forked from cores/microwatt
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
473 lines
14 KiB
VHDL
473 lines
14 KiB
VHDL
library ieee;
|
|
use ieee.std_logic_1164.all;
|
|
use ieee.numeric_std.all;
|
|
|
|
library work;
|
|
use work.decode_types.all;
|
|
use work.common.all;
|
|
use work.helpers.all;
|
|
use work.insn_helpers.all;
|
|
|
|
entity decode2 is
|
|
port (
|
|
clk : in std_ulogic;
|
|
rst : in std_ulogic;
|
|
|
|
complete_in : in std_ulogic;
|
|
stall_out : out std_ulogic;
|
|
|
|
stopped_out : out std_ulogic;
|
|
|
|
flush_in: in std_ulogic;
|
|
|
|
d_in : in Decode1ToDecode2Type;
|
|
|
|
e_out : out Decode2ToExecute1Type;
|
|
m_out : out Decode2ToMultiplyType;
|
|
d_out : out Decode2ToDividerType;
|
|
l_out : out Decode2ToLoadstore1Type;
|
|
|
|
r_in : in RegisterFileToDecode2Type;
|
|
r_out : out Decode2ToRegisterFileType;
|
|
|
|
c_in : in CrFileToDecode2Type;
|
|
c_out : out Decode2ToCrFileType
|
|
);
|
|
end entity decode2;
|
|
|
|
architecture behaviour of decode2 is
|
|
type state_type is (IDLE, WAIT_FOR_PREV_TO_COMPLETE, WAIT_FOR_CURR_TO_COMPLETE);
|
|
|
|
type reg_internal_type is record
|
|
state : state_type;
|
|
outstanding : integer;
|
|
end record;
|
|
|
|
type reg_type is record
|
|
e : Decode2ToExecute1Type;
|
|
m : Decode2ToMultiplyType;
|
|
d : Decode2ToDividerType;
|
|
l : Decode2ToLoadstore1Type;
|
|
end record;
|
|
|
|
signal r_int, rin_int : reg_internal_type;
|
|
signal r, rin : reg_type;
|
|
|
|
type decode_input_reg_t is record
|
|
reg_valid : std_ulogic;
|
|
reg : std_ulogic_vector(4 downto 0);
|
|
data : std_ulogic_vector(63 downto 0);
|
|
end record;
|
|
|
|
function decode_input_reg_a (t : input_reg_a_t; insn_in : std_ulogic_vector(31 downto 0);
|
|
reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is
|
|
begin
|
|
case t is
|
|
when RA =>
|
|
return ('1', insn_ra(insn_in), reg_data);
|
|
when RA_OR_ZERO =>
|
|
return ('1', insn_ra(insn_in), ra_or_zero(reg_data, insn_ra(insn_in)));
|
|
when RS =>
|
|
return ('1', insn_rs(insn_in), reg_data);
|
|
when NONE =>
|
|
return ('0', (others => '0'), (others => '0'));
|
|
end case;
|
|
end;
|
|
|
|
function decode_input_reg_b (t : input_reg_b_t; insn_in : std_ulogic_vector(31 downto 0);
|
|
reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is
|
|
begin
|
|
case t is
|
|
when RB =>
|
|
return ('1', insn_rb(insn_in), reg_data);
|
|
when RS =>
|
|
return ('1', insn_rs(insn_in), reg_data);
|
|
when CONST_UI =>
|
|
return ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_ui(insn_in)), 64)));
|
|
when CONST_SI =>
|
|
return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)), 64)));
|
|
when CONST_SI_HI =>
|
|
return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)) & x"0000", 64)));
|
|
when CONST_UI_HI =>
|
|
return ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_si(insn_in)) & x"0000", 64)));
|
|
when CONST_LI =>
|
|
return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_li(insn_in)) & "00", 64)));
|
|
when CONST_BD =>
|
|
