You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
985 lines
33 KiB
VHDL
985 lines
33 KiB
VHDL
library ieee;
|
|
use ieee.std_logic_1164.all;
|
|
use ieee.numeric_std.all;
|
|
|
|
library work;
|
|
use work.decode_types.all;
|
|
use work.common.all;
|
|
use work.helpers.all;
|
|
use work.crhelpers.all;
|
|
use work.insn_helpers.all;
|
|
use work.ppc_fx_insns.all;
|
|
|
|
entity execute1 is
|
|
generic (
|
|
EX1_BYPASS : boolean := true
|
|
);
|
|
port (
|
|
clk : in std_ulogic;
|
|
rst : in std_ulogic;
|
|
|
|
-- asynchronous
|
|
flush_out : out std_ulogic;
|
|
stall_out : out std_ulogic;
|
|
|
|
e_in : in Decode2ToExecute1Type;
|
|
|
|
i_in : in XicsToExecute1Type;
|
|
|
|
-- asynchronous
|
|
l_out : out Execute1ToLoadstore1Type;
|
|
f_out : out Execute1ToFetch1Type;
|
|
|
|
e_out : out Execute1ToWritebackType;
|
|
|
|
icache_inval : out std_ulogic;
|
|
terminate_out : out std_ulogic
|
|
);
|
|
end entity execute1;
|
|
|
|
architecture behaviour of execute1 is
|
|
type reg_type is record
|
|
e : Execute1ToWritebackType;
|
|
lr_update : std_ulogic;
|
|
next_lr : std_ulogic_vector(63 downto 0);
|
|
mul_in_progress : std_ulogic;
|
|
div_in_progress : std_ulogic;
|
|
cntz_in_progress : std_ulogic;
|
|
slow_op_dest : gpr_index_t;
|
|
slow_op_rc : std_ulogic;
|
|
slow_op_oe : std_ulogic;
|
|
slow_op_xerc : xer_common_t;
|
|
end record;
|
|
constant reg_type_init : reg_type :=
|
|
(e => Execute1ToWritebackInit, lr_update => '0',
|
|
mul_in_progress => '0', div_in_progress => '0', cntz_in_progress => '0',
|
|
slow_op_rc => '0', slow_op_oe => '0', slow_op_xerc => xerc_init,
|
|
others => (others => '0'));
|
|
|
|
signal r, rin : reg_type;
|
|
|
|
signal a_in, b_in, c_in : std_ulogic_vector(63 downto 0);
|
|
|
|
signal ctrl: ctrl_t := (irq_state => WRITE_SRR0, others => (others => '0'));
|
|
signal ctrl_tmp: ctrl_t := (irq_state => WRITE_SRR0, others => (others => '0'));
|
|
signal right_shift, rot_clear_left, rot_clear_right: std_ulogic;
|
|
signal rotator_result: std_ulogic_vector(63 downto 0);
|
|
signal rotator_carry: std_ulogic;
|
|
signal logical_result: std_ulogic_vector(63 downto 0);
|
|
signal countzero_result: std_ulogic_vector(63 downto 0);
|
|
signal popcnt_result: std_ulogic_vector(63 downto 0);
|
|
signal parity_result: std_ulogic_vector(63 downto 0);
|
|
|
|
-- multiply signals
|
|
signal x_to_multiply: Execute1ToMultiplyType;
|
|
signal multiply_to_x: MultiplyToExecute1Type;
|
|
|
|
-- divider signals
|
|
signal x_to_divider: Execute1ToDividerType;
|
|
signal divider_to_x: DividerToExecute1Type;
|
|
|
|
type privilege_level is (USER, SUPER);
|
|
type op_privilege_array is array(insn_type_t) of privilege_level;
|
|
constant op_privilege: op_privilege_array := (
|
|
OP_ATTN => SUPER,
|
|
OP_MFMSR => SUPER,
|
|
OP_MTMSRD => SUPER,
|
|
OP_RFID => SUPER,
|
|
others => USER
|
|
);
|
|
|
|
function instr_is_privileged(op: insn_type_t; insn: std_ulogic_vector(31 downto 0))
|
|
return boolean is
|
|
begin
|
|
if op_privilege(op) = SUPER then
|
|
return true;
|
|
elsif op = OP_MFSPR or op = OP_MTSPR then
|
|
return insn(20) = '1';
|
|
else
|
|
return false;
|
|
end if;
|
|
end;
|
|
|
|
procedure set_carry(e: inout Execute1ToWritebackType;
|
|
carry32 : in std_ulogic;
|
|
carry : in std_ulogic) is
|
|
begin
|
|
e.xerc.ca32 := carry32;
|
|
e.xerc.ca := carry;
|
|
e.write_xerc_enable := '1';
|
|
end;
|
|
|
|
procedure set_ov(e: inout Execute1ToWritebackType;
|
|
ov : in std_ulogic;
|
|
ov32 : in std_ulogic) is
|
|
begin
|
|
e.xerc.ov32 := ov32;
|
|
e.xerc.ov := ov;
|
|
if ov = '1' then
|
|
e.xerc.so := '1';
|
|
end if;
|
|
e.write_xerc_enable := '1';
|
|
end;
|
|
|
|
function calc_ov(msb_a : std_ulogic; msb_b: std_ulogic;
|
|
ca: std_ulogic; msb_r: std_ulogic) return std_ulogic is
|
|
begin
|
|
return (ca xor msb_r) and not (msb_a xor msb_b);
|
|
end;
|
|
|
|
function decode_input_carry(ic : carry_in_t;
|
|
xerc : xer_common_t) return std_ulogic is
|
|
begin
|
|
case ic is
|
|
when ZERO =>
|
|
return '0';
|
|
when CA =>
|
|
return xerc.ca;
|
|
when ONE =>
|
|
return '1';
|
|
end case;
|
|
end;
|
|
|
|
function msr_copy(msr: std_ulogic_vector(63 downto 0))
|
|
return std_ulogic_vector is
|
|
variable msr_out: std_ulogic_vector(63 downto 0);
|
|
begin
|
|
-- ISA says this:
|
|
-- Defined MSR bits are classified as either full func-
|
|
-- tion or partial function. Full function MSR bits are
|
|
-- saved in SRR1 or HSRR1 when an interrupt other
|
|
-- than a System Call Vectored interrupt occurs and
|
|
-- restored by rfscv, rfid, or hrfid, while partial func-
|
|
-- tion MSR bits are not saved or restored.
