", -- cr_result
OP_CMPRB => "001",
OP_CMPEQB => "010",
OP_CROP => "011",
OP_MCRXRX => "100",
OP_MTCRF => "101",
others => "000"
);
signal decoded_reg_a : decode_input_reg_t;
signal decoded_reg_b : decode_input_reg_t;
signal decoded_reg_c : decode_input_reg_t;
signal decoded_reg_o : decode_output_reg_t;
-- issue control signals
signal control_valid_in : std_ulogic;
signal control_valid_out : std_ulogic;
signal control_serialize : std_logic;
signal gpr_write_valid : std_ulogic;
signal gpr_write : gspr_index_t;
signal gpr_a_read_valid : std_ulogic;
signal gpr_a_read : gspr_index_t;
signal gpr_a_bypass : std_ulogic_vector(1 downto 0);
signal gpr_b_read_valid : std_ulogic;
signal gpr_b_read : gspr_index_t;
signal gpr_b_bypass : std_ulogic_vector(1 downto 0);
signal gpr_c_read_valid : std_ulogic;
signal gpr_c_read : gspr_index_t;
signal gpr_c_bypass : std_ulogic_vector(1 downto 0);
signal cr_read_valid : std_ulogic;
signal cr_write_valid : std_ulogic;
signal cr_bypass : std_ulogic_vector(1 downto 0);
signal ov_read_valid : std_ulogic;
signal ov_write_valid : std_ulogic;
signal instr_tag : instr_tag_t;
begin
control_0: entity work.control
generic map (
EX1_BYPASS => EX1_BYPASS
)
port map (
clk => clk,
rst => rst,
complete_in => complete_in,
valid_in => control_valid_in,
deferred => deferred,
flush_in => flush_in,
serialize => control_serialize,
stop_mark_in => d_in.stop_mark,
gpr_write_valid_in => gpr_write_valid,
gpr_write_in => gpr_write,
gpr_a_read_valid_in => gpr_a_read_valid,
gpr_a_read_in => gpr_a_read,
gpr_b_read_valid_in => gpr_b_read_valid,
gpr_b_read_in => gpr_b_read,
gpr_c_read_valid_in => gpr_c_read_valid,
gpr_c_read_in => gpr_c_read,
execute_next_tag => execute_bypass.tag,
execute_next_cr_tag => execute_cr_bypass.tag,
execute2_next_tag => execute2_bypass.tag,
execute2_next_cr_tag => execute2_cr_bypass.tag,
cr_read_in => cr_read_valid,
cr_write_in => cr_write_valid,
cr_bypass => cr_bypass,
ov_read_in => ov_read_valid,
ov_write_in => ov_write_valid,
valid_out => control_valid_out,
stopped_out => stopped_out,
gpr_bypass_a => gpr_a_bypass,
gpr_bypass_b => gpr_b_bypass,
gpr_bypass_c => gpr_c_bypass,
instr_tag_out => instr_tag
);
deferred <= dc2.e.valid and busy_in;
decode2_0: process(clk)
begin
if rising_edge(clk) then
if rst = '1' or flush_in = '1' then
dc2 <= reg_type_init;
elsif deferred = '0' then
if dc2in.e.valid = '1' then
report "execute " & to_hstring(dc2in.e.nia) &
" tag=" & integer'image(dc2in.e.instr_tag.tag) & std_ulogic'image(dc2in.e.instr_tag.valid);
end if;
dc2 <= dc2in;
elsif dc2.read_rspr = '0' then
-- Update debug SPR access signals even when stalled
-- if the instruction in dc2.e doesn't read any SPRs.
