You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
microwatt/decode2.vhdl

473 lines
14 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.decode_types.all;
use work.common.all;
use work.helpers.all;
use work.insn_helpers.all;
entity decode2 is
port (
clk : in std_ulogic;
rst : in std_ulogic;
complete_in : in std_ulogic;
stall_out : out std_ulogic;
stopped_out : out std_ulogic;
flush_in: in std_ulogic;
d_in : in Decode1ToDecode2Type;
e_out : out Decode2ToExecute1Type;
m_out : out Decode2ToMultiplyType;
d_out : out Decode2ToDividerType;
l_out : out Decode2ToLoadstore1Type;
r_in : in RegisterFileToDecode2Type;
r_out : out Decode2ToRegisterFileType;
c_in : in CrFileToDecode2Type;
c_out : out Decode2ToCrFileType
);
end entity decode2;
architecture behaviour of decode2 is
type state_type is (IDLE, WAIT_FOR_PREV_TO_COMPLETE, WAIT_FOR_CURR_TO_COMPLETE);
type reg_internal_type is record
state : state_type;
outstanding : integer;
end record;
type reg_type is record
e : Decode2ToExecute1Type;
m : Decode2ToMultiplyType;
d : Decode2ToDividerType;
l : Decode2ToLoadstore1Type;
end record;
signal r_int, rin_int : reg_internal_type;
signal r, rin : reg_type;
type decode_input_reg_t is record
reg_valid : std_ulogic;
reg : std_ulogic_vector(4 downto 0);
data : std_ulogic_vector(63 downto 0);
end record;
function decode_input_reg_a (t : input_reg_a_t; insn_in : std_ulogic_vector(31 downto 0);
reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is
begin
case t is
when RA =>
return ('1', insn_ra(insn_in), reg_data);
when RA_OR_ZERO =>
return ('1', insn_ra(insn_in), ra_or_zero(reg_data, insn_ra(insn_in)));
when RS =>
return ('1', insn_rs(insn_in), reg_data);
when NONE =>
return ('0', (others => '0'), (others => '0'));
end case;
end;
function decode_input_reg_b (t : input_reg_b_t; insn_in : std_ulogic_vector(31 downto 0);
reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is
begin
case t is
when RB =>
return ('1', insn_rb(insn_in), reg_data);
when RS =>
return ('1', insn_rs(insn_in), reg_data);
when CONST_UI =>
return ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_ui(insn_in)), 64)));
when CONST_SI =>
return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)), 64)));
when CONST_SI_HI =>
return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)) & x"0000", 64)));
when CONST_UI_HI =>
return ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_si(insn_in)) & x"0000", 64)));
when CONST_LI =>
return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_li(insn_in)) & "00", 64)));
when CONST_BD =>
return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_bd(insn_in)) & "00", 64)));
when CONST_DS =>
return ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_ds(insn_in)) & "00", 64)));
when NONE =>
return ('0', (others => '0'), (others => '0'));
end case;
end;
function decode_input_reg_c (t : input_reg_c_t; insn_in : std_ulogic_vector(31 downto 0);
reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is
begin
case t is
when RS =>
return ('1', insn_rs(insn_in), reg_data);
when NONE =>
return ('0', (others => '0'), (others => '0'));
end case;
end;
function decode_output_reg (t : output_reg_a_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic_vector is
begin
case t is
when RT =>
return insn_rt(insn_in);
when RA =>
return insn_ra(insn_in);
when NONE =>
return "00000";
end case;
end;
function decode_const_a (t : constant_a_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic_vector is
begin
case t is
when SH =>
return "00" & insn_sh(insn_in);
when SH32 =>
return "000" & insn_sh32(insn_in);
when FXM =>
return insn_fxm(insn_in);
when BO =>
return "000" & insn_bo(insn_in);
when BF =>
return "00000" & insn_bf(insn_in);
when TOO =>
return "000" & insn_to(insn_in);
when BC =>
return "000" & insn_bc(insn_in);
when NONE =>
return "00000000";
end case;
end;
function decode_const_b (t : constant_b_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic_vector is
begin
case t is
when MB =>
return insn_mb(insn_in);
when ME =>
return insn_me(insn_in);
when MB32 =>
return "0" & insn_mb32(insn_in);
when BI =>