|
|
-- Full function MSR bits lie in the range 0:32, 37:41, and
|
|
-- 48:63, and partial function MSR bits lie in the range
|
|
-- 33:36 and 42:47. (Note this is IBM bit numbering).
|
|
msr_out := (others => '0');
|
|
msr_out(63 downto 31) := msr(63 downto 31);
|
|
msr_out(26 downto 22) := msr(26 downto 22);
|
|
msr_out(15 downto 0) := msr(15 downto 0);
|
|
return msr_out;
|
|
end;
|
|
|
|
begin
|
|
|
|
rotator_0: entity work.rotator
|
|
port map (
|
|
rs => c_in,
|
|
ra => a_in,
|
|
shift => b_in(6 downto 0),
|
|
insn => e_in.insn,
|
|
is_32bit => e_in.is_32bit,
|
|
right_shift => right_shift,
|
|
arith => e_in.is_signed,
|
|
clear_left => rot_clear_left,
|
|
clear_right => rot_clear_right,
|
|
result => rotator_result,
|
|
carry_out => rotator_carry
|
|
);
|
|
|
|
logical_0: entity work.logical
|
|
port map (
|
|
rs => c_in,
|
|
rb => b_in,
|
|
op => e_in.insn_type,
|
|
invert_in => e_in.invert_a,
|
|
invert_out => e_in.invert_out,
|
|
result => logical_result,
|
|
datalen => e_in.data_len,
|
|
popcnt => popcnt_result,
|
|
parity => parity_result
|
|
);
|
|
|
|
countzero_0: entity work.zero_counter
|
|
port map (
|
|
clk => clk,
|
|
rs => c_in,
|
|
count_right => e_in.insn(10),
|
|
is_32bit => e_in.is_32bit,
|
|
result => countzero_result
|
|
);
|
|
|
|
multiply_0: entity work.multiply
|
|
port map (
|
|
clk => clk,
|
|
m_in => x_to_multiply,
|
|
m_out => multiply_to_x
|
|
);
|
|
|
|
divider_0: entity work.divider
|
|
port map (
|
|
clk => clk,
|
|
rst => rst,
|
|
d_in => x_to_divider,
|
|
d_out => divider_to_x
|
|
);
|
|
|
|
a_in <= r.e.write_data when EX1_BYPASS and e_in.bypass_data1 = '1' else e_in.read_data1;
|
|
b_in <= r.e.write_data when EX1_BYPASS and e_in.bypass_data2 = '1' else e_in.read_data2;
|
|
c_in <= r.e.write_data when EX1_BYPASS and e_in.bypass_data3 = '1' else e_in.read_data3;
|
|
|
|
execute1_0: process(clk)
|
|
begin
|
|
if rising_edge(clk) then
|
|
if rst = '1' then
|
|
r <= reg_type_init;
|
|
ctrl.msr <= (MSR_SF => '1', MSR_LE => '1', others => '0');
|
|
ctrl.irq_state <= WRITE_SRR0;
|
|
else
|
|
r <= rin;
|
|
ctrl <= ctrl_tmp;
|
|
assert not (r.lr_update = '1' and e_in.valid = '1')
|
|
report "LR update collision with valid in EX1"
|
|
severity failure;
|
|
if r.lr_update = '1' then
|
|
report "LR update to " & to_hstring(r.next_lr);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
execute1_1: process(all)
|
|
variable v : reg_type;
|
|
variable a_inv : std_ulogic_vector(63 downto 0);
|
|
variable result : std_ulogic_vector(63 downto 0);
|
|
variable newcrf : std_ulogic_vector(3 downto 0);
|
|
variable result_with_carry : std_ulogic_vector(64 downto 0);
|
|
variable result_en : std_ulogic;
|
|
variable crnum : crnum_t;
|
|
variable crbit : integer range 0 to 31;
|
|
variable scrnum : crnum_t;
|
|
variable lo, hi : integer;
|
|
variable sh, mb, me : std_ulogic_vector(5 downto 0);
|
|
variable sh32, mb32, me32 : std_ulogic_vector(4 downto 0);
|
|
variable bo, bi : std_ulogic_vector(4 downto 0);
|
|
variable bf, bfa : std_ulogic_vector(2 downto 0);
|
|
variable cr_op : std_ulogic_vector(9 downto 0);
|
|
variable cr_operands : std_ulogic_vector(1 downto 0);
|
|
variable bt, ba, bb : std_ulogic_vector(4 downto 0);
|
|
variable btnum, banum, bbnum : integer range 0 to 31;
|
|
variable crresult : std_ulogic;
|
|
variable l : std_ulogic;
|
|
variable next_nia : std_ulogic_vector(63 downto 0);
|
|
variable carry_32, carry_64 : std_ulogic;
|
|
variable sign1, sign2 : std_ulogic;
|
|
variable abs1, abs2 : signed(63 downto 0);
|
|
variable overflow : std_ulogic;
|
|
variable negative : std_ulogic;
|
|
variable zerohi, zerolo : std_ulogic;
|
|
variable msb_a, msb_b : std_ulogic;
|
|
variable a_lt : std_ulogic;
|
|
variable lv : Execute1ToLoadstore1Type;
|
|
variable irq_valid : std_ulogic;
|
|
variable exception : std_ulogic;
|
|
variable exception_nextpc : std_ulogic;
|
|
variable trapval : std_ulogic_vector(4 downto 0);
|
|
variable illegal : std_ulogic;
|
|
begin
|
|
result := (others => '0');
|
|
result_with_carry := (others => '0');
|
|
result_en := '0';
|
|
newcrf := (others => '0');
|
|
|
|
v := r;
|
|
v.e := Execute1ToWritebackInit;
|
|
lv := Execute1ToLoadstore1Init;
|
|
|
|
-- XER forwarding. To avoid having to track XER hazards, we
|
|
-- use the previously latched value.
