You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
microwatt/execute1.vhdl

875 lines
28 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.decode_types.all;
use work.common.all;
use work.helpers.all;
use work.crhelpers.all;
use work.insn_helpers.all;
use work.ppc_fx_insns.all;
entity execute1 is
generic (
EX1_BYPASS : boolean := true
);
port (
clk : in std_ulogic;
rst : in std_ulogic;
-- asynchronous
flush_out : out std_ulogic;
stall_out : out std_ulogic;
e_in : in Decode2ToExecute1Type;
-- asynchronous
l_out : out Execute1ToLoadstore1Type;
f_out : out Execute1ToFetch1Type;
e_out : out Execute1ToWritebackType;
icache_inval : out std_ulogic;
terminate_out : out std_ulogic
);
end entity execute1;
architecture behaviour of execute1 is
type reg_type is record
e : Execute1ToWritebackType;
lr_update : std_ulogic;
next_lr : std_ulogic_vector(63 downto 0);
mul_in_progress : std_ulogic;
div_in_progress : std_ulogic;
cntz_in_progress : std_ulogic;
slow_op_dest : gpr_index_t;
slow_op_rc : std_ulogic;
slow_op_oe : std_ulogic;
slow_op_xerc : xer_common_t;
end record;
signal r, rin : reg_type;
signal a_in, b_in, c_in : std_ulogic_vector(63 downto 0);
signal ctrl: ctrl_t := (irq_state => WRITE_SRR0, others => (others => '0'));
signal ctrl_tmp: ctrl_t := (irq_state => WRITE_SRR0, others => (others => '0'));
signal right_shift, rot_clear_left, rot_clear_right: std_ulogic;
signal rotator_result: std_ulogic_vector(63 downto 0);
signal rotator_carry: std_ulogic;
signal logical_result: std_ulogic_vector(63 downto 0);
signal countzero_result: std_ulogic_vector(63 downto 0);
signal popcnt_result: std_ulogic_vector(63 downto 0);
signal parity_result: std_ulogic_vector(63 downto 0);
-- multiply signals
signal x_to_multiply: Execute1ToMultiplyType;
signal multiply_to_x: MultiplyToExecute1Type;
-- divider signals
signal x_to_divider: Execute1ToDividerType;
signal divider_to_x: DividerToExecute1Type;
procedure set_carry(e: inout Execute1ToWritebackType;
carry32 : in std_ulogic;
carry : in std_ulogic) is
begin
e.xerc.ca32 := carry32;
e.xerc.ca := carry;
e.write_xerc_enable := '1';
end;
procedure set_ov(e: inout Execute1ToWritebackType;
ov : in std_ulogic;
ov32 : in std_ulogic) is
begin
e.xerc.ov32 := ov32;
e.xerc.ov := ov;
if ov = '1' then
e.xerc.so := '1';
end if;
e.write_xerc_enable := '1';
end;
function calc_ov(msb_a : std_ulogic; msb_b: std_ulogic;
ca: std_ulogic; msb_r: std_ulogic) return std_ulogic is
begin
return (ca xor msb_r) and not (msb_a xor msb_b);
end;
function decode_input_carry(ic : carry_in_t;
xerc : xer_common_t) return std_ulogic is
begin
case ic is
when ZERO =>
return '0';
when CA =>
return xerc.ca;
when ONE =>
return '1';
end case;
end;
function msr_copy(msr: std_ulogic_vector(63 downto 0))
return std_ulogic_vector is
variable msr_out: std_ulogic_vector(63 downto 0);
begin
-- ISA says this:
-- Defined MSR bits are classified as either full func-
-- tion or partial function. Full function MSR bits are
-- saved in SRR1 or HSRR1 when an interrupt other
-- than a System Call Vectored interrupt occurs and
-- restored by rfscv, rfid, or hrfid, while partial func-
-- tion MSR bits are not saved or restored.
