|
|
|
library ieee;
|
|
|
|
use ieee.std_logic_1164.all;
|
|
|
|
use ieee.numeric_std.all;
|
|
|
|
|
|
|
|
library work;
|
|
|
|
use work.decode_types.all;
|
|
|
|
use work.common.all;
|
|
|
|
use work.helpers.all;
|
|
|
|
use work.insn_helpers.all;
|
|
|
|
|
|
|
|
entity decode2 is
|
|
|
|
port (
|
|
|
|
clk : in std_ulogic;
|
|
|
|
rst : in std_ulogic;
|
|
|
|
|
|
|
|
complete_in : in std_ulogic;
|
|
|
|
stall_out : out std_ulogic;
|
|
|
|
|
|
|
|
stopped_out : out std_ulogic;
|
|
|
|
|
|
|
|
flush_in: in std_ulogic;
|
|
|
|
|
|
|
|
d_in : in Decode1ToDecode2Type;
|
|
|
|
|
|
|
|
e_out : out Decode2ToExecute1Type;
|
|
|
|
m_out : out Decode2ToMultiplyType;
|
|
|
|
d_out : out Decode2ToDividerType;
|
|
|
|
l_out : out Decode2ToLoadstore1Type;
|
|
|
|
|
|
|
|
r_in : in RegisterFileToDecode2Type;
|
|
|
|
r_out : out Decode2ToRegisterFileType;
|
|
|
|
|
|
|
|
c_in : in CrFileToDecode2Type;
|
|
|
|
c_out : out Decode2ToCrFileType
|
|
|
|
);
|
|
|
|
end entity decode2;
|
|
|
|
|
|
|
|
architecture behaviour of decode2 is
|
|
|
|
type reg_type is record
|
|
|
|
e : Decode2ToExecute1Type;
|
|
|
|
m : Decode2ToMultiplyType;
|
|
|
|
d : Decode2ToDividerType;
|
|
|
|
l : Decode2ToLoadstore1Type;
|
|
|
|
end record;
|
|
|
|
|
|
|
|
signal r, rin : reg_type;
|
|
|
|
|
|
|
|
type decode_input_reg_t is record
|
|
|
|
reg_valid : std_ulogic;
|
|
|
|
reg : std_ulogic_vector(4 downto 0);
|
|
|
|
data : std_ulogic_vector(63 downto 0);
|
|
|
|
end record;
|
|
|
|
|
|
|
|
function decode_input_reg_a (t : input_reg_a_t; insn_in : std_ulogic_vector(31 downto 0);
|
|
|
|
reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is
|
|
|
|
begin
|
|
|
|
if t = RA or (t = RA_OR_ZERO and insn_ra(insn_in) /= "00000") then
|
|
|
|
return ('1', insn_ra(insn_in), reg_data);
|
|
|
|
else
|
|
|
|
return ('0', (others => '0'), (others => '0'));
|
|
|
|
end if;
|
|
|
|
end;
|
|
|
|
|
|
|
|
function decode_input_reg_b (t : input_reg_b_t; insn_in : std_ulogic_vector(31 downto 0);
|
|
|
|
reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is
|
|
|
|
begin
|
|
|
|
case t is
|
|
|
|
when RB =>
|
|
|
|
return ('1', insn_rb(insn_in), reg_data);
|
|
|
|
when CONST_UI =>
|
|
|
|
return ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_ui(insn_in)), 64)));
|
|
|
|
when CONST_SI =>
|
|
|
|
return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)), 64)));
|
|
|
|
when CONST_SI_HI =>
|
|
|
|
return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)) & x"0000", 64)));
|
|
|
|
when CONST_UI_HI =>
|
|
|
|
return ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_si(insn_in)) & x"0000", 64)));
|
|
|
|
when CONST_LI =>
|
|
|
|
return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_li(insn_in)) & "00", 64)));
|
|
|
|
when CONST_BD =>
|
|
|
|
return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_bd(insn_in)) & "00", 64)));
|
|
|
|
when CONST_DS =>
|
|
|
|
return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_ds(insn_in)) & "00", 64)));
|
|
|
|
when CONST_M1 =>
|
Add a rotate/mask/shift unit and use it in execute1
This adds a new entity 'rotator' which contains combinatorial logic
for rotating and masking 64-bit values. It implements the operations
of the rlwinm, rlwnm, rlwimi, rldicl, rldicr, rldic, rldimi, rldcl,
rldcr, sld, slw, srd, srw, srad, sradi, sraw and srawi instructions.