return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_bd(insn_in)) & "00", 64)));
|
|
when CONST_DS =>
|
|
return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_ds(insn_in)) & "00", 64)));
|
|
when NONE =>
|
|
return ('0', (others => '0'), (others => '0'));
|
|
end case;
|
|
end;
|
|
|
|
function decode_input_reg_c (t : input_reg_c_t; insn_in : std_ulogic_vector(31 downto 0);
|
|
reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is
|
|
begin
|
|
case t is
|
|
when RS =>
|
|
return ('1', insn_rs(insn_in), reg_data);
|
|
when NONE =>
|
|
return ('0', (others => '0'), (others => '0'));
|
|
end case;
|
|
end;
|
|
|
|
function decode_output_reg (t : output_reg_a_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic_vector is
|
|
begin
|
|
case t is
|
|
when RT =>
|
|
return insn_rt(insn_in);
|
|
when RA =>
|
|
return insn_ra(insn_in);
|
|
when NONE =>
|
|
return "00000";
|
|
end case;
|
|
end;
|
|
|
|
function decode_const_a (t : constant_a_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic_vector is
|
|
begin
|
|
case t is
|
|
when SH =>
|
|
return "00" & insn_sh(insn_in);
|
|
when SH32 =>
|
|
return "000" & insn_sh32(insn_in);
|
|
when FXM =>
|
|
return insn_fxm(insn_in);
|
|
when BO =>
|
|
return "000" & insn_bo(insn_in);
|
|
when BF =>
|
|
return "00000" & insn_bf(insn_in);
|
|
when TOO =>
|
|
return "000" & insn_to(insn_in);
|
|
when BC =>
|
|
return "000" & insn_bc(insn_in);
|
|
when NONE =>
|
|
return "00000000";
|
|
end case;
|
|
end;
|
|
|
|
function decode_const_b (t : constant_b_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic_vector is
|
|
begin
|
|
case t is
|
|
when MB =>
|
|
return insn_mb(insn_in);
|
|
when ME =>
|
|
return insn_me(insn_in);
|
|
when MB32 =>
|
|
return "0" & insn_mb32(insn_in);
|
|
when BI =>
|
|
return "0" & insn_bi(insn_in);
|
|
when L =>
|
|
return "00000" & insn_l(insn_in);
|
|
when BFA =>
|
|
return "000" & insn_bfa(insn_in);
|
|
when NONE =>
|
|
return "000000";
|
|
end case;
|
|
end;
|
|
|
|
function decode_const_c (t : constant_c_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic_vector is
|
|
begin
|
|
case t is
|
|
when ME32 =>
|
|
return insn_me32(insn_in);
|
|
when BH =>
|
|
return "000" & insn_bh(insn_in);
|
|
when NONE =>
|
|
return "00000";
|
|
end case;
|
|
end;
|
|
|
|
function decode_rc (t : rc_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic is
|
|
begin
|
|
case t is
|
|
when RC =>
|
|
return insn_rc(insn_in);
|
|
when ONE =>
|
|
return '1';
|
|
when NONE =>
|
|
return '0';
|
|
end case;
|
|
end;
|
|
begin
|
|
|
|
decode2_0: process(clk)
|
|
begin
|
|
if rising_edge(clk) then
|
|
assert r_int.outstanding <= 1 report "Outstanding bad " & integer'image(r_int.outstanding) severity failure;
|
|
|
|
if rin.e.valid = '1' or rin.l.valid = '1' or rin.m.valid = '1' or rin.d.valid = '1' then
|
|
report "execute " & to_hstring(rin.e.nia);
|
|
end if;
|
|
r <= rin;
|
|
r_int <= rin_int;
|
|
end if;
|
|
end process;
|
|
|
|
r_out.read1_reg <= insn_ra(d_in.insn) when (d_in.decode.input_reg_a = RA) else
|
|