return "0" & insn_bi(insn_in);
when L =>
return "00000" & insn_l(insn_in);
when BFA =>
return "000" & insn_bfa(insn_in);
when NONE =>
return "000000";
end case;
end;
function decode_const_c (t : constant_c_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic_vector is
begin
case t is
when ME32 =>
return insn_me32(insn_in);
when BH =>
return "000" & insn_bh(insn_in);
when NONE =>
return "00000";
end case;
end;
function decode_rc (t : rc_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic is
begin
case t is
when RC =>
return insn_rc(insn_in);
when ONE =>
return '1';
when NONE =>
return '0';
end case;
end;
begin
decode2_0: process(clk)
begin
if rising_edge(clk) then
assert r_int.outstanding <= 1 report "Outstanding bad " & integer'image(r_int.outstanding) severity failure;
if rin.e.valid = '1' or rin.l.valid = '1' or rin.m.valid = '1' or rin.d.valid = '1' then
report "execute " & to_hstring(rin.e.nia);
end if;
r <= rin;
r_int <= rin_int;
end if;
end process;
r_out.read1_reg <= insn_ra(d_in.insn) when (d_in.decode.input_reg_a = RA) else
insn_ra(d_in.insn) when d_in.decode.input_reg_a = RA_OR_ZERO else
insn_rs(d_in.insn) when d_in.decode.input_reg_a = RS else
(others => '0');
r_out.read2_reg <= insn_rb(d_in.insn) when d_in.decode.input_reg_b = RB else
insn_rs(d_in.insn) when d_in.decode.input_reg_b = RS else
(others => '0');
r_out.read3_reg <= insn_rs(d_in.insn) when d_in.decode.input_reg_c = RS else
(others => '0');
c_out.read <= d_in.decode.input_cr;
decode2_1: process(all)
variable v : reg_type;
variable v_int : reg_internal_type;
variable mul_a : std_ulogic_vector(63 downto 0);
variable mul_b : std_ulogic_vector(63 downto 0);
variable decoded_reg_a : decode_input_reg_t;
variable decoded_reg_b : decode_input_reg_t;
variable decoded_reg_c : decode_input_reg_t;
variable signed_division: std_ulogic;
variable is_valid : std_ulogic;
begin
v := r;
v_int := r_int;
v.e := Decode2ToExecute1Init;
v.l := Decode2ToLoadStore1Init;
v.m := Decode2ToMultiplyInit;
v.d := Decode2ToDividerInit;
mul_a := (others => '0');
mul_b := (others => '0');
--v.e.input_cr := d_in.decode.input_cr;
--v.m.input_cr := d_in.decode.input_cr;
--v.e.output_cr := d_in.decode.output_cr;
decoded_reg_a := decode_input_reg_a (d_in.decode.input_reg_a, d_in.insn, r_in.read1_data);
decoded_reg_b := decode_input_reg_b (d_in.decode.input_reg_b, d_in.insn, r_in.read2_data);
decoded_reg_c := decode_input_reg_c (d_in.decode.input_reg_c, d_in.insn, r_in.read3_data);
r_out.read1_enable <= decoded_reg_a.reg_valid;
r_out.read2_enable <= decoded_reg_b.reg_valid;
r_out.read3_enable <= decoded_reg_c.reg_valid;
-- execute unit
v.e.nia := d_in.nia;
v.e.insn_type := d_in.decode.insn_type;
v.e.read_reg1 := decoded_reg_a.reg;
v.e.read_data1 := decoded_reg_a.data;
v.e.read_reg2 := decoded_reg_b.reg;
v.e.read_data2 := decoded_reg_b.data;
v.e.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn);
v.e.rc := decode_rc(d_in.decode.rc, d_in.insn);
v.e.cr := c_in.read_cr_data;
v.e.input_carry := d_in.decode.input_carry;
v.e.output_carry := d_in.decode.output_carry;
if d_in.decode.lr = '1' then
v.e.lr := insn_lk(d_in.insn);
end if;
v.e.const1 := decode_const_a(d_in.decode.const_a, d_in.insn);
v.e.const2 := decode_const_b(d_in.decode.const_b, d_in.insn);
v.e.const3 := decode_const_c(d_in.decode.const_c, d_in.insn);
v.e.insn := d_in.insn;
-- multiply unit
v.m.insn_type := d_in.decode.insn_type;
mul_a := decoded_reg_a.data;
mul_b := decoded_reg_b.data;
v.m.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn);
v.m.rc := decode_rc(d_in.decode.rc, d_in.insn);
if d_in.decode.mul_32bit = '1' then
if d_in.decode.mul_signed = '1' then
v.m.data1 := (others => mul_a(31));
v.m.data1(31 downto 0) := mul_a(31 downto 0);
v.m.data2 := (others => mul_b(31));
v.m.data2(31 downto 0) := mul_b(31 downto 0);
else
v.m.data1 := '0' & x"00000000" & mul_a(31 downto 0);
v.m.data2 := '0' & x"00000000" & mul_b(31 downto 0);
end if;
else
if d_in.decode.mul_signed = '1' then
v.m.data1 := mul_a(63) & mul_a;
v.m.data2 := mul_b(63) & mul_b;
else
v.m.data1 := '0' & mul_a;
v.m.data2 := '0' & mul_b;
end if;
end if;