It consists of a 3-stage 64-bit rotator using 4:1 multiplexors at
each stage, two mask generators, output logic and control logic.
The insn_type_t values used for these instructions have been reduced
to just 5: OP_RLC, OP_RLCL and OP_RLCR for the rotate and mask
instructions (clear both left and right, clear left, clear right
variants), OP_SHL for left shifts, and OP_SHR for right shifts.
The control signals for the rotator are derived from the opcode
and from the is_32bit and is_signed fields of the decode_rom_t.
The rotator is instantiated as an entity in execute1 so that we can
be sure we only have one of it.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
return ('0', (others => '0'), x"FFFFFFFFFFFFFFFF");
|
|
|
|
when CONST_SH =>
|
|
|
|
return ('0', (others => '0'), x"00000000000000" & "00" & insn_in(1) & insn_in(15 downto 11));
|
|
|
|
when CONST_SH32 =>
|
|
|
|
return ('0', (others => '0'), x"00000000000000" & "000" & insn_in(15 downto 11));
|
|
|
|
when NONE =>
|
|
|
|
return ('0', (others => '0'), (others => '0'));
|
|
|
|
end case;
|
|
|
|
end;
|
|
|
|
|
|
|
|
function decode_input_reg_c (t : input_reg_c_t; insn_in : std_ulogic_vector(31 downto 0);
|
|
|
|
reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is
|
|
|
|
begin
|
|
|
|
case t is
|
|
|
|
when RS =>
|
|
|
|
return ('1', insn_rs(insn_in), reg_data);
|
|
|
|
when NONE =>
|
|
|
|
return ('0', (others => '0'), (others => '0'));
|
|
|
|
end case;
|
|
|
|
end;
|
|
|
|
|
|
|
|
function decode_output_reg (t : output_reg_a_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic_vector is
|
|
|
|
begin
|
|
|
|
case t is
|
|
|
|
when RT =>
|
|
|
|
return insn_rt(insn_in);
|
|
|
|
when RA =>
|
|
|
|
return insn_ra(insn_in);
|
|
|
|
when NONE =>
|
|
|
|
return "00000";
|
|
|
|
end case;
|
|
|
|
end;
|
|
|
|
|
|
|
|
function decode_rc (t : rc_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic is
|
|
|
|
begin
|
|
|
|
case t is
|
|
|
|
when RC =>
|
|
|
|
return insn_rc(insn_in);
|
|
|
|
when ONE =>
|
|
|
|
return '1';
|
|
|
|
when NONE =>
|
|
|
|
return '0';
|
|
|
|
end case;
|
|
|
|
end;
|
|
|
|
|
|
|
|
signal control_valid_in : std_ulogic;
|
|
|
|
signal control_valid_out : std_ulogic;
|
|
|
|
signal control_sgl_pipe : std_logic;
|
|
|
|
begin
|
|
|
|
control_0: entity work.control
|
|
|
|
generic map (
|
|
|
|
PIPELINE_DEPTH => 2
|
|
|
|
)
|
|
|
|
port map (
|
|
|
|
clk => clk,
|
|
|
|
rst => rst,
|
|
|
|
|
|
|
|
complete_in => complete_in,
|
|
|
|
valid_in => control_valid_in,
|
|
|
|
flush_in => flush_in,
|
|
|
|