-- Full function MSR bits lie in the range 0:32, 37:41, and
-- 48:63, and partial function MSR bits lie in the range
-- 33:36 and 42:47.
msr_out := (others => '0');
msr_out(32 downto 0) := msr(32 downto 0);
msr_out(41 downto 37) := msr(41 downto 37);
msr_out(63 downto 48) := msr(63 downto 48);
return msr_out;
end;
begin
rotator_0: entity work.rotator
port map (
rs => c_in,
ra => a_in,
shift => b_in(6 downto 0),
insn => e_in.insn,
is_32bit => e_in.is_32bit,
right_shift => right_shift,
arith => e_in.is_signed,
clear_left => rot_clear_left,
clear_right => rot_clear_right,
result => rotator_result,
carry_out => rotator_carry
);
logical_0: entity work.logical
port map (
rs => c_in,
rb => b_in,
op => e_in.insn_type,
invert_in => e_in.invert_a,
invert_out => e_in.invert_out,
result => logical_result,
datalen => e_in.data_len,
popcnt => popcnt_result,
parity => parity_result
);
countzero_0: entity work.zero_counter
port map (
clk => clk,
rs => c_in,
count_right => e_in.insn(10),
is_32bit => e_in.is_32bit,
result => countzero_result
);
multiply_0: entity work.multiply
port map (
clk => clk,
m_in => x_to_multiply,
m_out => multiply_to_x
);
divider_0: entity work.divider
port map (
clk => clk,
rst => rst,
d_in => x_to_divider,
d_out => divider_to_x
);
a_in <= r.e.write_data when EX1_BYPASS and e_in.bypass_data1 = '1' else e_in.read_data1;
b_in <= r.e.write_data when EX1_BYPASS and e_in.bypass_data2 = '1' else e_in.read_data2;
c_in <= r.e.write_data when EX1_BYPASS and e_in.bypass_data3 = '1' else e_in.read_data3;
execute1_0: process(clk)
begin
if rising_edge(clk) then
r <= rin;
ctrl <= ctrl_tmp;
assert not (r.lr_update = '1' and e_in.valid = '1')
report "LR update collision with valid in EX1"
severity failure;
if r.lr_update = '1' then
report "LR update to " & to_hstring(r.next_lr);
end if;
end if;
end process;
execute1_1: process(all)
variable v : reg_type;
variable a_inv : std_ulogic_vector(63 downto 0);
variable result : std_ulogic_vector(63 downto 0);
variable newcrf : std_ulogic_vector(3 downto 0);
variable result_with_carry : std_ulogic_vector(64 downto 0);
variable result_en : std_ulogic;
variable crnum : crnum_t;
variable crbit : integer range 0 to 31;
variable scrnum : crnum_t;
variable lo, hi : integer;
variable sh, mb, me : std_ulogic_vector(5 downto 0);
variable sh32, mb32, me32 : std_ulogic_vector(4 downto 0);
variable bo, bi : std_ulogic_vector(4 downto 0);
variable bf, bfa : std_ulogic_vector(2 downto 0);
variable cr_op : std_ulogic_vector(9 downto 0);
variable cr_operands : std_ulogic_vector(1 downto 0);
variable bt, ba, bb : std_ulogic_vector(4 downto 0);
variable btnum, banum, bbnum : integer range 0 to 31;
variable crresult : std_ulogic;
variable l : std_ulogic;
variable next_nia : std_ulogic_vector(63 downto 0);
variable carry_32, carry_64 : std_ulogic;
variable sign1, sign2 : std_ulogic;
variable abs1, abs2 : signed(63 downto 0);
variable overflow : std_ulogic;
variable negative : std_ulogic;
variable zerohi, zerolo : std_ulogic;
variable msb_a, msb_b : std_ulogic;
variable a_lt : std_ulogic;
variable lv : Execute1ToLoadstore1Type;
variable irq_valid : std_ulogic;
variable exception : std_ulogic;
variable exception_nextpc : std_ulogic;
begin
result := (others => '0');
result_with_carry := (others => '0');
result_en := '0';
newcrf := (others => '0');
v := r;
v.e := Execute1ToWritebackInit;
-- XER forwarding. To avoid having to track XER hazards, we
-- use the previously latched value.
--
-- If the XER was modified by a multiply or a divide, those are
-- single issue, we'll get the up to date value from decode2 from
-- the register file.
--
-- If it was modified by an instruction older than the previous
-- one in EX1, it will have also hit writeback and will be up
-- to date in decode2.
--
-- That leaves us with the case where it was updated by the previous
-- instruction in EX1. In that case, we can forward it back here.
--
-- This will break if we allow pipelining of multiply and divide,
-- but ideally, those should go via EX1 anyway and run as a state
-- machine from here.
--
-- One additional hazard to beware of is an XER:SO modifying instruction
-- in EX1 followed immediately by a store conditional. Due to our
-- writeback latency, the store will go down the LSU with the previous
-- XER value, thus the stcx. will set CR0:SO using an obsolete SO value.
