You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
microwatt/wishbone_debug_master.vhdl

167 lines
5.1 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.wishbone_types.all;
entity wishbone_debug_master is
port(clk : in std_ulogic;
rst : in std_ulogic;
-- Debug bus interface
dmi_addr : in std_ulogic_vector(1 downto 0);
dmi_din : in std_ulogic_vector(63 downto 0);
dmi_dout : out std_ulogic_vector(63 downto 0);
dmi_req : in std_ulogic;
dmi_wr : in std_ulogic;
dmi_ack : out std_ulogic;
-- Wishbone master interface
wb_out : out wishbone_master_out;
wb_in : in wishbone_slave_out
);
end entity wishbone_debug_master;
architecture behaviour of wishbone_debug_master is
-- ** Register offsets definitions. All registers are 64-bit
constant DBG_WB_ADDR : std_ulogic_vector(1 downto 0) := "00";
constant DBG_WB_DATA : std_ulogic_vector(1 downto 0) := "01";
constant DBG_WB_CTRL : std_ulogic_vector(1 downto 0) := "10";
constant DBG_WB_RSVD : std_ulogic_vector(1 downto 0) := "11";
-- CTRL register:
--
-- bit 0..7 : SEL bits (byte enables)
-- bit 8 : address auto-increment
-- bit 10..9 : auto-increment value:
-- 00 - +1
-- 01 - +2
-- 10 - +4
-- 11 - +8
-- ** Address and control registers and read data
signal reg_addr : std_ulogic_vector(63 downto 0);
signal reg_ctrl_out : std_ulogic_vector(63 downto 0);
signal reg_ctrl : std_ulogic_vector(10 downto 0);
signal data_latch : std_ulogic_vector(63 downto 0);
type state_t is (IDLE, WB_CYCLE, DMI_WAIT);
signal state : state_t;
begin
-- Hard wire unused bits to 0
reg_ctrl_out <= (63 downto 11 => '0',
10 downto 0 => reg_ctrl);
-- DMI read data mux
with dmi_addr select dmi_dout <=
reg_addr when DBG_WB_ADDR,
data_latch when DBG_WB_DATA,
reg_ctrl_out when DBG_WB_CTRL,
(others => '0') when others;
-- ADDR and CTRL register writes
reg_write : process(clk)
subtype autoinc_inc_t is integer range 1 to 8;
function decode_autoinc(c : std_ulogic_vector(1 downto 0))
return autoinc_inc_t is
begin
case c is
when "00" => return 1;
when "01" => return 2;
when "10" => return 4;
when "11" => return 8;
-- Below shouldn't be necessary but GHDL complains
when others => return 8;
end case;
end function decode_autoinc;
begin
if rising_edge(clk) then
if (rst) then
reg_addr <= (others => '0');
reg_ctrl <= (others => '0');
else -- Standard register writes
if dmi_req and dmi_wr then
if dmi_addr = DBG_WB_ADDR then
reg_addr <= dmi_din;
elsif dmi_addr = DBG_WB_CTRL then
reg_ctrl <= dmi_din(10 downto 0);
end if;
elsif state = WB_CYCLE and (wb_in.ack and reg_ctrl(8))= '1' then
-- Address register auto-increment
reg_addr <= std_ulogic_vector(unsigned(reg_addr) +
decode_autoinc(reg_ctrl(10 downto 9)));
end if;
end if;
end if;
end process;
-- ACK is hard wired to req for register writes. For data read/writes
-- (aka commands), it's sent when the state machine got the WB ack.
--
-- Note: We never set it to 1, we just pass dmi_req back when acking.
-- This fullfills two purposes:
--
-- * Avoids polluting the ack signal when another DMI slave is
-- selected. This allows the decoder to just OR all the acks
-- together rather than mux them.
--
-- * Makes ack go down on the same cycle as req goes down, thus
-- saving a clock cycle. This is safe because we know that
-- the state machine will no longer be in DMI_WAIT state on
-- the next cycle, so we won't be bouncing the signal back up.
--
dmi_ack <= dmi_req when (dmi_addr /= DBG_WB_DATA or state = DMI_WAIT) else '0';
-- Some WB signals are direct wires from registers or DMI
wb_out.adr <= reg_addr(wb_out.adr'left downto 0);
wb_out.dat <= dmi_din;
wb_out.sel <= reg_ctrl(7 downto 0);
wb_out.we <= dmi_wr;
-- We always move WB cyc and stb simultaneously (no pipelining yet...)
wb_out.cyc <= '1' when state = WB_CYCLE else '0';
wb_out.stb <= '1' when state = WB_CYCLE else '0';
-- Data latch. WB will take the read data away as soon as the cycle
-- terminates but we must maintain it on DMI until req goes down, so
-- we latch it. (Q: Should we move that latch to dmi_dtm itself ?)
--
latch_reads : process(clk)
begin
if rising_edge(clk) then
if state = WB_CYCLE and wb_in.ack = '1' and dmi_wr = '0' then
data_latch <= wb_in.dat;
end if;
end if;
end process;
-- Command state machine (generate wb_cyc)
wb_trigger : process(clk)
begin
if rising_edge(clk) then
if (rst) then
state <= IDLE;
else
case state is
when IDLE =>
if dmi_req = '1' and dmi_addr = DBG_WB_DATA then
state <= WB_CYCLE;
end if;
when WB_CYCLE =>
if wb_in.ack then
state <= DMI_WAIT;
end if;
when DMI_WAIT =>
if dmi_req = '0' then
state <= IDLE;
end if;
end case;
end if;
end if;
end process;
end architecture behaviour;