sgl_pipe_in => control_sgl_pipe,
|
|
|
|
stop_mark_in => d_in.stop_mark,
|
|
|
|
|
|
|
|
valid_out => control_valid_out,
|
|
|
|
stall_out => stall_out,
|
|
|
|
stopped_out => stopped_out
|
|
|
|
);
|
|
|
|
|
|
|
|
decode2_0: process(clk)
|
|
|
|
begin
|
|
|
|
if rising_edge(clk) then
|
|
|
|
if rin.e.valid = '1' or rin.l.valid = '1' or rin.m.valid = '1' or rin.d.valid = '1' then
|
|
|
|
report "execute " & to_hstring(rin.e.nia);
|
|
|
|
end if;
|
|
|
|
r <= rin;
|
|
|
|
end if;
|
|
|
|
end process;
|
|
|
|
|
|
|
|
r_out.read1_reg <= insn_ra(d_in.insn);
|
|
|
|
r_out.read2_reg <= insn_rb(d_in.insn);
|
|
|
|
r_out.read3_reg <= insn_rs(d_in.insn);
|
|
|
|
|
|
|
|
c_out.read <= d_in.decode.input_cr;
|
|
|
|
|
|
|
|
decode2_1: process(all)
|
|
|
|
variable v : reg_type;
|
|
|
|
variable mul_a : std_ulogic_vector(63 downto 0);
|
|
|
|
variable mul_b : std_ulogic_vector(63 downto 0);
|
|
|
|
variable decoded_reg_a : decode_input_reg_t;
|
|
|
|
variable decoded_reg_b : decode_input_reg_t;
|
|
|
|
variable decoded_reg_c : decode_input_reg_t;
|
|
|
|
variable signed_division: std_ulogic;
|
|
|
|
begin
|
|
|
|
v := r;
|
|
|
|
|
|
|
|
v.e := Decode2ToExecute1Init;
|
|
|
|
v.l := Decode2ToLoadStore1Init;
|
|
|
|
v.m := Decode2ToMultiplyInit;
|
|
|
|
v.d := Decode2ToDividerInit;
|
|
|
|
|
|
|
|
mul_a := (others => '0');
|
|
|
|
mul_b := (others => '0');
|
|
|
|
|
|
|
|
--v.e.input_cr := d_in.decode.input_cr;
|
|
|
|
--v.m.input_cr := d_in.decode.input_cr;
|
|
|
|
--v.e.output_cr := d_in.decode.output_cr;
|
|
|
|
|
|
|
|
decoded_reg_a := decode_input_reg_a (d_in.decode.input_reg_a, d_in.insn, r_in.read1_data);
|
|
|
|
decoded_reg_b := decode_input_reg_b (d_in.decode.input_reg_b, d_in.insn, r_in.read2_data);
|
|
|
|
decoded_reg_c := decode_input_reg_c (d_in.decode.input_reg_c, d_in.insn, r_in.read3_data);
|
|
|
|
|
|
|
|
r_out.read1_enable <= decoded_reg_a.reg_valid;
|
|
|
|
r_out.read2_enable <= decoded_reg_b.reg_valid;
|
|
|
|
r_out.read3_enable <= decoded_reg_c.reg_valid;
|
|
|
|
|
|
|
|
-- execute unit
|
|
|
|
v.e.nia := d_in.nia;
|
|
|
|
v.e.insn_type := d_in.decode.insn_type;
|
|
|
|
v.e.read_reg1 := decoded_reg_a.reg;
|
|
|
|
v.e.read_data1 := decoded_reg_a.data;
|
|
|
|
v.e.read_reg2 := decoded_reg_b.reg;
|
|
|
|
v.e.read_data2 := decoded_reg_b.data;
|
|
|
|
v.e.read_data3 := decoded_reg_c.data;
|
|
|
|
v.e.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn);
|
|
|
|
v.e.rc := decode_rc(d_in.decode.rc, d_in.insn);
|
|
|
|
v.e.cr := c_in.read_cr_data;
|
|
|
|
v.e.invert_a := d_in.decode.invert_a;
|
|
|
|