|
|
--
|
|
-- If the XER was modified by a multiply or a divide, those are
|
|
-- single issue, we'll get the up to date value from decode2 from
|
|
-- the register file.
|
|
--
|
|
-- If it was modified by an instruction older than the previous
|
|
-- one in EX1, it will have also hit writeback and will be up
|
|
-- to date in decode2.
|
|
--
|
|
-- That leaves us with the case where it was updated by the previous
|
|
-- instruction in EX1. In that case, we can forward it back here.
|
|
--
|
|
-- This will break if we allow pipelining of multiply and divide,
|
|
-- but ideally, those should go via EX1 anyway and run as a state
|
|
-- machine from here.
|
|
--
|
|
-- One additional hazard to beware of is an XER:SO modifying instruction
|
|
-- in EX1 followed immediately by a store conditional. Due to our
|
|
-- writeback latency, the store will go down the LSU with the previous
|
|
-- XER value, thus the stcx. will set CR0:SO using an obsolete SO value.
|
|
--
|
|
-- We will need to handle that if we ever make stcx. not single issue
|
|
--
|
|
-- We always pass a valid XER value downto writeback even when
|
|
-- we aren't updating it, in order for XER:SO -> CR0:SO transfer
|
|
-- to work for RC instructions.
|
|
--
|
|
if r.e.write_xerc_enable = '1' then
|
|
v.e.xerc := r.e.xerc;
|
|
else
|
|
v.e.xerc := e_in.xerc;
|
|
end if;
|
|
|
|
v.lr_update := '0';
|
|
v.mul_in_progress := '0';
|
|
v.div_in_progress := '0';
|
|
v.cntz_in_progress := '0';
|
|
|
|
-- signals to multiply unit
|
|
x_to_multiply <= Execute1ToMultiplyInit;
|
|
x_to_multiply.insn_type <= e_in.insn_type;
|
|
x_to_multiply.is_32bit <= e_in.is_32bit;
|
|
|
|
if e_in.is_32bit = '1' then
|
|
if e_in.is_signed = '1' then
|
|
x_to_multiply.data1 <= (others => a_in(31));
|
|
x_to_multiply.data1(31 downto 0) <= a_in(31 downto 0);
|
|
x_to_multiply.data2 <= (others => b_in(31));
|
|
x_to_multiply.data2(31 downto 0) <= b_in(31 downto 0);
|
|
else
|
|
x_to_multiply.data1 <= '0' & x"00000000" & a_in(31 downto 0);
|
|
x_to_multiply.data2 <= '0' & x"00000000" & b_in(31 downto 0);
|
|
end if;
|
|
else
|
|
if e_in.is_signed = '1' then
|
|
x_to_multiply.data1 <= a_in(63) & a_in;
|
|
x_to_multiply.data2 <= b_in(63) & b_in;
|
|
else
|
|
x_to_multiply.data1 <= '0' & a_in;
|
|
x_to_multiply.data2 <= '0' & b_in;
|
|
end if;
|
|
end if;
|
|
|
|
-- signals to divide unit
|
|
sign1 := '0';
|
|
sign2 := '0';
|
|
if e_in.is_signed = '1' then
|
|
if e_in.is_32bit = '1' then
|
|
sign1 := a_in(31);
|
|
sign2 := b_in(31);
|
|
else
|
|
sign1 := a_in(63);
|
|
sign2 := b_in(63);
|
|
end if;
|
|
end if;
|
|
-- take absolute values
|
|
if sign1 = '0' then
|
|
abs1 := signed(a_in);
|
|
else
|
|
abs1 := - signed(a_in);
|
|
end if;
|
|
if sign2 = '0' then
|
|
abs2 := signed(b_in);
|
|
else
|
|
abs2 := - signed(b_in);
|
|
end if;
|
|
|
|
x_to_divider <= Execute1ToDividerInit;
|
|
x_to_divider.is_signed <= e_in.is_signed;
|
|
x_to_divider.is_32bit <= e_in.is_32bit;
|
|
if e_in.insn_type = OP_MOD then
|
|
x_to_divider.is_modulus <= '1';
|
|
end if;
|
|
x_to_divider.neg_result <= sign1 xor (sign2 and not x_to_divider.is_modulus);
|
|
if e_in.is_32bit = '0' then
|
|
-- 64-bit forms
|
|
if e_in.insn_type = OP_DIVE then
|
|
x_to_divider.is_extended <= '1';
|
|
end if;
|
|
x_to_divider.dividend <= std_ulogic_vector(abs1);
|
|
x_to_divider.divisor <= std_ulogic_vector(abs2);
|
|
else
|
|
-- 32-bit forms
|
|
x_to_divider.is_extended <= '0';
|
|
if e_in.insn_type = OP_DIVE then -- extended forms
|
|
x_to_divider.dividend <= std_ulogic_vector(abs1(31 downto 0)) & x"00000000";
|
|
else
|
|
x_to_divider.dividend <= x"00000000" & std_ulogic_vector(abs1(31 downto 0));
|
|
end if;
|
|
x_to_divider.divisor <= x"00000000" & std_ulogic_vector(abs2(31 downto 0));
|
|
end if;
|
|
|
|
ctrl_tmp <= ctrl;
|
|
-- FIXME: run at 512MHz not core freq
|
|
ctrl_tmp.tb <= std_ulogic_vector(unsigned(ctrl.tb) + 1);
|
|
ctrl_tmp.dec <= std_ulogic_vector(unsigned(ctrl.dec) - 1);
|
|
|
|
irq_valid := '0';
|
|
