You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
microwatt/soc.vhdl

1138 lines
39 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.math_real.all;
use std.textio.all;
use std.env.stop;
library work;
use work.common.all;
use work.wishbone_types.all;
-- Memory map. *** Keep include/microwatt_soc.h updated on changes ***
--
-- Main bus:
-- 0x00000000: Block RAM (MEMORY_SIZE) or DRAM depending on syscon
-- 0x40000000: DRAM (when present)
-- 0x80000000: Block RAM (aliased & repeated)
-- IO Bus:
-- 0xc0000000: SYSCON
-- 0xc0002000: UART0
-- 0xc0003000: UART1 (if any)
-- 0xc0004000: XICS ICP
-- 0xc0005000: XICS ICS
-- 0xc0006000: SPI Flash controller
-- 0xc0007000: GPIO controller
-- 0xc8nnnnnn: External IO bus
-- 0xf0000000: Flash "ROM" mapping
-- 0xff000000: DRAM init code (if any) or flash ROM (**)
-- External IO bus:
-- 0xc8000000: LiteDRAM control (CSRs)
-- 0xc8020000: LiteEth CSRs (*)
-- 0xc8030000: LiteEth MMIO (*)
-- 0xc8040000: LiteSDCard CSRs
-- (*) LiteEth must be a single aligned 32KB block as the CSRs and MMIOs
-- are actually decoded as a single wishbone which LiteEth will
-- internally split based on bit 16.
-- (**) DRAM init code is currently special and goes to the external
-- IO bus, this will be fixed when it's moved out of litedram and
-- into the main SoC once we have a common "firmware".
-- Interrupt numbers:
--
-- 0 : UART0
-- 1 : Ethernet
-- 2 : UART1
-- 3 : SD card
-- 4 : GPIO
-- Resets:
-- The soc can be reset externally by its parent top- entity (via rst port),
-- or can be reset by software via syscon. In the software reset case
-- the reset signal will also be exposed via sw_soc_reset port - toplevels
-- can use that to reset other peripherals if required.
--
-- When using DRAM the alt_reset signal will be high after soc reset, to
-- run sdram init routines. After startup software will switch alt_reset to
-- low, so a core reset will use the non-alt reset address.
entity soc is
generic (
MEMORY_SIZE : natural;
RAM_INIT_FILE : string;
CLK_FREQ : positive;
SIM : boolean;
HAS_FPU : boolean := true;
HAS_BTC : boolean := true;
DISABLE_FLATTEN_CORE : boolean := false;
ALT_RESET_ADDRESS : std_logic_vector(63 downto 0) := (23 downto 0 => '0', others => '1');
HAS_DRAM : boolean := false;
DRAM_SIZE : integer := 0;
DRAM_INIT_SIZE : integer := 0;
HAS_SPI_FLASH : boolean := false;
SPI_FLASH_DLINES : positive := 1;
SPI_FLASH_OFFSET : integer := 0;
SPI_FLASH_DEF_CKDV : natural := 2;
SPI_FLASH_DEF_QUAD : boolean := false;
SPI_BOOT_CLOCKS : boolean := true;
LOG_LENGTH : natural := 512;
HAS_LITEETH : boolean := false;
UART0_IS_16550 : boolean := true;
HAS_UART1 : boolean := false;
ICACHE_NUM_LINES : natural := 64;
ICACHE_NUM_WAYS : natural := 2;
ICACHE_TLB_SIZE : natural := 64;
DCACHE_NUM_LINES : natural := 64;
DCACHE_NUM_WAYS : natural := 2;
DCACHE_TLB_SET_SIZE : natural := 64;
DCACHE_TLB_NUM_WAYS : natural := 2;
HAS_SD_CARD : boolean := false;
HAS_GPIO : boolean := false;
NGPIO : natural := 32
);
port(
rst : in std_ulogic;
system_clk : in std_ulogic;
run_out : out std_ulogic;
-- "Large" (64-bit) DRAM wishbone
wb_dram_in : out wishbone_master_out;
wb_dram_out : in wishbone_slave_out := wishbone_slave_out_init;
-- "Small" (32-bit) external IO wishbone
wb_ext_io_in : out wb_io_master_out;
wb_ext_io_out : in wb_io_slave_out := wb_io_slave_out_init;
wb_ext_is_dram_csr : out std_ulogic;
wb_ext_is_dram_init : out std_ulogic;
wb_ext_is_eth : out std_ulogic;
wb_ext_is_sdcard : out std_ulogic;
-- external DMA wishbone with 32-bit data/address
wishbone_dma_in : out wb_io_slave_out := wb_io_slave_out_init;
wishbone_dma_out : in wb_io_master_out := wb_io_master_out_init;
-- External interrupts
ext_irq_eth : in std_ulogic := '0';
ext_irq_sdcard : in std_ulogic := '0';
-- UART0 signals:
uart0_txd : out std_ulogic;
uart0_rxd : in std_ulogic := '0';
-- UART1 signals:
uart1_txd : out std_ulogic;
uart1_rxd : in std_ulogic := '0';
-- SPI Flash signals
spi_flash_sck : out std_ulogic;
spi_flash_cs_n : out std_ulogic;
spi_flash_sdat_o : out std_ulogic_vector(SPI_FLASH_DLINES-1 downto 0);
spi_flash_sdat_oe : out std_ulogic_vector(SPI_FLASH_DLINES-1 downto 0);
spi_flash_sdat_i : in std_ulogic_vector(SPI_FLASH_DLINES-1 downto 0) := (others => '1');
-- GPIO signals
gpio_out : out std_ulogic_vector(NGPIO - 1 downto 0);
gpio_dir : out std_ulogic_vector(NGPIO - 1 downto 0);
gpio_in : in std_ulogic_vector(NGPIO - 1 downto 0) := (others => '0');
-- SOC reset trigger from syscon
sw_soc_reset : out std_ulogic
);
end entity soc;
architecture behaviour of soc is
-- internal reset