v.e.invert_out := d_in.decode.invert_out;
|
|
|
|
v.e.input_carry := d_in.decode.input_carry;
|
|
|
|
v.e.output_carry := d_in.decode.output_carry;
|
|
|
|
v.e.is_32bit := d_in.decode.is_32bit;
|
|
|
|
v.e.is_signed := d_in.decode.is_signed;
|
|
|
|
if d_in.decode.lr = '1' then
|
|
|
|
v.e.lr := insn_lk(d_in.insn);
|
|
|
|
end if;
|
|
|
|
v.e.insn := d_in.insn;
|
|
|
|
|
|
|
|
-- multiply unit
|
|
|
|
v.m.insn_type := d_in.decode.insn_type;
|
|
|
|
mul_a := decoded_reg_a.data;
|
|
|
|
mul_b := decoded_reg_b.data;
|
|
|
|
v.m.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn);
|
|
|
|
v.m.rc := decode_rc(d_in.decode.rc, d_in.insn);
|
|
|
|
|
|
|
|
if d_in.decode.is_32bit = '1' then
|
|
|
|
if d_in.decode.is_signed = '1' then
|
|
|
|
v.m.data1 := (others => mul_a(31));
|
|
|
|
v.m.data1(31 downto 0) := mul_a(31 downto 0);
|
|
|
|
v.m.data2 := (others => mul_b(31));
|
|
|
|
v.m.data2(31 downto 0) := mul_b(31 downto 0);
|
|
|
|
else
|
|
|
|
v.m.data1 := '0' & x"00000000" & mul_a(31 downto 0);
|
|
|
|
v.m.data2 := '0' & x"00000000" & mul_b(31 downto 0);
|
|
|
|
end if;
|
|
|
|
else
|
|
|
|
if d_in.decode.is_signed = '1' then
|
|
|
|
v.m.data1 := mul_a(63) & mul_a;
|
|
|
|
v.m.data2 := mul_b(63) & mul_b;
|
|
|
|
else
|
|
|
|
v.m.data1 := '0' & mul_a;
|
|
|
|
v.m.data2 := '0' & mul_b;
|
|
|
|
end if;
|
|
|
|
end if;
|
|
|
|
|
|
|
|
-- divide unit
|
|
|
|
-- PPC divide and modulus instruction words have these bits in
|
|
|
|
-- the bottom 11 bits: o1dns 010t1 r
|
|
|
|
-- where o = OE for div instrs, signedness for mod instrs
|
|
|
|
-- d = 1 for div*, 0 for mod*
|
|
|
|
-- n = 1 for normal, 0 for extended (dividend << 32/64)
|
|
|
|
-- s = 1 for signed, 0 for unsigned (for div*)
|
|
|
|
-- t = 1 for 32-bit, 0 for 64-bit
|
|
|
|
-- r = RC bit (record condition code)
|
|
|
|
v.d.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn);
|
|
|
|
v.d.is_modulus := not d_in.insn(8);
|
|
|
|
v.d.is_32bit := d_in.insn(2);
|
|
|
|
if d_in.insn(8) = '1' then
|
|
|
|
signed_division := d_in.insn(6);
|
|
|
|
else
|
|
|
|
signed_division := d_in.insn(10);
|
|
|
|
end if;
|
|
|
|
v.d.is_signed := signed_division;
|
|
|
|
if d_in.insn(2) = '0' then
|
|
|
|
-- 64-bit forms
|
|
|
|
if d_in.insn(8) = '1' and d_in.insn(7) = '0' then
|
|
|
|
v.d.is_extended := '1';
|
|
|
|
end if;
|
|
|
|
v.d.dividend := decoded_reg_a.data;
|
|
|
|
v.d.divisor := decoded_reg_b.data;
|
|
|
|
else
|
|
|
|
-- 32-bit forms
|
|
|
|
if d_in.insn(8) = '1' and d_in.insn(7) = '0' then -- extended forms
|
|
|
|
v.d.dividend := decoded_reg_a.data(31 downto 0) & x"00000000";