if ctrl.msr(MSR_EE) = '1' then
|
|
if ctrl.dec(63) = '1' then
|
|
ctrl_tmp.irq_nia <= std_logic_vector(to_unsigned(16#900#, 64));
|
|
report "IRQ valid: DEC";
|
|
irq_valid := '1';
|
|
elsif i_in.irq = '1' then
|
|
ctrl_tmp.irq_nia <= std_logic_vector(to_unsigned(16#500#, 64));
|
|
report "IRQ valid: External";
|
|
irq_valid := '1';
|
|
end if;
|
|
end if;
|
|
|
|
terminate_out <= '0';
|
|
icache_inval <= '0';
|
|
stall_out <= '0';
|
|
f_out <= Execute1ToFetch1TypeInit;
|
|
|
|
-- Next insn adder used in a couple of places
|
|
next_nia := std_ulogic_vector(unsigned(e_in.nia) + 4);
|
|
|
|
-- rotator control signals
|
|
right_shift <= '1' when e_in.insn_type = OP_SHR else '0';
|
|
rot_clear_left <= '1' when e_in.insn_type = OP_RLC or e_in.insn_type = OP_RLCL else '0';
|
|
rot_clear_right <= '1' when e_in.insn_type = OP_RLC or e_in.insn_type = OP_RLCR else '0';
|
|
|
|
ctrl_tmp.irq_state <= WRITE_SRR0;
|
|
exception := '0';
|
|
illegal := '0';
|
|
exception_nextpc := '0';
|
|
v.e.exc_write_enable := '0';
|
|
v.e.exc_write_reg := fast_spr_num(SPR_SRR0);
|
|
v.e.exc_write_data := e_in.nia;
|
|
|
|
if ctrl.irq_state = WRITE_SRR1 then
|
|
v.e.exc_write_reg := fast_spr_num(SPR_SRR1);
|
|
v.e.exc_write_data := ctrl.srr1;
|
|
v.e.exc_write_enable := '1';
|
|
ctrl_tmp.msr(MSR_SF) <= '1';
|
|
ctrl_tmp.msr(MSR_EE) <= '0';
|
|
ctrl_tmp.msr(MSR_PR) <= '0';
|
|
ctrl_tmp.msr(MSR_IR) <= '0';
|
|
ctrl_tmp.msr(MSR_DR) <= '0';
|
|
ctrl_tmp.msr(MSR_RI) <= '0';
|
|
ctrl_tmp.msr(MSR_LE) <= '1';
|
|
f_out.redirect <= '1';
|
|
f_out.redirect_nia <= ctrl.irq_nia;
|
|
v.e.valid := e_in.valid;
|
|
report "Writing SRR1: " & to_hstring(ctrl.srr1);
|
|
|
|
elsif irq_valid = '1' and e_in.valid = '1' then
|
|
-- we need two cycles to write srr0 and 1
|
|
-- will need more when we have to write DSISR, DAR and HIER
|
|
-- Don't deliver the interrupt until we have a valid instruction
|
|
-- coming in, so we have a valid NIA to put in SRR0.
|
|
exception := '1';
|
|
ctrl_tmp.srr1 <= msr_copy(ctrl.msr);
|
|
|
|
elsif e_in.valid = '1' and ctrl.msr(MSR_PR) = '1' and
|
|
instr_is_privileged(e_in.insn_type, e_in.insn) then
|
|
-- generate a program interrupt
|
|
exception := '1';
|
|
ctrl_tmp.irq_nia <= std_logic_vector(to_unsigned(16#700#, 64));
|
|
ctrl_tmp.srr1 <= msr_copy(ctrl.msr);
|
|
-- set bit 45 to indicate privileged instruction type interrupt
|
|
ctrl_tmp.srr1(63 - 45) <= '1';
|
|
report "privileged instruction";
|
|
|
|
elsif e_in.valid = '1' and e_in.unit = ALU then
|
|
|
|
report "execute nia " & to_hstring(e_in.nia);
|
|
|
|
v.e.valid := '1';
|
|
v.e.write_reg := e_in.write_reg;
|
|
v.slow_op_dest := gspr_to_gpr(e_in.write_reg);
|
|
v.slow_op_rc := e_in.rc;
|
|
v.slow_op_oe := e_in.oe;
|
|
v.slow_op_xerc := v.e.xerc;
|
|
|
|
case_0: case e_in.insn_type is
|
|
|
|
when OP_ILLEGAL =>
|
|
-- we need two cycles to write srr0 and 1
|
|
-- will need more when we have to write DSISR, DAR and HIER
|
|
illegal := '1';
|
|
when OP_SC =>
|
|
-- check bit 1 of the instruction is 1 so we know this is sc;
|
|
-- 0 would mean scv, so generate an illegal instruction interrupt
|
|
-- we need two cycles to write srr0 and 1
|
|
-- will need more when we have to write DSISR, DAR and HIER
|
|
if e_in.insn(1) = '1' then
|
|
exception := '1';
|
|
exception_nextpc := '1';
|
|
ctrl_tmp.irq_nia <= std_logic_vector(to_unsigned(16#C00#, 64));
|
|
ctrl_tmp.srr1 <= msr_copy(ctrl.msr);
|
|
report "sc";
|
|
else
|
|
illegal := '1';
|
|
end if;
|
|
when OP_ATTN =>
|
|
-- check bits 1-10 of the instruction to make sure it's attn
|
|
-- if not then it is illegal
|
|
if e_in.insn(10 downto 1) = "0100000000" then
|
|
terminate_out <= '1';
|
|
report "ATTN";
|
|
else
|
|
illegal := '1';
|
|
end if;
|
|
when OP_NOP =>
|
|
-- Do nothing
|
|
when OP_ADD | OP_CMP | OP_TRAP =>
|
|
if e_in.invert_a = '0' then
|
|
a_inv := a_in;
|
|
else
|
|
a_inv := not a_in;
|
|
end if;
|
|
result_with_carry := ppc_adde(a_inv, b_in,
|
|
decode_input_carry(e_in.input_carry, v.e.xerc));
|
|