-- divide unit
-- PPC divide and modulus instruction words have these bits in
-- the bottom 11 bits: o1dns 010t1 r
-- where o = OE for div instrs, signedness for mod instrs
-- d = 1 for div*, 0 for mod*
-- n = 1 for normal, 0 for extended (dividend << 32/64)
-- s = 1 for signed, 0 for unsigned (for div*)
-- t = 1 for 32-bit, 0 for 64-bit
-- r = RC bit (record condition code)
v.d.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn);
v.d.is_modulus := not d_in.insn(8);
v.d.is_32bit := not d_in.insn(2);
if d_in.insn(8) = '1' then
signed_division := d_in.insn(6);
else
signed_division := d_in.insn(10);
end if;
v.d.is_signed := signed_division;
if d_in.insn(2) = '0' then
-- 64-bit forms
if d_in.insn(8) = '1' and d_in.insn(7) = '0' then
v.d.is_extended := '1';
end if;
v.d.dividend := decoded_reg_a.data;
v.d.divisor := decoded_reg_b.data;
else
-- 32-bit forms
if d_in.insn(8) = '1' and d_in.insn(7) = '0' then -- extended forms
v.d.dividend := decoded_reg_a.data(31 downto 0) & x"00000000";
elsif signed_division = '1' and decoded_reg_a.data(31) = '1' then
-- sign extend to 64 bits
v.d.dividend := x"ffffffff" & decoded_reg_a.data(31 downto 0);
else
v.d.dividend := x"00000000" & decoded_reg_a.data(31 downto 0);
end if;
if signed_division = '1' and decoded_reg_b.data(31) = '1' then
v.d.divisor := x"ffffffff" & decoded_reg_b.data(31 downto 0);
else
v.d.divisor := x"00000000" & decoded_reg_b.data(31 downto 0);
end if;
end if;
v.d.rc := decode_rc(d_in.decode.rc, d_in.insn);
-- load/store unit
v.l.update_reg := decoded_reg_a.reg;
v.l.addr1 := decoded_reg_a.data;
v.l.addr2 := decoded_reg_b.data;
v.l.data := decoded_reg_c.data;
v.l.write_reg := decode_output_reg(d_in.decode.output_reg_a, d_in.insn);
if d_in.decode.insn_type = OP_LOAD then
v.l.load := '1';
else
v.l.load := '0';
end if;
case d_in.decode.length is
when is1B =>
v.l.length := "0001";
when is2B =>
v.l.length := "0010";
when is4B =>
v.l.length := "0100";
when is8B =>
v.l.length := "1000";
when NONE =>
v.l.length := "0000";
end case;
v.l.byte_reverse := d_in.decode.byte_reverse;
v.l.sign_extend := d_in.decode.sign_extend;
v.l.update := d_in.decode.update;
-- single issue
if complete_in = '1' then
v_int.outstanding := v_int.outstanding - 1;
end if;
-- state machine to handle instructions that must be single
-- through the pipeline.
stall_out <= '0';
is_valid := d_in.valid;
-- Handle debugger stop
stopped_out <= '0';
if d_in.stop_mark = '1' and v_int.outstanding = 0 then
stopped_out <= '1';
end if;
case v_int.state is
when IDLE =>
if (flush_in = '0') and (is_valid = '1') and (d_in.decode.sgl_pipe = '1') then
if v_int.outstanding /= 0 then
v_int.state := WAIT_FOR_PREV_TO_COMPLETE;
stall_out <= '1';
is_valid := '0';
else
-- send insn out and wait on it to complete
v_int.state := WAIT_FOR_CURR_TO_COMPLETE;
end if;
end if;
when WAIT_FOR_PREV_TO_COMPLETE =>
if v_int.outstanding = 0 then
-- send insn out and wait on it to complete
v_int.state := WAIT_FOR_CURR_TO_COMPLETE;
else
stall_out <= '1';
is_valid := '0';
end if;
when WAIT_FOR_CURR_TO_COMPLETE =>
if v_int.outstanding = 0 then
v_int.state := IDLE;
else
stall_out <= '1';
is_valid := '0';
end if;
end case;
v.e.valid := '0';
v.m.valid := '0';
v.d.valid := '0';
v.l.valid := '0';
case d_in.decode.unit is
when ALU =>
v.e.valid := is_valid;
when LDST =>
v.l.valid := is_valid;
when MUL =>
v.m.valid := is_valid;
when DIV =>
v.d.valid := is_valid;
when NONE =>
v.e.valid := is_valid;
v.e.insn_type := OP_ILLEGAL;
end case;
if flush_in = '1' then
v.e.valid := '0';
v.m.valid := '0';
v.d.valid := '0';
v.l.valid := '0';
end if;
-- track outstanding instructions
if v.e.valid = '1' or v.l.valid = '1' or v.m.valid = '1' or v.d.valid = '1' then
v_int.outstanding := v_int.outstanding + 1;
end if;
if rst = '1' then
v_int.state := IDLE;
v_int.outstanding := 0;
v.e := Decode2ToExecute1Init;
v.l := Decode2ToLoadStore1Init;
v.m := Decode2ToMultiplyInit;
v.d := Decode2ToDividerInit;
end if;
-- Update registers
rin <= v;
rin_int <= v_int;
-- Update outputs
e_out <= r.e;
l_out <= r.l;
m_out <= r.m;
d_out <= r.d;
end process;
end architecture behaviour;