|
|
|
|
elsif signed_division = '1' and decoded_reg_a.data(31) = '1' then
|
|
|
|
-- sign extend to 64 bits
|
|
|
|
v.d.dividend := x"ffffffff" & decoded_reg_a.data(31 downto 0);
|
|
|
|
else
|
|
|
|
v.d.dividend := x"00000000" & decoded_reg_a.data(31 downto 0);
|
|
|
|
end if;
|
|
|
|
if signed_division = '1' and decoded_reg_b.data(31) = '1' then
|
|
|
|
v.d.divisor := x"ffffffff" & decoded_reg_b.data(31 downto 0);
|
|
|
|
else
|
|
|
|
v.d.divisor := x"00000000" & decoded_reg_b.data(31 downto 0);
|
|
|
|
end if;
|
|
|
|
end if;
|
|
|
|
v.d.rc := decode_rc(d_in.decode.rc, d_in.insn);
|
|
|
|
|
|
|
|
-- load/store unit
|
|
|
|
v.l.update_reg := decoded_reg_a.reg;
|
|
|
|
v.l.addr1 := decoded_reg_a.data;
|
|
|
|
v.l.addr2 := decoded_reg_b.data;
|
|
|
|
v.l.data := decoded_reg_c.data;
|
|
|
|
v.l.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn);
|
|
|
|
|
|
|
|
if d_in.decode.insn_type = OP_LOAD then
|
|
|
|
v.l.load := '1';
|
|
|
|
else
|
|
|
|
v.l.load := '0';
|
|
|
|
end if;
|
|
|
|
|
|
|
|
case d_in.decode.length is
|
|
|
|
when is1B =>
|
|
|
|
v.l.length := "0001";
|
|
|
|
when is2B =>
|
|
|
|
v.l.length := "0010";
|
|
|
|
when is4B =>
|
|
|
|
v.l.length := "0100";
|
|
|
|
when is8B =>
|
|
|
|
v.l.length := "1000";
|
|
|
|
when NONE =>
|
|
|
|
v.l.length := "0000";
|
|
|
|
end case;
|
|
|
|
|
|
|
|
v.l.byte_reverse := d_in.decode.byte_reverse;
|
|
|
|
v.l.sign_extend := d_in.decode.sign_extend;
|
|
|
|
v.l.update := d_in.decode.update;
|
|
|
|
|
|
|
|
-- issue control
|
|
|
|
control_valid_in <= d_in.valid;
|
|
|
|
control_sgl_pipe <= d_in.decode.sgl_pipe;
|
|
|
|
|
|
|
|
v.e.valid := '0';
|
|
|
|
v.m.valid := '0';
|
|
|
|
v.d.valid := '0';
|
|
|
|
v.l.valid := '0';
|
|
|
|
case d_in.decode.unit is
|
|
|
|
when ALU =>
|
|
|
|
v.e.valid := control_valid_out;
|
|
|
|
when LDST =>
|
|
|
|
v.l.valid := control_valid_out;
|
|
|
|
when MUL =>
|
|
|
|
v.m.valid := control_valid_out;
|
|
|
|
when DIV =>
|
|
|
|
v.d.valid := control_valid_out;
|
|
|
|
when NONE =>
|
|
|
|
v.e.valid := control_valid_out;
|
|
|
|
v.e.insn_type := OP_ILLEGAL;
|
|
|
|
end case;
|
|
|
|
|
|
|
|
if rst = '1' then
|
|
|
|
v.e := Decode2ToExecute1Init;
|
|
|
|
v.l := Decode2ToLoadStore1Init;
|
|
|
|
v.m := Decode2ToMultiplyInit;
|
|
|
|
v.d := Decode2ToDividerInit;
|
|
|
|
end if;
|
|
|
|
|
|
|
|
-- Update registers
|
|
|
|
rin <= v;
|
|
|
|
|
|
|
|
-- Update outputs
|
|
|
|
e_out <= r.e;
|
|
|
|
l_out <= r.l;
|
|
|
|
m_out <= r.m;
|
|
|
|
d_out <= r.d;
|
|
|
|
end process;
|
|
|
|
end architecture behaviour;
|