--
-- We will need to handle that if we ever make stcx. not single issue
--
-- We always pass a valid XER value downto writeback even when
-- we aren't updating it, in order for XER:SO -> CR0:SO transfer
-- to work for RC instructions.
--
if r.e.write_xerc_enable = '1' then
v.e.xerc := r.e.xerc;
else
v.e.xerc := e_in.xerc;
end if;
v.lr_update := '0';
v.mul_in_progress := '0';
v.div_in_progress := '0';
v.cntz_in_progress := '0';
-- signals to multiply unit
x_to_multiply <= Execute1ToMultiplyInit;
x_to_multiply.insn_type <= e_in.insn_type;
x_to_multiply.is_32bit <= e_in.is_32bit;
if e_in.is_32bit = '1' then
if e_in.is_signed = '1' then
x_to_multiply.data1 <= (others => a_in(31));
x_to_multiply.data1(31 downto 0) <= a_in(31 downto 0);
x_to_multiply.data2 <= (others => b_in(31));
x_to_multiply.data2(31 downto 0) <= b_in(31 downto 0);
else
x_to_multiply.data1 <= '0' & x"00000000" & a_in(31 downto 0);
x_to_multiply.data2 <= '0' & x"00000000" & b_in(31 downto 0);
end if;
else
if e_in.is_signed = '1' then
x_to_multiply.data1 <= a_in(63) & a_in;
x_to_multiply.data2 <= b_in(63) & b_in;
else
x_to_multiply.data1 <= '0' & a_in;
x_to_multiply.data2 <= '0' & b_in;
end if;
end if;
-- signals to divide unit
sign1 := '0';
sign2 := '0';
if e_in.is_signed = '1' then
if e_in.is_32bit = '1' then
sign1 := a_in(31);
sign2 := b_in(31);
else
sign1 := a_in(63);
sign2 := b_in(63);
end if;
end if;
-- take absolute values
if sign1 = '0' then
abs1 := signed(a_in);
else
abs1 := - signed(a_in);
end if;
if sign2 = '0' then
abs2 := signed(b_in);
else
abs2 := - signed(b_in);
end if;
x_to_divider <= Execute1ToDividerInit;
x_to_divider.is_signed <= e_in.is_signed;
x_to_divider.is_32bit <= e_in.is_32bit;
if e_in.insn_type = OP_MOD then
x_to_divider.is_modulus <= '1';
end if;
x_to_divider.neg_result <= sign1 xor (sign2 and not x_to_divider.is_modulus);
if e_in.is_32bit = '0' then
-- 64-bit forms
if e_in.insn_type = OP_DIVE then
x_to_divider.is_extended <= '1';
end if;
x_to_divider.dividend <= std_ulogic_vector(abs1);
x_to_divider.divisor <= std_ulogic_vector(abs2);
else
-- 32-bit forms
x_to_divider.is_extended <= '0';
if e_in.insn_type = OP_DIVE then -- extended forms
x_to_divider.dividend <= std_ulogic_vector(abs1(31 downto 0)) & x"00000000";
else
x_to_divider.dividend <= x"00000000" & std_ulogic_vector(abs1(31 downto 0));
end if;
x_to_divider.divisor <= x"00000000" & std_ulogic_vector(abs2(31 downto 0));
end if;
ctrl_tmp <= ctrl;
-- FIXME: run at 512MHz not core freq
ctrl_tmp.tb <= std_ulogic_vector(unsigned(ctrl.tb) + 1);
ctrl_tmp.dec <= std_ulogic_vector(unsigned(ctrl.dec) - 1);
irq_valid := '0';
if ctrl.msr(63 - 48) = '1' and ctrl.dec(63) = '1' then
report "IRQ valid";
irq_valid := '1';
end if;
terminate_out <= '0';
icache_inval <= '0';
stall_out <= '0';
f_out <= Execute1ToFetch1TypeInit;
-- Next insn adder used in a couple of places
next_nia := std_ulogic_vector(unsigned(e_in.nia) + 4);
-- rotator control signals
right_shift <= '1' when e_in.insn_type = OP_SHR else '0';
rot_clear_left <= '1' when e_in.insn_type = OP_RLC or e_in.insn_type = OP_RLCL else '0';
rot_clear_right <= '1' when e_in.insn_type = OP_RLC or e_in.insn_type = OP_RLCR else '0';