insn_ra(d_in.insn) when d_in.decode.input_reg_a = RA_OR_ZERO else
|
|
insn_rs(d_in.insn) when d_in.decode.input_reg_a = RS else
|
|
(others => '0');
|
|
|
|
r_out.read2_reg <= insn_rb(d_in.insn) when d_in.decode.input_reg_b = RB else
|
|
insn_rs(d_in.insn) when d_in.decode.input_reg_b = RS else
|
|
(others => '0');
|
|
|
|
r_out.read3_reg <= insn_rs(d_in.insn) when d_in.decode.input_reg_c = RS else
|
|
(others => '0');
|
|
|
|
c_out.read <= d_in.decode.input_cr;
|
|
|
|
decode2_1: process(all)
|
|
variable v : reg_type;
|
|
variable v_int : reg_internal_type;
|
|
variable mul_a : std_ulogic_vector(63 downto 0);
|
|
variable mul_b : std_ulogic_vector(63 downto 0);
|
|
variable decoded_reg_a : decode_input_reg_t;
|
|
variable decoded_reg_b : decode_input_reg_t;
|
|
variable decoded_reg_c : decode_input_reg_t;
|
|
variable signed_division: std_ulogic;
|
|
variable is_valid : std_ulogic;
|
|
begin
|
|
v := r;
|
|
v_int := r_int;
|
|
|
|
v.e := Decode2ToExecute1Init;
|
|
v.l := Decode2ToLoadStore1Init;
|
|
v.m := Decode2ToMultiplyInit;
|
|
v.d := Decode2ToDividerInit;
|
|
|
|
mul_a := (others => '0');
|
|
mul_b := (others => '0');
|
|
|
|
--v.e.input_cr := d_in.decode.input_cr;
|
|
--v.m.input_cr := d_in.decode.input_cr;
|
|
--v.e.output_cr := d_in.decode.output_cr;
|
|
|
|
decoded_reg_a := decode_input_reg_a (d_in.decode.input_reg_a, d_in.insn, r_in.read1_data);
|
|
decoded_reg_b := decode_input_reg_b (d_in.decode.input_reg_b, d_in.insn, r_in.read2_data);
|
|
decoded_reg_c := decode_input_reg_c (d_in.decode.input_reg_c, d_in.insn, r_in.read3_data);
|
|
|
|
r_out.read1_enable <= decoded_reg_a.reg_valid;
|
|
r_out.read2_enable <= decoded_reg_b.reg_valid;
|
|
r_out.read3_enable <= decoded_reg_c.reg_valid;
|
|
|
|
-- execute unit
|
|
v.e.nia := d_in.nia;
|
|
v.e.insn_type := d_in.decode.insn_type;
|
|
v.e.read_reg1 := decoded_reg_a.reg;
|
|
v.e.read_data1 := decoded_reg_a.data;
|
|
v.e.read_reg2 := decoded_reg_b.reg;
|
|
v.e.read_data2 := decoded_reg_b.data;
|
|
v.e.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn);
|
|
v.e.rc := decode_rc(d_in.decode.rc, d_in.insn);
|
|
v.e.cr := c_in.read_cr_data;
|
|
v.e.input_carry := d_in.decode.input_carry;
|
|
v.e.output_carry := d_in.decode.output_carry;
|
|
if d_in.decode.lr = '1' then
|
|
v.e.lr := insn_lk(d_in.insn);
|
|
end if;
|
|
v.e.const1 := decode_const_a(d_in.decode.const_a, d_in.insn);
|
|
v.e.const2 := decode_const_b(d_in.decode.const_b, d_in.insn);
|
|
v.e.const3 := decode_const_c(d_in.decode.const_c, d_in.insn);
|
|
v.e.insn := d_in.insn;
|
|
|
|
-- multiply unit
|
|
v.m.insn_type := d_in.decode.insn_type;
|
|
mul_a := decoded_reg_a.data;
|
|
mul_b := decoded_reg_b.data;
|
|
v.m.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn);
|
|
v.m.rc := decode_rc(d_in.decode.rc, d_in.insn);
|
|
|
|
if d_in.decode.mul_32bit = '1' then
|
|
if d_in.decode.mul_signed = '1' then
|
|
v.m.data1 := (others => mul_a(31));
|
|
v.m.data1(31 downto 0) := mul_a(31 downto 0);
|
|
v.m.data2 := (others => mul_b(31));
|
|