dc2.e.dbg_spr_access <= dc2in.e.dbg_spr_access;
dc2.e.ramspr_even_rdaddr <= dc2in.e.ramspr_even_rdaddr;
dc2.e.ramspr_odd_rdaddr <= dc2in.e.ramspr_odd_rdaddr;
dc2.e.ramspr_rd_odd <= dc2in.e.ramspr_rd_odd;
end if;
if d_in.valid = '1' then
assert decoded_reg_a.reg_valid = '0' or decoded_reg_a.reg = d_in.reg_a severity failure;
assert decoded_reg_b.reg_valid = '0' or decoded_reg_b.reg = d_in.reg_b severity failure;
assert decoded_reg_c.reg_valid = '0' or decoded_reg_c.reg = d_in.reg_c severity failure;
end if;
end if;
end process;
c_out.read <= d_in.decode.input_cr;
decode2_addrs: process(all)
variable dec_a, dec_b, dec_c : decode_input_reg_t;
variable dec_o : decode_output_reg_t;
begin
dec_a := decode_input_reg_a (d_in.decode.input_reg_a, d_in.insn, d_in.prefix, d_in.nia);
dec_b := decode_input_reg_b (d_in.decode.input_reg_b, d_in.insn, d_in.prefix);
dec_c := decode_input_reg_c (d_in.decode.input_reg_c, d_in.insn);
dec_o := decode_output_reg (d_in.decode.output_reg_a, d_in.insn);
if d_in.valid = '0' or d_in.illegal_suffix = '1' then
dec_a.reg_valid := '0';
dec_b.reg_valid := '0';
dec_c.reg_valid := '0';
dec_o.reg_valid := '0';
end if;
decoded_reg_a <= dec_a;
decoded_reg_b <= dec_b;
decoded_reg_c <= dec_c;
decoded_reg_o <= dec_o;
r_out.read1_enable <= dec_a.reg_valid;
r_out.read2_enable <= dec_b.reg_valid;
r_out.read3_enable <= dec_c.reg_valid;
end process;
decode2_1: process(all)
variable v : reg_type;
variable length : std_ulogic_vector(3 downto 0);
variable op : insn_type_t;
variable unit : unit_t;
variable valid_in : std_ulogic;
variable decctr : std_ulogic;
variable sprs_busy : std_ulogic;
begin
v := dc2;
valid_in := d_in.valid or dc2.busy;
if dc2.busy = '0' then
v.e := Decode2ToExecute1Init;
sprs_busy := '0';
unit := d_in.decode.unit;
if d_in.valid = '1' then
v.prev_sgl := dc2.sgl_pipe;
v.sgl_pipe := d_in.decode.sgl_pipe;
end if;
v.e.input_cr := d_in.decode.input_cr;
v.e.output_cr := d_in.decode.output_cr;
-- Work out whether XER SO/OV/OV32 bits are set
-- or used by this instruction
v.e.rc := decode_rc(d_in.decode.rc, d_in.insn);
v.e.output_xer := d_in.decode.output_carry;
v.input_ov := d_in.decode.output_carry;
v.output_ov := '0';
if d_in.decode.input_carry = OV then
v.input_ov := '1';
v.output_ov := '1';
end if;
if v.e.rc = '1' and d_in.decode.facility /= FPU then
v.input_ov := '1';
end if;
case d_in.decode.insn_type is
when OP_ADD | OP_MUL_L64 | OP_DIV | OP_DIVE =>
if d_in.decode.rc = RCOE and insn_oe(d_in.insn) = '1' then
v.e.oe := '1';
v.e.output_xer := '1';
v.output_ov := '1';
v.input_ov := '1'; -- need SO state if setting OV to 0
end if;
when OP_MFSPR =>
if is_X(d_in.insn) then
v.input_ov := 'X';
else
case decode_spr_num(d_in.insn) is
when SPR_XER =>
v.input_ov := '1';
when SPR_DAR | SPR_DSISR | SPR_PID | SPR_PTCR =>
unit := LDST;
when others =>
end case;
end if;
when OP_MTSPR =>
if is_X(d_in.insn) then
v.e.output_xer := 'X';
v.output_ov := 'X';
v.sgl_pipe := 'X';
else
case decode_spr_num(d_in.insn) is
when SPR_XER =>
v.e.output_xer := '1';
v.output_ov := '1';
when SPR_DAR | SPR_DSISR | SPR_PID | SPR_PTCR =>
unit := LDST;
if d_in.valid = '1' then
v.sgl_pipe := '1';
end if;
when others =>
end case;
if d_in.spr_info.valid = '1' and d_in.valid = '1' then
v.sgl_pipe := '1';
end if;
end if;
when OP_CMP | OP_MCRXRX =>
v.input_ov := '1';
when others =>
end case;
if d_in.decode.lr = '1' then
v.e.lr := insn_lk(d_in.insn);
-- b and bc have even major opcodes; bcreg is considered absolute
v.e.br_abs := insn_aa(d_in.insn) or d_in.insn(26);
end if;
op := d_in.decode.insn_type;
-- Does this instruction decrement CTR?