signal soc_reset : std_ulogic;
-- Wishbone master signals:
signal wishbone_dcore_in : wishbone_slave_out;
signal wishbone_dcore_out : wishbone_master_out;
signal wishbone_icore_in : wishbone_slave_out;
signal wishbone_icore_out : wishbone_master_out;
signal wishbone_debug_in : wishbone_slave_out;
signal wishbone_debug_out : wishbone_master_out;
-- Arbiter array (ghdl doesnt' support assigning the array
-- elements in the entity instantiation)
constant NUM_WB_MASTERS : positive := 4;
signal wb_masters_out : wishbone_master_out_vector(0 to NUM_WB_MASTERS-1);
signal wb_masters_in : wishbone_slave_out_vector(0 to NUM_WB_MASTERS-1);
-- Wishbone master (output of arbiter):
signal wb_master_in : wishbone_slave_out;
signal wb_master_out : wishbone_master_out;
signal wb_snoop : wishbone_master_out;
-- Main "IO" bus, from main slave decoder to the latch
signal wb_io_in : wishbone_master_out;
signal wb_io_out : wishbone_slave_out;
-- Secondary (smaller) IO bus after the IO bus latch
signal wb_sio_out : wb_io_master_out;
signal wb_sio_in : wb_io_slave_out;
-- Syscon signals
signal dram_at_0 : std_ulogic;
signal do_core_reset : std_ulogic;
signal alt_reset : std_ulogic;
signal wb_syscon_in : wb_io_master_out;
signal wb_syscon_out : wb_io_slave_out;
-- UART0 signals:
signal wb_uart0_in : wb_io_master_out;
signal wb_uart0_out : wb_io_slave_out;
signal uart0_dat8 : std_ulogic_vector(7 downto 0);
signal uart0_irq : std_ulogic;
-- UART1 signals:
signal wb_uart1_in : wb_io_master_out;
signal wb_uart1_out : wb_io_slave_out;
signal uart1_dat8 : std_ulogic_vector(7 downto 0);
signal uart1_irq : std_ulogic;
-- SPI Flash controller signals:
signal wb_spiflash_in : wb_io_master_out;
signal wb_spiflash_out : wb_io_slave_out;
signal wb_spiflash_is_reg : std_ulogic;
signal wb_spiflash_is_map : std_ulogic;
-- XICS signals:
signal wb_xics_icp_in : wb_io_master_out;
signal wb_xics_icp_out : wb_io_slave_out;
signal wb_xics_ics_in : wb_io_master_out;
signal wb_xics_ics_out : wb_io_slave_out;
signal int_level_in : std_ulogic_vector(15 downto 0);
signal ics_to_icp : ics_to_icp_t;
signal core_ext_irq : std_ulogic;
-- GPIO signals:
signal wb_gpio_in : wb_io_master_out;
signal wb_gpio_out : wb_io_slave_out;
signal gpio_intr : std_ulogic := '0';
-- Main memory signals:
signal wb_bram_in : wishbone_master_out;
signal wb_bram_out : wishbone_slave_out;
-- DMI debug bus signals
signal dmi_addr : std_ulogic_vector(7 downto 0);
signal dmi_din : std_ulogic_vector(63 downto 0);
signal dmi_dout : std_ulogic_vector(63 downto 0);
signal dmi_req : std_ulogic;
signal dmi_wr : std_ulogic;
signal dmi_ack : std_ulogic;
-- Per slave DMI signals
signal dmi_wb_dout : std_ulogic_vector(63 downto 0);
signal dmi_wb_req : std_ulogic;
signal dmi_wb_ack : std_ulogic;
signal dmi_core_dout : std_ulogic_vector(63 downto 0);
signal dmi_core_req : std_ulogic;
signal dmi_core_ack : std_ulogic;
-- Delayed/latched resets and alt_reset
signal rst_core : std_ulogic;
signal rst_uart : std_ulogic;
signal rst_xics : std_ulogic;
signal rst_spi : std_ulogic;
signal rst_gpio : std_ulogic;
signal rst_bram : std_ulogic;
signal rst_dtm : std_ulogic;
signal rst_wbar : std_ulogic;
signal rst_wbdb : std_ulogic;
signal alt_reset_d : std_ulogic;
-- IO branch split:
type slave_io_type is (SLAVE_IO_SYSCON,
SLAVE_IO_UART,
SLAVE_IO_ICP,
SLAVE_IO_ICS,
SLAVE_IO_UART1,
SLAVE_IO_SPI_FLASH,
SLAVE_IO_GPIO,
SLAVE_IO_EXTERNAL);
signal current_io_decode : slave_io_type;
signal io_cycle_none : std_ulogic;
signal io_cycle_syscon : std_ulogic;
signal io_cycle_uart : std_ulogic;
signal io_cycle_uart1 : std_ulogic;
signal io_cycle_icp : std_ulogic;
signal io_cycle_ics : std_ulogic;
signal io_cycle_spi_flash : std_ulogic;
signal io_cycle_gpio : std_ulogic;
signal io_cycle_external : std_ulogic;
function wishbone_widen_data(wb : wb_io_master_out) return wishbone_master_out is
variable wwb : wishbone_master_out;
begin
wwb.adr := wb.adr(wb.adr'left downto 1);
wwb.dat := wb.dat & wb.dat;
wwb.sel := x"00";
if wb.adr(0) = '0' then
wwb.sel(3 downto 0) := wb.sel;
else
wwb.sel(7 downto 4) := wb.sel;
end if;
wwb.cyc := wb.cyc;
wwb.stb := wb.stb;
wwb.we := wb.we;
return wwb;
end;
function wishbone_narrow_data(wwbs : wishbone_slave_out; adr : std_ulogic_vector(29 downto 0))
return wb_io_slave_out is
variable wbs : wb_io_slave_out;
begin
wbs.ack := wwbs.ack;
wbs.stall := wwbs.stall;
if adr(0) = '0' then
wbs.dat := wwbs.dat(31 downto 0);
else
wbs.dat := wwbs.dat(63 downto 32);
end if;
return wbs;
end;
-- This is the component exported by the 16550 compatible
-- UART from FuseSoC.