result := result_with_carry(63 downto 0);
|
|
carry_32 := result(32) xor a_inv(32) xor b_in(32);
|
|
carry_64 := result_with_carry(64);
|
|
if e_in.insn_type = OP_ADD then
|
|
if e_in.output_carry = '1' then
|
|
set_carry(v.e, carry_32, carry_64);
|
|
end if;
|
|
if e_in.oe = '1' then
|
|
set_ov(v.e,
|
|
calc_ov(a_inv(63), b_in(63), carry_64, result_with_carry(63)),
|
|
calc_ov(a_inv(31), b_in(31), carry_32, result_with_carry(31)));
|
|
end if;
|
|
result_en := '1';
|
|
else
|
|
-- trap, CMP and CMPL instructions
|
|
-- Note, we have done RB - RA, not RA - RB
|
|
if e_in.insn_type = OP_CMP then
|
|
l := insn_l(e_in.insn);
|
|
else
|
|
l := not e_in.is_32bit;
|
|
end if;
|
|
zerolo := not (or (a_in(31 downto 0) xor b_in(31 downto 0)));
|
|
zerohi := not (or (a_in(63 downto 32) xor b_in(63 downto 32)));
|
|
if zerolo = '1' and (l = '0' or zerohi = '1') then
|
|
-- values are equal
|
|
trapval := "00100";
|
|
else
|
|
if l = '1' then
|
|
-- 64-bit comparison
|
|
msb_a := a_in(63);
|
|
msb_b := b_in(63);
|
|
else
|
|
-- 32-bit comparison
|
|
msb_a := a_in(31);
|
|
msb_b := b_in(31);
|
|
end if;
|
|
if msb_a /= msb_b then
|
|
-- Subtraction might overflow, but
|
|
-- comparison is clear from MSB difference.
|
|
-- for signed, 0 is greater; for unsigned, 1 is greater
|
|
trapval := msb_a & msb_b & '0' & msb_b & msb_a;
|
|
else
|
|
-- Subtraction cannot overflow since MSBs are equal.
|
|
-- carry = 1 indicates RA is smaller (signed or unsigned)
|
|
a_lt := (not l and carry_32) or (l and carry_64);
|
|
trapval := a_lt & not a_lt & '0' & a_lt & not a_lt;
|
|
end if;
|
|
end if;
|
|
if e_in.insn_type = OP_CMP then
|
|
if e_in.is_signed = '1' then
|
|
newcrf := trapval(4 downto 2) & v.e.xerc.so;
|
|
else
|
|
newcrf := trapval(1 downto 0) & trapval(2) & v.e.xerc.so;
|
|
end if;
|
|
bf := insn_bf(e_in.insn);
|
|
crnum := to_integer(unsigned(bf));
|
|
v.e.write_cr_enable := '1';
|
|
v.e.write_cr_mask := num_to_fxm(crnum);
|
|
for i in 0 to 7 loop
|
|
lo := i*4;
|
|
hi := lo + 3;
|
|
v.e.write_cr_data(hi downto lo) := newcrf;
|
|
end loop;
|
|
else
|
|
-- trap instructions (tw, twi, td, tdi)
|
|
if or (trapval and insn_to(e_in.insn)) = '1' then
|
|
-- generate trap-type program interrupt
|
|
exception := '1';
|
|
ctrl_tmp.irq_nia <= std_logic_vector(to_unsigned(16#700#, 64));
|
|
ctrl_tmp.srr1 <= msr_copy(ctrl.msr);
|
|
-- set bit 46 to say trap occurred
|
|
ctrl_tmp.srr1(63 - 46) <= '1';
|
|
report "trap";
|
|
end if;
|
|
end if;
|
|
end if;
|
|
when OP_AND | OP_OR | OP_XOR =>
|
|
result := logical_result;
|
|
result_en := '1';
|
|
when OP_B =>
|
|
f_out.redirect <= '1';
|
|
if (insn_aa(e_in.insn)) then
|
|
f_out.redirect_nia <= b_in;
|
|
else
|
|
f_out.redirect_nia <= std_ulogic_vector(signed(e_in.nia) + signed(b_in));
|
|
end if;
|
|
when OP_BC =>
|
|
-- read_data1 is CTR
|
|
bo := insn_bo(e_in.insn);
|
|
bi := insn_bi(e_in.insn);
|
|
if bo(4-2) = '0' then
|
|
result := std_ulogic_vector(unsigned(a_in) - 1);
|
|
result_en := '1';
|
|
v.e.write_reg := fast_spr_num(SPR_CTR);
|
|
end if;
|
|
if ppc_bc_taken(bo, bi, e_in.cr, a_in) = 1 then
|
|
f_out.redirect <= '1';
|
|
if (insn_aa(e_in.insn)) then
|
|
f_out.redirect_nia <= b_in;
|
|
else
|
|
f_out.redirect_nia <= std_ulogic_vector(signed(e_in.nia) + signed(b_in));
|
|
end if;
|
|
end if;
|
|
when OP_BCREG =>
|
|
-- read_data1 is CTR
|
|
-- read_data2 is target register (CTR, LR or TAR)
|
|
bo := insn_bo(e_in.insn);
|
|
bi := insn_bi(e_in.insn);
|
|
if bo(4-2) = '0' and e_in.insn(10) = '0' then
|
|
result := std_ulogic_vector(unsigned(a_in) - 1);
|
|
result_en := '1';
|
|
v.e.write_reg := fast_spr_num(SPR_CTR);
|
|
end if;
|
|
if ppc_bc_taken(bo, bi, e_in.cr, a_in) = 1 then
|
|
f_out.redirect <= '1';
|
|
f_out.redirect_nia <= b_in(63 downto 2) & "00";
|
|
end if;
|
|
|
|
when OP_RFID =>
|
|
f_out.redirect <= '1';
|
|
f_out.redirect_nia <= a_in(63 downto 2) & "00"; -- srr0
|
|
-- Can't use msr_copy here because the partial function MSR
|
|
-- bits should be left unchanged, not zeroed.