ctrl_tmp.irq_state <= WRITE_SRR0;
exception := '0';
exception_nextpc := '0';
v.e.exc_write_enable := '0';
v.e.exc_write_reg := fast_spr_num(SPR_SRR0);
v.e.exc_write_data := e_in.nia;
if ctrl.irq_state = WRITE_SRR1 then
v.e.exc_write_reg := fast_spr_num(SPR_SRR1);
v.e.exc_write_data := ctrl.srr1;
v.e.exc_write_enable := '1';
ctrl_tmp.msr(63 - 48) <= '0'; -- clear EE
f_out.redirect <= '1';
f_out.redirect_nia <= ctrl.irq_nia;
v.e.valid := '1';
report "Writing SRR1: " & to_hstring(ctrl.srr1);
elsif irq_valid = '1' then
-- we need two cycles to write srr0 and 1
-- will need more when we have to write DSISR, DAR and HIER
exception := '1';
ctrl_tmp.irq_nia <= std_logic_vector(to_unsigned(16#900#, 64));
ctrl_tmp.srr1 <= msr_copy(ctrl.msr);
elsif e_in.valid = '1' then
v.e.valid := '1';
v.e.write_reg := e_in.write_reg;
v.slow_op_dest := gspr_to_gpr(e_in.write_reg);
v.slow_op_rc := e_in.rc;
v.slow_op_oe := e_in.oe;
v.slow_op_xerc := v.e.xerc;
case_0: case e_in.insn_type is
when OP_ILLEGAL =>
-- we need two cycles to write srr0 and 1
-- will need more when we have to write DSISR, DAR and HIER
exception := '1';
ctrl_tmp.irq_nia <= std_logic_vector(to_unsigned(16#700#, 64));
ctrl_tmp.srr1 <= msr_copy(ctrl.msr);
-- Since we aren't doing Hypervisor emulation assist (0xe40) we
-- set bit 44 to indicate we have an illegal
ctrl_tmp.srr1(63 - 44) <= '1';
report "illegal";
when OP_SC =>
-- FIXME Assume everything is SC (not SCV) for now
-- we need two cycles to write srr0 and 1
-- will need more when we have to write DSISR, DAR and HIER
exception := '1';
exception_nextpc := '1';
ctrl_tmp.irq_nia <= std_logic_vector(to_unsigned(16#C00#, 64));
ctrl_tmp.srr1 <= msr_copy(ctrl.msr);
report "sc";
when OP_ATTN =>
terminate_out <= '1';
report "ATTN";
when OP_NOP =>
-- Do nothing
when OP_ADD | OP_CMP =>
if e_in.invert_a = '0' then
a_inv := a_in;
else
a_inv := not a_in;
end if;
result_with_carry := ppc_adde(a_inv, b_in,
decode_input_carry(e_in.input_carry, v.e.xerc));
result := result_with_carry(63 downto 0);
carry_32 := result(32) xor a_inv(32) xor b_in(32);
carry_64 := result_with_carry(64);
if e_in.insn_type = OP_ADD then
if e_in.output_carry = '1' then
set_carry(v.e, carry_32, carry_64);
end if;
if e_in.oe = '1' then
set_ov(v.e,
calc_ov(a_inv(63), b_in(63), carry_64, result_with_carry(63)),
calc_ov(a_inv(31), b_in(31), carry_32, result_with_carry(31)));
end if;
result_en := '1';
else
-- CMP and CMPL instructions
-- Note, we have done RB - RA, not RA - RB
bf := insn_bf(e_in.insn);
l := insn_l(e_in.insn);
v.e.write_cr_enable := '1';
crnum := to_integer(unsigned(bf));
v.e.write_cr_mask := num_to_fxm(crnum);
zerolo := not (or (a_in(31 downto 0) xor b_in(31 downto 0)));
zerohi := not (or (a_in(63 downto 32) xor b_in(63 downto 32)));
if zerolo = '1' and (l = '0' or zerohi = '1') then
-- values are equal
newcrf := "001" & v.e.xerc.so;
else
if l = '1' then
-- 64-bit comparison
msb_a := a_in(63);
msb_b := b_in(63);
else
-- 32-bit comparison
msb_a := a_in(31);
msb_b := b_in(31);
end if;
if msb_a /= msb_b then
-- Subtraction might overflow, but
-- comparison is clear from MSB difference.