--
component uart_top port (
wb_clk_i : in std_ulogic;
wb_rst_i : in std_ulogic;
wb_adr_i : in std_ulogic_vector(2 downto 0);
wb_dat_i : in std_ulogic_vector(7 downto 0);
wb_dat_o : out std_ulogic_vector(7 downto 0);
wb_we_i : in std_ulogic;
wb_stb_i : in std_ulogic;
wb_cyc_i : in std_ulogic;
wb_ack_o : out std_ulogic;
int_o : out std_ulogic;
stx_pad_o : out std_ulogic;
srx_pad_i : in std_ulogic;
rts_pad_o : out std_ulogic;
cts_pad_i : in std_ulogic;
dtr_pad_o : out std_ulogic;
dsr_pad_i : in std_ulogic;
ri_pad_i : in std_ulogic;
dcd_pad_i : in std_ulogic
);
end component;
begin
-- either external reset, or from syscon
soc_reset <= rst or sw_soc_reset;
resets: process(system_clk)
begin
if rising_edge(system_clk) then
rst_core <= soc_reset or do_core_reset;
rst_uart <= soc_reset;
rst_spi <= soc_reset;
rst_xics <= soc_reset;
rst_gpio <= soc_reset;
rst_bram <= soc_reset;
rst_dtm <= soc_reset;
rst_wbar <= soc_reset;
rst_wbdb <= soc_reset;
alt_reset_d <= alt_reset;
end if;
end process;
-- Processor core
processor: entity work.core
generic map(
SIM => SIM,
CPU_INDEX => 0,
HAS_FPU => HAS_FPU,
HAS_BTC => HAS_BTC,
DISABLE_FLATTEN => DISABLE_FLATTEN_CORE,
ALT_RESET_ADDRESS => ALT_RESET_ADDRESS,
LOG_LENGTH => LOG_LENGTH,
ICACHE_NUM_LINES => ICACHE_NUM_LINES,
ICACHE_NUM_WAYS => ICACHE_NUM_WAYS,
ICACHE_TLB_SIZE => ICACHE_TLB_SIZE,
DCACHE_NUM_LINES => DCACHE_NUM_LINES,
DCACHE_NUM_WAYS => DCACHE_NUM_WAYS,
DCACHE_TLB_SET_SIZE => DCACHE_TLB_SET_SIZE,
DCACHE_TLB_NUM_WAYS => DCACHE_TLB_NUM_WAYS
)
port map(
clk => system_clk,
rst => rst_core,
alt_reset => alt_reset_d,
run_out => run_out,
wishbone_insn_in => wishbone_icore_in,
wishbone_insn_out => wishbone_icore_out,
wishbone_data_in => wishbone_dcore_in,
wishbone_data_out => wishbone_dcore_out,
wb_snoop_in => wb_snoop,
dmi_addr => dmi_addr(3 downto 0),
dmi_dout => dmi_core_dout,
dmi_din => dmi_dout,
dmi_wr => dmi_wr,
dmi_ack => dmi_core_ack,
dmi_req => dmi_core_req,
ext_irq => core_ext_irq
);
-- Wishbone bus master arbiter & mux
wb_masters_out <= (0 => wishbone_dcore_out,
1 => wishbone_icore_out,
2 => wishbone_widen_data(wishbone_dma_out),
3 => wishbone_debug_out);
wishbone_dcore_in <= wb_masters_in(0);
wishbone_icore_in <= wb_masters_in(1);
wishbone_dma_in <= wishbone_narrow_data(wb_masters_in(2), wishbone_dma_out.adr);
wishbone_debug_in <= wb_masters_in(3);
wishbone_arbiter_0: entity work.wishbone_arbiter
generic map(
NUM_MASTERS => NUM_WB_MASTERS
)
port map(
clk => system_clk,
rst => rst_wbar,
wb_masters_in => wb_masters_out,
wb_masters_out => wb_masters_in,
wb_slave_out => wb_master_out,
wb_slave_in => wb_master_in
);
-- Snoop bus going to caches.