|
|
ctrl_tmp.msr(63 downto 31) <= b_in(63 downto 31);
|
|
ctrl_tmp.msr(26 downto 22) <= b_in(26 downto 22);
|
|
ctrl_tmp.msr(15 downto 0) <= b_in(15 downto 0);
|
|
if b_in(MSR_PR) = '1' then
|
|
ctrl_tmp.msr(MSR_EE) <= '1';
|
|
ctrl_tmp.msr(MSR_IR) <= '1';
|
|
ctrl_tmp.msr(MSR_DR) <= '1';
|
|
end if;
|
|
|
|
when OP_CMPB =>
|
|
result := ppc_cmpb(c_in, b_in);
|
|
result_en := '1';
|
|
when OP_CNTZ =>
|
|
v.e.valid := '0';
|
|
v.cntz_in_progress := '1';
|
|
stall_out <= '1';
|
|
when OP_EXTS =>
|
|
-- note data_len is a 1-hot encoding
|
|
negative := (e_in.data_len(0) and c_in(7)) or
|
|
(e_in.data_len(1) and c_in(15)) or
|
|
(e_in.data_len(2) and c_in(31));
|
|
result := (others => negative);
|
|
if e_in.data_len(2) = '1' then
|
|
result(31 downto 16) := c_in(31 downto 16);
|
|
end if;
|
|
if e_in.data_len(2) = '1' or e_in.data_len(1) = '1' then
|
|
result(15 downto 8) := c_in(15 downto 8);
|
|
end if;
|
|
result(7 downto 0) := c_in(7 downto 0);
|
|
result_en := '1';
|
|
when OP_ISEL =>
|
|
crbit := to_integer(unsigned(insn_bc(e_in.insn)));
|
|
if e_in.cr(31-crbit) = '1' then
|
|
result := a_in;
|
|
else
|
|
result := b_in;
|
|
end if;
|
|
result_en := '1';
|
|
when OP_CROP =>
|
|
cr_op := insn_cr(e_in.insn);
|
|
report "CR OP " & to_hstring(cr_op);
|
|
if cr_op(0) = '0' then -- MCRF
|
|
bf := insn_bf(e_in.insn);
|
|
bfa := insn_bfa(e_in.insn);
|
|
v.e.write_cr_enable := '1';
|
|
crnum := to_integer(unsigned(bf));
|
|
scrnum := to_integer(unsigned(bfa));
|
|
v.e.write_cr_mask := num_to_fxm(crnum);
|
|
for i in 0 to 7 loop
|
|
lo := (7-i)*4;
|
|
hi := lo + 3;
|
|
if i = scrnum then
|
|
newcrf := e_in.cr(hi downto lo);
|
|
end if;
|
|
end loop;
|
|
for i in 0 to 7 loop
|
|
lo := i*4;
|
|
hi := lo + 3;
|
|
v.e.write_cr_data(hi downto lo) := newcrf;
|
|
end loop;
|
|
else
|
|
v.e.write_cr_enable := '1';
|
|
bt := insn_bt(e_in.insn);
|
|
ba := insn_ba(e_in.insn);
|
|
bb := insn_bb(e_in.insn);
|
|
btnum := 31 - to_integer(unsigned(bt));
|
|
banum := 31 - to_integer(unsigned(ba));
|
|
bbnum := 31 - to_integer(unsigned(bb));
|
|
-- Bits 5-8 of cr_op give the truth table of the requested
|
|
-- logical operation
|
|
cr_operands := e_in.cr(banum) & e_in.cr(bbnum);
|
|
crresult := cr_op(5 + to_integer(unsigned(cr_operands)));
|
|
v.e.write_cr_mask := num_to_fxm((31-btnum) / 4);
|
|
for i in 0 to 31 loop
|
|
if i = btnum then
|
|
v.e.write_cr_data(i) := crresult;
|
|
else
|
|
v.e.write_cr_data(i) := e_in.cr(i);
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
when OP_MFMSR =>
|
|
result := ctrl.msr;
|
|
result_en := '1';
|
|
when OP_MFSPR =>
|
|
report "MFSPR to SPR " & integer'image(decode_spr_num(e_in.insn)) &
|
|
"=" & to_hstring(a_in);
|
|
if is_fast_spr(e_in.read_reg1) then
|
|
result := a_in;
|
|
if decode_spr_num(e_in.insn) = SPR_XER then
|
|
-- bits 0:31 and 35:43 are treated as reserved and return 0s when read using mfxer
|
|
result(63 downto 32) := (others => '0');
|
|
result(63-32) := v.e.xerc.so;
|
|
result(63-33) := v.e.xerc.ov;
|
|
result(63-34) := v.e.xerc.ca;
|
|
result(63-35 downto 63-43) := "000000000";
|
|
result(63-44) := v.e.xerc.ov32;
|
|
result(63-45) := v.e.xerc.ca32;
|
|
end if;
|
|
else
|
|
case decode_spr_num(e_in.insn) is
|
|
when SPR_TB =>
|
|
result := ctrl.tb;
|
|
when SPR_DEC =>
|
|
result := ctrl.dec;
|
|
when others =>
|
|
result := (others => '0');
|
|
end case;
|
|
end if;
|
|
result_en := '1';
|
|
when OP_MFCR =>
|
|
if e_in.insn(20) = '0' then
|
|