v.m.data2(31 downto 0) := mul_b(31 downto 0);
|
|
else
|
|
v.m.data1 := '0' & x"00000000" & mul_a(31 downto 0);
|
|
v.m.data2 := '0' & x"00000000" & mul_b(31 downto 0);
|
|
end if;
|
|
else
|
|
if d_in.decode.mul_signed = '1' then
|
|
v.m.data1 := mul_a(63) & mul_a;
|
|
v.m.data2 := mul_b(63) & mul_b;
|
|
else
|
|
v.m.data1 := '0' & mul_a;
|
|
v.m.data2 := '0' & mul_b;
|
|
end if;
|
|
end if;
|
|
|
|
-- divide unit
|
|
-- PPC divide and modulus instruction words have these bits in
|
|
-- the bottom 11 bits: o1dns 010t1 r
|
|
-- where o = OE for div instrs, signedness for mod instrs
|
|
-- d = 1 for div*, 0 for mod*
|
|
-- n = 1 for normal, 0 for extended (dividend << 32/64)
|
|
-- s = 1 for signed, 0 for unsigned (for div*)
|
|
-- t = 1 for 32-bit, 0 for 64-bit
|
|
-- r = RC bit (record condition code)
|
|
v.d.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn);
|
|
v.d.is_modulus := not d_in.insn(8);
|
|
v.d.is_32bit := not d_in.insn(2);
|
|
if d_in.insn(8) = '1' then
|
|
signed_division := d_in.insn(6);
|
|
else
|
|
signed_division := d_in.insn(10);
|
|
end if;
|
|
v.d.is_signed := signed_division;
|
|
if d_in.insn(2) = '0' then
|
|
-- 64-bit forms
|
|
if d_in.insn(8) = '1' and d_in.insn(7) = '0' then
|
|
v.d.is_extended := '1';
|
|
end if;
|
|
v.d.dividend := decoded_reg_a.data;
|
|
v.d.divisor := decoded_reg_b.data;
|
|
else
|
|
-- 32-bit forms
|
|
if d_in.insn(8) = '1' and d_in.insn(7) = '0' then -- extended forms
|
|
v.d.dividend := decoded_reg_a.data(31 downto 0) & x"00000000";
|
|
elsif signed_division = '1' and decoded_reg_a.data(31) = '1' then
|
|
-- sign extend to 64 bits
|
|
v.d.dividend := x"ffffffff" & decoded_reg_a.data(31 downto 0);
|
|
else
|
|
v.d.dividend := x"00000000" & decoded_reg_a.data(31 downto 0);
|
|
end if;
|
|
if signed_division = '1' and decoded_reg_b.data(31) = '1' then
|
|
v.d.divisor := x"ffffffff" & decoded_reg_b.data(31 downto 0);
|
|
else
|
|
v.d.divisor := x"00000000" & decoded_reg_b.data(31 downto 0);
|
|
end if;
|
|
end if;
|
|
v.d.rc := decode_rc(d_in.decode.rc, d_in.insn);
|
|
|
|
-- load/store unit
|
|
v.l.update_reg := decoded_reg_a.reg;
|
|
v.l.addr1 := decoded_reg_a.data;
|
|
v.l.addr2 := decoded_reg_b.data;
|
|
v.l.data := decoded_reg_c.data;
|
|
v.l.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn);
|
|
|
|
if d_in.decode.insn_type = OP_LOAD then
|
|
v.l.load := '1';
|
|
else
|
|
v.l.load := '0';
|
|
end if;
|
|
|
|
case d_in.decode.length is
|
|
when is1B =>
|
|
v.l.length := "0001";
|
|
when is2B =>
|
|
v.l.length := "0010";
|
|
when is4B =>
|
|
v.l.length := "0100";
|
|
when is8B =>
|
|
v.l.length := "1000";
|
|
when NONE =>
|
|
v.l.length := "0000";
|
|
end case;
|
|
|
|
v.l.byte_reverse := d_in.decode.byte_reverse;
|
|
v.l.sign_extend := d_in.decode.sign_extend;
|
|
v.l.update := d_in.decode.update;
|
|
|
|
-- single issue
|
|
|
|
if complete_in = '1' then
|
|
v_int.outstanding := v_int.outstanding - 1;
|
|
end if;
|
|
|
|
-- state machine to handle instructions that must be single
|
|
-- through the pipeline.