-- Gate stb with stall so the caches don't see the stalled strobes.
-- That way if the caches see a strobe when their wishbone is stalled,
-- they know it is an access by another master.
process(all)
begin
wb_snoop <= wb_master_out;
if wb_master_in.stall = '1' then
wb_snoop.stb <= '0';
end if;
end process;
-- Top level Wishbone slaves address decoder & mux
--
-- From CPU to BRAM, DRAM, IO, selected on top 3 bits and dram_at_0
-- 0000 - BRAM
-- 0001 - DRAM
-- 01xx - DRAM
-- 10xx - BRAM
-- 11xx - IO
--
slave_top_intercon: process(wb_master_out, wb_bram_out, wb_dram_out, wb_io_out, dram_at_0)
type slave_top_type is (SLAVE_TOP_BRAM,
SLAVE_TOP_DRAM,
SLAVE_TOP_IO);
variable slave_top : slave_top_type;
variable top_decode : std_ulogic_vector(3 downto 0);
begin
-- Top-level address decoder
top_decode := wb_master_out.adr(28 downto 26) & dram_at_0;
slave_top := SLAVE_TOP_BRAM;
if std_match(top_decode, "0000") then
slave_top := SLAVE_TOP_BRAM;
elsif std_match(top_decode, "0001") then
slave_top := SLAVE_TOP_DRAM;
elsif std_match(top_decode, "01--") then
slave_top := SLAVE_TOP_DRAM;
elsif std_match(top_decode, "10--") then
slave_top := SLAVE_TOP_BRAM;
elsif std_match(top_decode, "11--") then
slave_top := SLAVE_TOP_IO;
end if;
-- Top level wishbone muxing.
wb_bram_in <= wb_master_out;
wb_bram_in.cyc <= '0';
wb_dram_in <= wb_master_out;
wb_dram_in.cyc <= '0';
wb_io_in <= wb_master_out;
wb_io_in.cyc <= '0';
case slave_top is
when SLAVE_TOP_BRAM =>
wb_bram_in.cyc <= wb_master_out.cyc;
wb_master_in <= wb_bram_out;
when SLAVE_TOP_DRAM =>
if HAS_DRAM then
wb_dram_in.cyc <= wb_master_out.cyc;
wb_master_in <= wb_dram_out;
else
wb_master_in.ack <= wb_master_out.cyc and wb_master_out.stb;
wb_master_in.dat <= (others => '1');
wb_master_in.stall <= '0';
end if;
when SLAVE_TOP_IO =>
wb_io_in.cyc <= wb_master_out.cyc;
wb_master_in <= wb_io_out;
end case;
end process slave_top_intercon;
-- IO wishbone slave 64->32 bits converter
--
-- For timing reasons, this adds a one cycle latch on the way both
-- in and out. This relaxes timing and routing pressure on the "main"
-- memory bus by moving all simple IOs to a slower 32-bit bus.
--
-- This implementation is rather dumb at the moment, no stash buffer,
-- so we stall whenever that latch is busy. This can be improved.
--
slave_io_latch: process(system_clk)
-- State
type state_t is (IDLE, WAIT_ACK_BOT, WAIT_ACK_TOP);
variable state : state_t;
-- Misc
variable has_top : boolean;
variable has_bot : boolean;
variable do_cyc : std_ulogic;
variable end_cyc : std_ulogic;
variable slave_io : slave_io_type;
variable match : std_ulogic_vector(31 downto 12);
variable dat_latch : std_ulogic_vector(31 downto 0);
variable sel_latch : std_ulogic_vector(3 downto 0);
begin
if rising_edge(system_clk) then
do_cyc := '0';
end_cyc := '0';
if (soc_reset) then
state := IDLE;
wb_io_out.ack <= '0';
wb_io_out.stall <= '0';
wb_sio_out.stb <= '0';
end_cyc := '1';
has_top := false;
has_bot := false;
dat_latch := (others => '0');
sel_latch := (others => '0');
else
case state is
when IDLE =>
-- Clear ACK in case it was set
wb_io_out.ack <= '0';
-- Do we have a cycle ?
if wb_io_in.cyc = '1' and wb_io_in.stb = '1' then
-- Stall master until we are done, we are't (yet) pipelining
-- this, it's all slow IOs. Note: The current cycle has
-- already been accepted as "stall" was 0, this only blocks
-- the next one. This means that we must latch
-- everything we need from wb_io_in in *this* cycle.
--
wb_io_out.stall <= '1';
-- Start cycle downstream
do_cyc := '1';
wb_sio_out.stb <= '1';
-- Copy write enable to IO out, copy address as well
wb_sio_out.we <= wb_io_in.we;
wb_sio_out.adr <= wb_io_in.adr(wb_sio_out.adr'left - 1 downto 0) & '0';
-- Do we have a top word and/or a bottom word ?
has_top := wb_io_in.sel(7 downto 4) /= "0000";
has_bot := wb_io_in.sel(3 downto 0) /= "0000";
-- Remember the top word as it might be needed later
dat_latch := wb_io_in.dat(63 downto 32);
sel_latch := wb_io_in.sel(7 downto 4);
-- If we have a bottom word, handle it first, otherwise
-- send the top word down.