-- bc, bclr, bctar with BO(2) = 0 do, but not bcctr.
decctr := '0';
if d_in.insn(23) = '0' and
(op = OP_BC or
(op = OP_BCREG and not (d_in.insn(10) = '1' and d_in.insn(6) = '0'))) then
decctr := '1';
end if;
v.e.dec_ctr := decctr;
v.repeat := d_in.decode.repeat;
if d_in.decode.repeat /= NONE then
v.e.repeat := '1';
end if;
v.e.spr_select := d_in.spr_info;
if decctr = '1' then
-- read and write CTR
v.e.ramspr_odd_rdaddr := RAMSPR_CTR;
v.e.ramspr_wraddr := RAMSPR_CTR;
v.e.ramspr_write_odd := '1';
sprs_busy := '1';
end if;
if v.e.lr = '1' then
-- write LR
v.e.ramspr_wraddr := RAMSPR_LR;
v.e.ramspr_write_even := '1';
end if;
case op is
when OP_BCREG =>
if d_in.insn(10) = '0' then
v.e.ramspr_even_rdaddr := RAMSPR_LR;
elsif d_in.insn(6) = '0' then
v.e.ramspr_odd_rdaddr := RAMSPR_CTR;
v.e.ramspr_rd_odd := '1';
else
v.e.ramspr_even_rdaddr := RAMSPR_TAR;
end if;
sprs_busy := '1';
when OP_MFSPR =>
v.e.ramspr_even_rdaddr := d_in.ram_spr.index;
v.e.ramspr_odd_rdaddr := d_in.ram_spr.index;
v.e.ramspr_rd_odd := d_in.ram_spr.isodd;
v.e.spr_is_ram := d_in.ram_spr.valid;
sprs_busy := d_in.ram_spr.valid;
when OP_MTSPR =>
v.e.ramspr_wraddr := d_in.ram_spr.index;
v.e.ramspr_write_even := d_in.ram_spr.valid and not d_in.ram_spr.isodd;
v.e.ramspr_write_odd := d_in.ram_spr.valid and d_in.ram_spr.isodd;
v.e.spr_is_ram := d_in.ram_spr.valid;
when OP_RFID =>
v.e.ramspr_even_rdaddr := RAMSPR_SRR0;
v.e.ramspr_odd_rdaddr := RAMSPR_SRR1;
sprs_busy := '1';
when others =>
end case;
v.read_rspr := sprs_busy and d_in.valid;
case d_in.decode.length is
when is1B =>
length := "0001";
when is2B =>
length := "0010";
when is4B =>
length := "0100";
when is8B =>
length := "1000";
when NONE =>
length := "0000";
end case;
-- execute unit
v.e.nia := d_in.nia;
v.e.unit := unit;
v.e.fac := d_in.decode.facility;
v.e.read_reg1 := d_in.reg_a;
v.e.read_reg2 := d_in.reg_b;
v.e.read_reg3 := d_in.reg_c;
v.e.reg_valid1 := decoded_reg_a.reg_valid;
v.e.reg_valid2 := decoded_reg_b.reg_valid;
v.e.reg_valid3 := decoded_reg_c.reg_valid;
v.e.write_reg := decoded_reg_o.reg;
v.e.write_reg_enable := decoded_reg_o.reg_valid;
v.e.invert_a := d_in.decode.invert_a;
v.e.insn_type := op;
v.e.invert_out := d_in.decode.invert_out;
v.e.input_carry := d_in.decode.input_carry;
v.e.output_carry := d_in.decode.output_carry;
v.e.is_32bit := d_in.decode.is_32bit;
v.e.is_signed := d_in.decode.is_signed;
v.e.insn := d_in.insn;
v.e.data_len := length;
v.e.byte_reverse := d_in.decode.byte_reverse;
v.e.sign_extend := d_in.decode.sign_extend;
v.e.update := d_in.decode.update;
v.e.reserve := d_in.decode.reserve;
v.e.br_pred := d_in.br_pred;
v.e.result_sel := result_select(op);
v.e.sub_select := subresult_select(op);
if op = OP_MFSPR then
if d_in.ram_spr.valid = '1' then
v.e.result_sel := "101"; -- ramspr_result
elsif d_in.spr_info.valid = '0' then
-- Privileged mfspr to invalid/unimplemented SPR numbers
-- writes the contents of RT back to RT (i.e. it's a no-op)
v.e.result_sel := "001"; -- logical_result
end if;
end if;
v.e.prefixed := d_in.prefixed;
v.e.illegal_suffix := d_in.illegal_suffix;
v.e.misaligned_prefix := d_in.misaligned_prefix;
elsif dc2.e.valid = '1' then
-- dc2.busy = 1 and dc2.e.valid = 1, thus this must be a repeated instruction.