-- for signed, 0 is greater; for unsigned, 1 is greater
a_lt := msb_a xnor e_in.is_signed;
else
-- Subtraction cannot overflow since MSBs are equal.
-- carry = 1 indicates RA is smaller (signed or unsigned)
a_lt := (not l and carry_32) or (l and carry_64);
end if;
newcrf := a_lt & not a_lt & '0' & v.e.xerc.so;
end if;
for i in 0 to 7 loop
lo := i*4;
hi := lo + 3;
v.e.write_cr_data(hi downto lo) := newcrf;
end loop;
end if;
when OP_AND | OP_OR | OP_XOR =>
result := logical_result;
result_en := '1';
when OP_B =>
f_out.redirect <= '1';
if (insn_aa(e_in.insn)) then
f_out.redirect_nia <= std_ulogic_vector(signed(b_in));
else
f_out.redirect_nia <= std_ulogic_vector(signed(e_in.nia) + signed(b_in));
end if;
when OP_BC =>
-- read_data1 is CTR
bo := insn_bo(e_in.insn);
bi := insn_bi(e_in.insn);
if bo(4-2) = '0' then
result := std_ulogic_vector(unsigned(a_in) - 1);
result_en := '1';
v.e.write_reg := fast_spr_num(SPR_CTR);
end if;
if ppc_bc_taken(bo, bi, e_in.cr, a_in) = 1 then
f_out.redirect <= '1';
if (insn_aa(e_in.insn)) then
f_out.redirect_nia <= std_ulogic_vector(signed(b_in));
else
f_out.redirect_nia <= std_ulogic_vector(signed(e_in.nia) + signed(b_in));
end if;
end if;
when OP_BCREG =>
-- read_data1 is CTR
-- read_data2 is target register (CTR, LR or TAR)
bo := insn_bo(e_in.insn);
bi := insn_bi(e_in.insn);
if bo(4-2) = '0' and e_in.insn(10) = '0' then
result := std_ulogic_vector(unsigned(a_in) - 1);
result_en := '1';
v.e.write_reg := fast_spr_num(SPR_CTR);
end if;
if ppc_bc_taken(bo, bi, e_in.cr, a_in) = 1 then
f_out.redirect <= '1';
f_out.redirect_nia <= b_in(63 downto 2) & "00";
end if;
when OP_RFID =>
f_out.redirect <= '1';
f_out.redirect_nia <= a_in(63 downto 2) & "00"; -- srr0
ctrl_tmp.msr <= msr_copy(std_ulogic_vector(signed(b_in))); -- srr1
when OP_CMPB =>
result := ppc_cmpb(c_in, b_in);
result_en := '1';
when OP_CNTZ =>
v.e.valid := '0';
v.cntz_in_progress := '1';
stall_out <= '1';
when OP_EXTS =>
-- note data_len is a 1-hot encoding
negative := (e_in.data_len(0) and c_in(7)) or
(e_in.data_len(1) and c_in(15)) or
(e_in.data_len(2) and c_in(31));
result := (others => negative);
if e_in.data_len(2) = '1' then
result(31 downto 16) := c_in(31 downto 16);
end if;
if e_in.data_len(2) = '1' or e_in.data_len(1) = '1' then
result(15 downto 8) := c_in(15 downto 8);
end if;
result(7 downto 0) := c_in(7 downto 0);
result_en := '1';
when OP_ISEL =>
crbit := to_integer(unsigned(insn_bc(e_in.insn)));
if e_in.cr(31-crbit) = '1' then
result := a_in;
else
result := b_in;
end if;
result_en := '1';
when OP_MCRF =>
cr_op := insn_cr(e_in.insn);
report "CR OP " & to_hstring(cr_op);
if cr_op(0) = '0' then -- MCRF
bf := insn_bf(e_in.insn);
bfa := insn_bfa(e_in.insn);
v.e.write_cr_enable := '1';
crnum := to_integer(unsigned(bf));
scrnum := to_integer(unsigned(bfa));
v.e.write_cr_mask := num_to_fxm(crnum);
for i in 0 to 7 loop
lo := (7-i)*4;
hi := lo + 3;
if i = scrnum then
newcrf := e_in.cr(hi downto lo);
end if;
end loop;
for i in 0 to 7 loop
lo := i*4;
hi := lo + 3;
v.e.write_cr_data(hi downto lo) := newcrf;
end loop;
else
v.e.write_cr_enable := '1';
bt := insn_bt(e_in.insn);
ba := insn_ba(e_in.insn);