if has_bot then
-- Always update out.dat, it doesn't matter if we
-- update it on reads and it saves mux
wb_sio_out.dat <= wb_io_in.dat(31 downto 0);
wb_sio_out.sel <= wb_io_in.sel(3 downto 0);
-- Wait for ack
state := WAIT_ACK_BOT;
else
wb_sio_out.dat <= wb_io_in.dat(63 downto 32);
wb_sio_out.sel <= wb_io_in.sel(7 downto 4);
-- Bump address
wb_sio_out.adr(0) <= '1';
-- Wait for ack
state := WAIT_ACK_TOP;
end if;
end if;
when WAIT_ACK_BOT =>
-- If we aren't stalled by the device, clear stb
if wb_sio_in.stall = '0' then
wb_sio_out.stb <= '0';
end if;
-- Handle ack
if wb_sio_in.ack = '1' then
-- Always latch the data, it doesn't matter if it was
-- a write and it saves a mux
wb_io_out.dat(31 downto 0) <= wb_sio_in.dat;
-- Do we have a "top" part as well ?
if has_top then
wb_sio_out.dat <= dat_latch;
wb_sio_out.sel <= sel_latch;
-- Bump address and set STB
wb_sio_out.adr(0) <= '1';
wb_sio_out.stb <= '1';
-- Wait for new ack
state := WAIT_ACK_TOP;
else
-- We are done, ack up, clear cyc downstream
end_cyc := '1';
-- And ack & unstall upstream
wb_io_out.ack <= '1';
wb_io_out.stall <= '0';
-- Wait for next one
state := IDLE;
end if;
end if;
when WAIT_ACK_TOP =>
-- If we aren't stalled by the device, clear stb
if wb_sio_in.stall = '0' then
wb_sio_out.stb <= '0';
end if;
-- Handle ack
if wb_sio_in.ack = '1' then
-- Always latch the data, it doesn't matter if it was
-- a write and it saves a mux
wb_io_out.dat(63 downto 32) <= wb_sio_in.dat;
-- We are done, ack up, clear cyc downstram
end_cyc := '1';
-- And ack & unstall upstream
wb_io_out.ack <= '1';
wb_io_out.stall <= '0';
-- Wait for next one
state := IDLE;
end if;
end case;
end if;
-- Create individual registered cycle signals for the wishbones
-- going to the various peripherals
--
-- Note: This needs to happen on the cycle matching state = IDLE,
-- as wb_io_in content can only be relied upon on that one cycle.
-- This works here because do_cyc is a variable, not a signal, and
-- thus here we observe the value set above in the state machine
-- on the same cycle rather than the next one.
--
if do_cyc = '1' or end_cyc = '1' then
io_cycle_none <= '0';
io_cycle_syscon <= '0';
io_cycle_uart <= '0';
io_cycle_uart1 <= '0';
io_cycle_icp <= '0';
io_cycle_ics <= '0';
io_cycle_spi_flash <= '0';
io_cycle_gpio <= '0';
io_cycle_external <= '0';
wb_sio_out.cyc <= '0';
wb_ext_is_dram_init <= '0';
wb_spiflash_is_map <= '0';
wb_spiflash_is_reg <= '0';
wb_ext_is_dram_csr <= '0';
wb_ext_is_eth <= '0';
wb_ext_is_sdcard <= '0';
end if;
if do_cyc = '1' then
-- Decode I/O address
-- This is real address bits 29 downto 12
match := "11" & wb_io_in.adr(26 downto 9);
slave_io := SLAVE_IO_SYSCON;
if std_match(match, x"FF---") and HAS_DRAM then
slave_io := SLAVE_IO_EXTERNAL;
io_cycle_external <= '1';
wb_ext_is_dram_init <= '1';
elsif std_match(match, x"F----") then
slave_io := SLAVE_IO_SPI_FLASH;
io_cycle_spi_flash <= '1';
wb_spiflash_is_map <= '1';
elsif std_match(match, x"C8---") then
-- Ext IO "chip selects"
if std_match(match, x"--00-") and HAS_DRAM then
slave_io := SLAVE_IO_EXTERNAL;
io_cycle_external <= '1';
wb_ext_is_dram_csr <= '1';
elsif (std_match(match, x"--02-") or std_match(match, x"--03-")) and
HAS_LITEETH then
slave_io := SLAVE_IO_EXTERNAL;
io_cycle_external <= '1';
wb_ext_is_eth <= '1';
elsif std_match(match, x"--04-") and HAS_SD_CARD then
slave_io := SLAVE_IO_EXTERNAL;
io_cycle_external <= '1';
wb_ext_is_sdcard <= '1';
else
io_cycle_none <= '1';
end if;
elsif std_match(match, x"C0000") then
slave_io := SLAVE_IO_SYSCON;
io_cycle_syscon <= '1';
elsif std_match(match, x"C0002") then
slave_io := SLAVE_IO_UART;
io_cycle_uart <= '1';
elsif std_match(match, x"C0003") then
slave_io := SLAVE_IO_UART1;
io_cycle_uart1 <= '1';
elsif std_match(match, x"C0004") then
slave_io := SLAVE_IO_ICP;
io_cycle_icp <= '1';
elsif std_match(match, x"C0005") then
slave_io := SLAVE_IO_ICS;
io_cycle_ics <= '1';
elsif std_match(match, x"C0006") then
slave_io := SLAVE_IO_SPI_FLASH;
io_cycle_spi_flash <= '1';
wb_spiflash_is_reg <= '1';
elsif std_match(match, x"C0007") then
slave_io := SLAVE_IO_GPIO;
io_cycle_gpio <= '1';
else
io_cycle_none <= '1';
end if;
current_io_decode <= slave_io;
wb_sio_out.cyc <= '1';
end if;
end if;
end process;
-- IO wishbone slave interconnect.