-- Set up for the second iteration (if deferred = 1 this will all be ignored)
v.e.second := '1';
-- DUPD is the only possibility here:
-- update-form loads, 2nd instruction writes RA
v.e.write_reg := dc2.e.read_reg1;
end if;
-- issue control
control_valid_in <= valid_in;
control_serialize <= v.sgl_pipe or v.prev_sgl;
gpr_write_valid <= v.e.write_reg_enable;
gpr_write <= v.e.write_reg;
gpr_a_read_valid <= v.e.reg_valid1;
gpr_a_read <= v.e.read_reg1;
gpr_b_read_valid <= v.e.reg_valid2;
gpr_b_read <= v.e.read_reg2;
gpr_c_read_valid <= v.e.reg_valid3;
gpr_c_read <= v.e.read_reg3;
cr_write_valid <= v.e.output_cr or v.e.rc;
-- Since ops that write CR only write some of the fields,
-- any op that writes CR effectively also reads it.
cr_read_valid <= cr_write_valid or v.e.input_cr;
ov_read_valid <= v.input_ov;
ov_write_valid <= v.output_ov;
-- See if any of the operands can get their value via the bypass path.
if dc2.busy = '0' or gpr_a_bypass /= "00" then
case gpr_a_bypass is
when "01" =>
v.e.read_data1 := execute_bypass.data;
when "10" =>
v.e.read_data1 := execute2_bypass.data;
when "11" =>
v.e.read_data1 := writeback_bypass.data;
when others =>
if decoded_reg_a.reg_valid = '1' then
v.e.read_data1 := r_in.read1_data;
else
v.e.read_data1 := decoded_reg_a.data;
end if;
end case;
end if;
if dc2.busy = '0' or gpr_b_bypass /= "00" then
case gpr_b_bypass is
when "01" =>
v.e.read_data2 := execute_bypass.data;
when "10" =>
v.e.read_data2 := execute2_bypass.data;
when "11" =>
v.e.read_data2 := writeback_bypass.data;
when others =>
if decoded_reg_b.reg_valid = '1' then
v.e.read_data2 := r_in.read2_data;
else
v.e.read_data2 := decoded_reg_b.data;
end if;
end case;
end if;
if dc2.busy = '0' or gpr_c_bypass /= "00" then
case gpr_c_bypass is
when "01" =>
v.e.read_data3 := execute_bypass.data;
when "10" =>
v.e.read_data3 := execute2_bypass.data;
when "11" =>
v.e.read_data3 := writeback_bypass.data;
when others =>
if decoded_reg_c.reg_valid = '1' then
v.e.read_data3 := r_in.read3_data;
else
v.e.read_data3 := decoded_reg_c.data;
end if;
end case;
end if;
case cr_bypass is
when "10" =>
v.e.cr := execute_cr_bypass.data;
when "11" =>
v.e.cr := execute2_cr_bypass.data;
when others =>
v.e.cr := c_in.read_cr_data;
end case;
v.e.xerc := c_in.read_xerc_data;
v.e.valid := control_valid_out;
v.e.instr_tag := instr_tag;
v.busy := valid_in and (not control_valid_out or (v.e.repeat and not v.e.second));
stall_out <= dc2.busy or deferred;
v.e.dbg_spr_access := dbg_spr_req and not v.read_rspr;
if v.e.dbg_spr_access = '1' then
v.e.ramspr_even_rdaddr := unsigned(dbg_spr_addr(3 downto 1));
v.e.ramspr_odd_rdaddr := unsigned(dbg_spr_addr(3 downto 1));
v.e.ramspr_rd_odd := dbg_spr_addr(0);
end if;
-- Update registers
dc2in <= v;
-- Update outputs
e_out <= dc2.e;
end process;
d2_log: if LOG_LENGTH > 0 generate
signal log_data : std_ulogic_vector(9 downto 0);
begin
dec2_log : process(clk)
begin
if rising_edge(clk) then
log_data <= dc2.e.nia(5 downto 2) &
dc2.e.valid &
stopped_out &
stall_out &
(gpr_a_bypass(1) xor gpr_a_bypass(0)) &
(gpr_b_bypass(1) xor gpr_b_bypass(0)) &
(gpr_c_bypass(1) xor gpr_c_bypass(0));
end if;
end process;
log_out <= log_data;
end generate;
end architecture behaviour;