|
|
stall_out <= '0';
|
|
is_valid := d_in.valid;
|
|
|
|
-- Handle debugger stop
|
|
stopped_out <= '0';
|
|
if d_in.stop_mark = '1' and v_int.outstanding = 0 then
|
|
stopped_out <= '1';
|
|
end if;
|
|
|
|
case v_int.state is
|
|
when IDLE =>
|
|
if (flush_in = '0') and (is_valid = '1') and (d_in.decode.sgl_pipe = '1') then
|
|
if v_int.outstanding /= 0 then
|
|
v_int.state := WAIT_FOR_PREV_TO_COMPLETE;
|
|
stall_out <= '1';
|
|
is_valid := '0';
|
|
else
|
|
-- send insn out and wait on it to complete
|
|
v_int.state := WAIT_FOR_CURR_TO_COMPLETE;
|
|
end if;
|
|
end if;
|
|
|
|
when WAIT_FOR_PREV_TO_COMPLETE =>
|
|
if v_int.outstanding = 0 then
|
|
-- send insn out and wait on it to complete
|
|
v_int.state := WAIT_FOR_CURR_TO_COMPLETE;
|
|
else
|
|
stall_out <= '1';
|
|
is_valid := '0';
|
|
end if;
|
|
|
|
when WAIT_FOR_CURR_TO_COMPLETE =>
|
|
if v_int.outstanding = 0 then
|
|
v_int.state := IDLE;
|
|
else
|
|
stall_out <= '1';
|
|
is_valid := '0';
|
|
end if;
|
|
end case;
|
|
|
|
v.e.valid := '0';
|
|
v.m.valid := '0';
|
|
v.d.valid := '0';
|
|
v.l.valid := '0';
|
|
case d_in.decode.unit is
|
|
when ALU =>
|
|
v.e.valid := is_valid;
|
|
when LDST =>
|
|
v.l.valid := is_valid;
|
|
when MUL =>
|
|
v.m.valid := is_valid;
|
|
when DIV =>
|
|
v.d.valid := is_valid;
|
|
when NONE =>
|
|
v.e.valid := is_valid;
|
|
v.e.insn_type := OP_ILLEGAL;
|
|
end case;
|
|
|
|
if flush_in = '1' then
|
|
v.e.valid := '0';
|
|
v.m.valid := '0';
|
|
v.d.valid := '0';
|
|
v.l.valid := '0';
|
|
end if;
|
|
|
|
-- track outstanding instructions
|
|
if v.e.valid = '1' or v.l.valid = '1' or v.m.valid = '1' or v.d.valid = '1' then
|
|
v_int.outstanding := v_int.outstanding + 1;
|
|
end if;
|
|
|
|
if rst = '1' then
|
|
v_int.state := IDLE;
|
|
v_int.outstanding := 0;
|
|
v.e := Decode2ToExecute1Init;
|
|
v.l := Decode2ToLoadStore1Init;
|
|
v.m := Decode2ToMultiplyInit;
|
|
v.d := Decode2ToDividerInit;
|
|
end if;
|
|
|
|
-- Update registers
|
|
rin <= v;
|
|
rin_int <= v_int;
|
|
|
|
-- Update outputs
|
|
e_out <= r.e;
|
|
l_out <= r.l;
|
|
m_out <= r.m;
|
|
d_out <= r.d;
|
|
end process;
|
|
end architecture behaviour;
|