--
slave_io_intercon: process(all)
begin
wb_uart0_in <= wb_sio_out;
wb_uart0_in.cyc <= io_cycle_uart;
wb_uart1_in <= wb_sio_out;
wb_uart1_in.cyc <= io_cycle_uart1;
wb_spiflash_in <= wb_sio_out;
wb_spiflash_in.cyc <= io_cycle_spi_flash;
-- Clear top bits so they don't make their way to the
-- flash chip.
wb_spiflash_in.adr(27 downto 26) <= "00";
wb_gpio_in <= wb_sio_out;
wb_gpio_in.cyc <= io_cycle_gpio;
-- Only give xics 8 bits of wb addr (for now...)
wb_xics_icp_in <= wb_sio_out;
wb_xics_icp_in.adr <= (others => '0');
wb_xics_icp_in.adr(5 downto 0) <= wb_sio_out.adr(5 downto 0);
wb_xics_icp_in.cyc <= io_cycle_icp;
wb_xics_ics_in <= wb_sio_out;
wb_xics_ics_in.adr <= (others => '0');
wb_xics_ics_in.adr(9 downto 0) <= wb_sio_out.adr(9 downto 0);
wb_xics_ics_in.cyc <= io_cycle_ics;
wb_ext_io_in <= wb_sio_out;
wb_ext_io_in.cyc <= io_cycle_external;
wb_syscon_in <= wb_sio_out;
wb_syscon_in.cyc <= io_cycle_syscon;
case current_io_decode is
when SLAVE_IO_EXTERNAL =>
wb_sio_in <= wb_ext_io_out;
when SLAVE_IO_SYSCON =>
wb_sio_in <= wb_syscon_out;
when SLAVE_IO_UART =>
wb_sio_in <= wb_uart0_out;
when SLAVE_IO_ICP =>
wb_sio_in <= wb_xics_icp_out;
when SLAVE_IO_ICS =>
wb_sio_in <= wb_xics_ics_out;
when SLAVE_IO_UART1 =>
wb_sio_in <= wb_uart1_out;
when SLAVE_IO_SPI_FLASH =>
wb_sio_in <= wb_spiflash_out;
when SLAVE_IO_GPIO =>
wb_sio_in <= wb_gpio_out;
end case;
-- Default response, ack & return all 1's
if io_cycle_none = '1' then
wb_sio_in.dat <= (others => '1');
wb_sio_in.ack <= wb_sio_out.stb and wb_sio_out.cyc;
wb_sio_in.stall <= '0';
end if;
end process;
-- Syscon slave
syscon0: entity work.syscon
generic map(
HAS_UART => true,
HAS_DRAM => HAS_DRAM,
BRAM_SIZE => MEMORY_SIZE,
DRAM_SIZE => DRAM_SIZE,
DRAM_INIT_SIZE => DRAM_INIT_SIZE,
CLK_FREQ => CLK_FREQ,
HAS_SPI_FLASH => HAS_SPI_FLASH,
SPI_FLASH_OFFSET => SPI_FLASH_OFFSET,
HAS_LITEETH => HAS_LITEETH,
HAS_SD_CARD => HAS_SD_CARD,
UART0_IS_16550 => UART0_IS_16550,
HAS_UART1 => HAS_UART1
)
port map(
clk => system_clk,
rst => soc_reset,
wishbone_in => wb_syscon_in,
wishbone_out => wb_syscon_out,
dram_at_0 => dram_at_0,
core_reset => do_core_reset,
soc_reset => sw_soc_reset,
alt_reset => alt_reset
);
--
-- UART0
--
-- Either potato (legacy) or 16550
--
uart0_pp: if not UART0_IS_16550 generate
uart0: entity work.pp_soc_uart
generic map(
FIFO_DEPTH => 32
)
port map(
clk => system_clk,
reset => rst_uart,
txd => uart0_txd,
rxd => uart0_rxd,
irq => uart0_irq,
wb_adr_in => wb_uart0_in.adr(9 downto 0) & "00",
wb_dat_in => wb_uart0_in.dat(7 downto 0),
wb_dat_out => uart0_dat8,
wb_cyc_in => wb_uart0_in.cyc,
wb_stb_in => wb_uart0_in.stb,
wb_we_in => wb_uart0_in.we,
wb_ack_out => wb_uart0_out.ack
);
end generate;
uart0_16550 : if UART0_IS_16550 generate
signal irq_l : std_ulogic;
begin
uart0: uart_top
port map (
wb_clk_i => system_clk,
wb_rst_i => rst_uart,
wb_adr_i => wb_uart0_in.adr(2 downto 0),
wb_dat_i => wb_uart0_in.dat(7 downto 0),
wb_dat_o => uart0_dat8,
wb_we_i => wb_uart0_in.we,
wb_stb_i => wb_uart0_in.stb,
wb_cyc_i => wb_uart0_in.cyc,
wb_ack_o => wb_uart0_out.ack,
int_o => irq_l,
stx_pad_o => uart0_txd,
srx_pad_i => uart0_rxd,
rts_pad_o => open,
cts_pad_i => '1',
dtr_pad_o => open,
dsr_pad_i => '1',
ri_pad_i => '0',
dcd_pad_i => '1'
);
-- Add a register on the irq out, helps timing
uart0_irq_latch: process(system_clk)
begin
if rising_edge(system_clk) then
uart0_irq <= irq_l;
end if;
end process;
end generate;
wb_uart0_out.dat <= x"000000" & uart0_dat8;