-- mfcr
|
|
result := x"00000000" & e_in.cr;
|
|
else
|
|
-- mfocrf
|
|
crnum := fxm_to_num(insn_fxm(e_in.insn));
|
|
result := (others => '0');
|
|
for i in 0 to 7 loop
|
|
lo := (7-i)*4;
|
|
hi := lo + 3;
|
|
if crnum = i then
|
|
result(hi downto lo) := e_in.cr(hi downto lo);
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
result_en := '1';
|
|
when OP_MTCRF =>
|
|
v.e.write_cr_enable := '1';
|
|
if e_in.insn(20) = '0' then
|
|
-- mtcrf
|
|
v.e.write_cr_mask := insn_fxm(e_in.insn);
|
|
else
|
|
-- mtocrf: We require one hot priority encoding here
|
|
crnum := fxm_to_num(insn_fxm(e_in.insn));
|
|
v.e.write_cr_mask := num_to_fxm(crnum);
|
|
end if;
|
|
v.e.write_cr_data := c_in(31 downto 0);
|
|
when OP_MTMSRD =>
|
|
if e_in.insn(16) = '1' then
|
|
-- just update EE and RI
|
|
ctrl_tmp.msr(MSR_EE) <= c_in(MSR_EE);
|
|
ctrl_tmp.msr(MSR_RI) <= c_in(MSR_RI);
|
|
else
|
|
-- Architecture says to leave out bits 3 (HV), 51 (ME)
|
|
-- and 63 (LE) (IBM bit numbering)
|
|
ctrl_tmp.msr(63 downto 61) <= c_in(63 downto 61);
|
|
ctrl_tmp.msr(59 downto 13) <= c_in(59 downto 13);
|
|
ctrl_tmp.msr(11 downto 1) <= c_in(11 downto 1);
|
|
if c_in(MSR_PR) = '1' then
|
|
ctrl_tmp.msr(MSR_EE) <= '1';
|
|
ctrl_tmp.msr(MSR_IR) <= '1';
|
|
ctrl_tmp.msr(MSR_DR) <= '1';
|
|
end if;
|
|
end if;
|
|
when OP_MTSPR =>
|
|
report "MTSPR to SPR " & integer'image(decode_spr_num(e_in.insn)) &
|
|
"=" & to_hstring(c_in);
|
|
if is_fast_spr(e_in.write_reg) then
|
|
result := c_in;
|
|
result_en := '1';
|
|
if decode_spr_num(e_in.insn) = SPR_XER then
|
|
v.e.xerc.so := c_in(63-32);
|
|
v.e.xerc.ov := c_in(63-33);
|
|
v.e.xerc.ca := c_in(63-34);
|
|
v.e.xerc.ov32 := c_in(63-44);
|
|
v.e.xerc.ca32 := c_in(63-45);
|
|
v.e.write_xerc_enable := '1';
|
|
end if;
|
|
else
|
|
-- slow spr
|
|
case decode_spr_num(e_in.insn) is
|
|
when SPR_DEC =>
|
|
ctrl_tmp.dec <= c_in;
|
|
when others =>
|
|
end case;
|
|
end if;
|
|
when OP_POPCNT =>
|
|
result := popcnt_result;
|
|
result_en := '1';
|
|
when OP_PRTY =>
|
|
result := parity_result;
|
|
result_en := '1';
|
|
when OP_RLC | OP_RLCL | OP_RLCR | OP_SHL | OP_SHR =>
|
|
result := rotator_result;
|
|
if e_in.output_carry = '1' then
|
|
set_carry(v.e, rotator_carry, rotator_carry);
|
|
end if;
|
|
result_en := '1';
|
|
|
|
when OP_ISYNC =>
|
|
f_out.redirect <= '1';
|
|
f_out.redirect_nia <= next_nia;
|
|
|
|
when OP_ICBI =>
|
|
icache_inval <= '1';
|
|
|
|
when OP_MUL_L64 | OP_MUL_H64 | OP_MUL_H32 =>
|
|
v.e.valid := '0';
|
|
v.mul_in_progress := '1';
|
|
stall_out <= '1';
|
|
x_to_multiply.valid <= '1';
|
|
|
|
when OP_DIV | OP_DIVE | OP_MOD =>
|
|
v.e.valid := '0';
|
|
v.div_in_progress := '1';
|
|
stall_out <= '1';
|
|
x_to_divider.valid <= '1';
|
|
|
|
when others =>
|
|
terminate_out <= '1';
|
|
report "illegal";
|
|
end case;
|
|
|
|
v.e.rc := e_in.rc and e_in.valid;
|
|
|
|
-- Update LR on the next cycle after a branch link
|
|
--
|
|
-- WARNING: The LR update isn't tracked by our hazard tracker. This
|
|
-- will work (well I hope) because it only happens on branches
|
|
-- which will flush all decoded instructions. By the time
|
|
-- fetch catches up, we'll have the new LR. This will
|
|
-- *not* work properly however if we have a branch predictor,
|
|
-- in which case the solution would probably be to keep a
|
|
-- local cache of the updated LR in execute1 (flushed on
|
|
-- exceptions) that is used instead of the value from
|
|
-- decode when its content is valid.