wb_uart0_out.stall <= not wb_uart0_out.ack;
--
-- UART1
--
-- Always 16550 if it exists
--
uart1_16550: if HAS_UART1 generate
signal irq_l : std_ulogic;
begin
uart1: uart_top
port map (
wb_clk_i => system_clk,
wb_rst_i => rst_uart,
wb_adr_i => wb_uart1_in.adr(2 downto 0),
wb_dat_i => wb_uart1_in.dat(7 downto 0),
wb_dat_o => uart1_dat8,
wb_we_i => wb_uart1_in.we,
wb_stb_i => wb_uart1_in.stb,
wb_cyc_i => wb_uart1_in.cyc,
wb_ack_o => wb_uart1_out.ack,
int_o => irq_l,
stx_pad_o => uart1_txd,
srx_pad_i => uart1_rxd,
rts_pad_o => open,
cts_pad_i => '1',
dtr_pad_o => open,
dsr_pad_i => '1',
ri_pad_i => '0',
dcd_pad_i => '1'
);
-- Add a register on the irq out, helps timing
uart0_irq_latch: process(system_clk)
begin
if rising_edge(system_clk) then
uart1_irq <= irq_l;
end if;
end process;
wb_uart1_out.dat <= x"000000" & uart1_dat8;
wb_uart1_out.stall <= not wb_uart1_out.ack;
end generate;
no_uart1 : if not HAS_UART1 generate
wb_uart1_out.dat <= x"00000000";
wb_uart1_out.ack <= wb_uart1_in.cyc and wb_uart1_in.stb;
wb_uart1_out.stall <= '0';
uart1_irq <= '0';
end generate;
spiflash_gen: if HAS_SPI_FLASH generate
spiflash: entity work.spi_flash_ctrl
generic map (
DATA_LINES => SPI_FLASH_DLINES,
DEF_CLK_DIV => SPI_FLASH_DEF_CKDV,
DEF_QUAD_READ => SPI_FLASH_DEF_QUAD,
BOOT_CLOCKS => SPI_BOOT_CLOCKS
)
port map(
rst => rst_spi,
clk => system_clk,
wb_in => wb_spiflash_in,
wb_out => wb_spiflash_out,
wb_sel_reg => wb_spiflash_is_reg,
wb_sel_map => wb_spiflash_is_map,
sck => spi_flash_sck,
cs_n => spi_flash_cs_n,
sdat_o => spi_flash_sdat_o,
sdat_oe => spi_flash_sdat_oe,
sdat_i => spi_flash_sdat_i
);
end generate;
no_spi0_gen: if not HAS_SPI_FLASH generate
wb_spiflash_out.dat <= (others => '1');
wb_spiflash_out.ack <= wb_spiflash_in.cyc and wb_spiflash_in.stb;
wb_spiflash_out.stall <= wb_spiflash_in.cyc and not wb_spiflash_out.ack;
end generate;
xics_icp: entity work.xics_icp
port map(
clk => system_clk,
rst => rst_xics,
wb_in => wb_xics_icp_in,
wb_out => wb_xics_icp_out,
ics_in => ics_to_icp,
core_irq_out => core_ext_irq
);
xics_ics: entity work.xics_ics
generic map(
SRC_NUM => 16,
PRIO_BITS => 3
)
port map(
clk => system_clk,
rst => rst_xics,
wb_in => wb_xics_ics_in,
wb_out => wb_xics_ics_out,
int_level_in => int_level_in,
icp_out => ics_to_icp
);
gpio0_gen: if HAS_GPIO generate
gpio : entity work.gpio
generic map(
NGPIO => NGPIO
)
port map(
clk => system_clk,
rst => rst_gpio,
wb_in => wb_gpio_in,
wb_out => wb_gpio_out,
gpio_in => gpio_in,
gpio_out => gpio_out,
gpio_dir => gpio_dir,
intr => gpio_intr
);
end generate;
-- Assign external interrupts
interrupts: process(all)
begin
int_level_in <= (others => '0');
int_level_in(0) <= uart0_irq;
int_level_in(1) <= ext_irq_eth;
int_level_in(2) <= uart1_irq;
int_level_in(3) <= ext_irq_sdcard;
int_level_in(4) <= gpio_intr;
end process;
-- BRAM Memory slave
bram: if MEMORY_SIZE /= 0 generate
bram0: entity work.wishbone_bram_wrapper
generic map(
MEMORY_SIZE => MEMORY_SIZE,
RAM_INIT_FILE => RAM_INIT_FILE
)
port map(
clk => system_clk,
rst => rst_bram,
wishbone_in => wb_bram_in,
wishbone_out => wb_bram_out
);
end generate;
no_bram: if MEMORY_SIZE = 0 generate
wb_bram_out.ack <= wb_bram_in.cyc and wb_bram_in.stb;
wb_bram_out.dat <= x"FFFFFFFFFFFFFFFF";
wb_bram_out.stall <= not wb_bram_out.ack;
end generate;
-- DMI(debug bus) <-> JTAG bridge
dtm: entity work.dmi_dtm
generic map(
ABITS => 8,
DBITS => 64
)
port map(
sys_clk => system_clk,
sys_reset => rst_dtm,
dmi_addr => dmi_addr,
dmi_din => dmi_din,