|
|
if e_in.lr = '1' then
|
|
v.lr_update := '1';
|
|
v.next_lr := next_nia;
|
|
v.e.valid := '0';
|
|
report "Delayed LR update to " & to_hstring(next_nia);
|
|
stall_out <= '1';
|
|
end if;
|
|
|
|
elsif e_in.valid = '1' then
|
|
-- instruction for other units, i.e. LDST
|
|
v.e.valid := '0';
|
|
if e_in.unit = LDST then
|
|
lv.valid := '1';
|
|
end if;
|
|
|
|
elsif r.lr_update = '1' then
|
|
result_en := '1';
|
|
result := r.next_lr;
|
|
v.e.write_reg := fast_spr_num(SPR_LR);
|
|
v.e.valid := '1';
|
|
elsif r.cntz_in_progress = '1' then
|
|
-- cnt[lt]z always takes two cycles
|
|
result := countzero_result;
|
|
result_en := '1';
|
|
v.e.write_reg := gpr_to_gspr(v.slow_op_dest);
|
|
v.e.rc := v.slow_op_rc;
|
|
v.e.xerc := v.slow_op_xerc;
|
|
v.e.valid := '1';
|
|
elsif r.mul_in_progress = '1' or r.div_in_progress = '1' then
|
|
if (r.mul_in_progress = '1' and multiply_to_x.valid = '1') or
|
|
(r.div_in_progress = '1' and divider_to_x.valid = '1') then
|
|
if r.mul_in_progress = '1' then
|
|
result := multiply_to_x.write_reg_data;
|
|
overflow := multiply_to_x.overflow;
|
|
else
|
|
result := divider_to_x.write_reg_data;
|
|
overflow := divider_to_x.overflow;
|
|
end if;
|
|
result_en := '1';
|
|
v.e.write_reg := gpr_to_gspr(v.slow_op_dest);
|
|
v.e.rc := v.slow_op_rc;
|
|
v.e.xerc := v.slow_op_xerc;
|
|
v.e.write_xerc_enable := v.slow_op_oe;
|
|
-- We must test oe because the RC update code in writeback
|
|
-- will use the xerc value to set CR0:SO so we must not clobber
|
|
-- xerc if OE wasn't set.
|
|
if v.slow_op_oe = '1' then
|
|
v.e.xerc.ov := overflow;
|
|
v.e.xerc.ov32 := overflow;
|
|
v.e.xerc.so := v.slow_op_xerc.so or overflow;
|
|
end if;
|
|
v.e.valid := '1';
|
|
else
|
|
stall_out <= '1';
|
|
v.mul_in_progress := r.mul_in_progress;
|
|
v.div_in_progress := r.div_in_progress;
|
|
end if;
|
|
end if;
|
|
|
|
if illegal = '1' then
|
|
exception := '1';
|
|
ctrl_tmp.irq_nia <= std_logic_vector(to_unsigned(16#700#, 64));
|
|
ctrl_tmp.srr1 <= msr_copy(ctrl.msr);
|
|
-- Since we aren't doing Hypervisor emulation assist (0xe40) we
|
|
-- set bit 44 to indicate we have an illegal
|
|
ctrl_tmp.srr1(63 - 44) <= '1';
|
|
report "illegal";
|
|
end if;
|
|
if exception = '1' then
|
|
v.e.exc_write_enable := '1';
|
|
if exception_nextpc = '1' then
|
|
v.e.exc_write_data := next_nia;
|
|
end if;
|
|
ctrl_tmp.irq_state <= WRITE_SRR1;
|
|
v.e.valid := '1';
|
|
end if;
|
|
|
|
v.e.write_data := result;
|
|
v.e.write_enable := result_en;
|
|
|
|
-- Outputs to loadstore1 (async)
|
|
lv.op := e_in.insn_type;
|
|
lv.addr1 := a_in;
|
|
lv.addr2 := b_in;
|
|
lv.data := c_in;
|
|
lv.write_reg := gspr_to_gpr(e_in.write_reg);
|
|
lv.length := e_in.data_len;
|
|
lv.byte_reverse := e_in.byte_reverse;
|
|
lv.sign_extend := e_in.sign_extend;
|
|
lv.update := e_in.update;
|
|
lv.update_reg := gspr_to_gpr(e_in.read_reg1);
|
|
lv.xerc := v.e.xerc;
|
|
lv.reserve := e_in.reserve;
|
|
lv.rc := e_in.rc;
|
|
-- decode l*cix and st*cix instructions here
|
|
if e_in.insn(31 downto 26) = "011111" and e_in.insn(10 downto 9) = "11" and
|
|
e_in.insn(5 downto 1) = "10101" then
|
|
lv.ci := '1';
|
|
end if;
|
|
|
|
-- Update registers
|
|
rin <= v;
|
|
|
|
-- update outputs
|
|
--f_out <= r.f;
|
|
l_out <= lv;
|
|
e_out <= r.e;
|
|
flush_out <= f_out.redirect;
|
|
end process;
|
|
end architecture behaviour;
|