dmi_dout => dmi_dout,
dmi_req => dmi_req,
dmi_wr => dmi_wr,
dmi_ack => dmi_ack
);
-- DMI interconnect
dmi_intercon: process(dmi_addr, dmi_req,
dmi_wb_ack, dmi_wb_dout,
dmi_core_ack, dmi_core_dout)
-- DMI address map (each address is a full 64-bit register)
--
-- Offset: Size: Slave:
-- 0 4 Wishbone
-- 10 16 Core
type slave_type is (SLAVE_WB,
SLAVE_CORE,
SLAVE_NONE);
variable slave : slave_type;
begin
-- Simple address decoder
slave := SLAVE_NONE;
if std_match(dmi_addr, "000000--") then
slave := SLAVE_WB;
elsif std_match(dmi_addr, "0001----") then
slave := SLAVE_CORE;
end if;
-- DMI muxing
dmi_wb_req <= '0';
dmi_core_req <= '0';
case slave is
when SLAVE_WB =>
dmi_wb_req <= dmi_req;
dmi_ack <= dmi_wb_ack;
dmi_din <= dmi_wb_dout;
when SLAVE_CORE =>
dmi_core_req <= dmi_req;
dmi_ack <= dmi_core_ack;
dmi_din <= dmi_core_dout;
when others =>
dmi_ack <= dmi_req;
dmi_din <= (others => '1');
end case;
-- SIM magic exit
if SIM and dmi_req = '1' and dmi_addr = "11111111" and dmi_wr = '1' then
stop;
end if;
end process;
-- Wishbone debug master (TODO: Add a DMI address decoder)
wishbone_debug: entity work.wishbone_debug_master
port map(clk => system_clk,
rst => rst_wbdb,
dmi_addr => dmi_addr(1 downto 0),
dmi_dout => dmi_wb_dout,
dmi_din => dmi_dout,
dmi_wr => dmi_wr,
dmi_ack => dmi_wb_ack,
dmi_req => dmi_wb_req,
wb_in => wishbone_debug_in,
wb_out => wishbone_debug_out);
--pragma synthesis_off
wb_x_state: process(system_clk)
begin
if rising_edge(system_clk) then
if not soc_reset then
-- Wishbone arbiter
assert not(is_x(wb_masters_out(0).cyc)) and not(is_x(wb_masters_out(0).stb)) severity failure;
assert not(is_x(wb_masters_out(1).cyc)) and not(is_x(wb_masters_out(1).stb)) severity failure;
assert not(is_x(wb_masters_out(2).cyc)) and not(is_x(wb_masters_out(2).stb)) severity failure;
assert not(is_x(wb_masters_in(0).ack)) severity failure;
assert not(is_x(wb_masters_in(1).ack)) severity failure;
assert not(is_x(wb_masters_in(2).ack)) severity failure;
-- Main memory wishbones
assert not(is_x(wb_bram_in.cyc)) and not (is_x(wb_bram_in.stb)) severity failure;
assert not(is_x(wb_dram_in.cyc)) and not (is_x(wb_dram_in.stb)) severity failure;
assert not(is_x(wb_io_in.cyc)) and not (is_x(wb_io_in.stb)) severity failure;
assert not(is_x(wb_bram_out.ack)) severity failure;
assert not(is_x(wb_dram_out.ack)) severity failure;
assert not(is_x(wb_io_out.ack)) severity failure;
-- I/O wishbones
assert not(is_x(wb_uart0_in.cyc)) and not(is_x(wb_uart0_in.stb)) severity failure;
assert not(is_x(wb_uart1_in.cyc)) and not(is_x(wb_uart1_in.stb)) severity failure;
assert not(is_x(wb_spiflash_in.cyc)) and not(is_x(wb_spiflash_in.stb)) severity failure;
assert not(is_x(wb_xics_icp_in.cyc)) and not(is_x(wb_xics_icp_in.stb)) severity failure;
assert not(is_x(wb_xics_ics_in.cyc)) and not(is_x(wb_xics_ics_in.stb)) severity failure;
assert not(is_x(wb_ext_io_in.cyc)) and not(is_x(wb_ext_io_in.stb)) severity failure;
assert not(is_x(wb_syscon_in.cyc)) and not(is_x(wb_syscon_in.stb)) severity failure;
assert not(is_x(wb_uart0_out.ack)) severity failure;
assert not(is_x(wb_uart1_out.ack)) severity failure;
assert not(is_x(wb_spiflash_out.ack)) severity failure;
assert not(is_x(wb_xics_icp_out.ack)) severity failure;
assert not(is_x(wb_xics_ics_out.ack)) severity failure;
assert not(is_x(wb_ext_io_out.ack)) severity failure;
assert not(is_x(wb_syscon_out.ack)) severity failure;
end if;
end if;
end process;
--pragma synthesis_on
end architecture behaviour;