bb := insn_bb(e_in.insn);
btnum := 31 - to_integer(unsigned(bt));
banum := 31 - to_integer(unsigned(ba));
bbnum := 31 - to_integer(unsigned(bb));
-- Bits 5-8 of cr_op give the truth table of the requested
-- logical operation
cr_operands := e_in.cr(banum) & e_in.cr(bbnum);
crresult := cr_op(5 + to_integer(unsigned(cr_operands)));
v.e.write_cr_mask := num_to_fxm((31-btnum) / 4);
for i in 0 to 31 loop
if i = btnum then
v.e.write_cr_data(i) := crresult;
else
v.e.write_cr_data(i) := e_in.cr(i);
end if;
end loop;
end if;
when OP_MFMSR =>
result := msr_copy(ctrl.msr);
result_en := '1';
when OP_MFSPR =>
report "MFSPR to SPR " & integer'image(decode_spr_num(e_in.insn)) &
"=" & to_hstring(a_in);
if is_fast_spr(e_in.read_reg1) then
result := a_in;
if decode_spr_num(e_in.insn) = SPR_XER then
-- bits 0:31 and 35:43 are treated as reserved and return 0s when read using mfxer
result(63 downto 32) := (others => '0');
result(63-32) := v.e.xerc.so;
result(63-33) := v.e.xerc.ov;
result(63-34) := v.e.xerc.ca;
result(63-35 downto 63-43) := "000000000";
result(63-44) := v.e.xerc.ov32;
result(63-45) := v.e.xerc.ca32;
end if;
else
case decode_spr_num(e_in.insn) is
when SPR_TB =>
result := ctrl.tb;
when SPR_DEC =>
result := ctrl.dec;
when others =>
result := (others => '0');
end case;
end if;
result_en := '1';
when OP_MFCR =>
if e_in.insn(20) = '0' then
-- mfcr
result := x"00000000" & e_in.cr;
else
-- mfocrf
crnum := fxm_to_num(insn_fxm(e_in.insn));
result := (others => '0');
for i in 0 to 7 loop
lo := (7-i)*4;
hi := lo + 3;
if crnum = i then
result(hi downto lo) := e_in.cr(hi downto lo);
end if;
end loop;
end if;
result_en := '1';
when OP_MTCRF =>
v.e.write_cr_enable := '1';
if e_in.insn(20) = '0' then
-- mtcrf
v.e.write_cr_mask := insn_fxm(e_in.insn);
else
-- mtocrf: We require one hot priority encoding here
crnum := fxm_to_num(insn_fxm(e_in.insn));
v.e.write_cr_mask := num_to_fxm(crnum);
end if;
v.e.write_cr_data := c_in(31 downto 0);
when OP_MTMSRD =>
-- FIXME handle just the bits we need to.
ctrl_tmp.msr <= msr_copy(c_in);
when OP_MTSPR =>
report "MTSPR to SPR " & integer'image(decode_spr_num(e_in.insn)) &
"=" & to_hstring(c_in);
if is_fast_spr(e_in.write_reg) then
result := c_in;
result_en := '1';
if decode_spr_num(e_in.insn) = SPR_XER then
v.e.xerc.so := c_in(63-32);
v.e.xerc.ov := c_in(63-33);
v.e.xerc.ca := c_in(63-34);
v.e.xerc.ov32 := c_in(63-44);
v.e.xerc.ca32 := c_in(63-45);
v.e.write_xerc_enable := '1';
end if;
else
-- slow spr
case decode_spr_num(e_in.insn) is
when SPR_DEC =>
ctrl_tmp.dec <= c_in;
when others =>
end case;
end if;
when OP_POPCNT =>
result := popcnt_result;
result_en := '1';
when OP_PRTY =>
result := parity_result;
result_en := '1';
when OP_RLC | OP_RLCL | OP_RLCR | OP_SHL | OP_SHR =>
result := rotator_result;
if e_in.output_carry = '1' then
set_carry(v.e, rotator_carry, rotator_carry);
end if;
result_en := '1';
when OP_SIM_CONFIG =>
-- bit 0 was used to select the microwatt console, which
-- we no longer support.
result := x"0000000000000000";
result_en := '1';
when OP_TDI =>
-- Keep our test cases happy for now, ignore trap instructions
report "OP_TDI FIXME";
when OP_ISYNC =>
f_out.redirect <= '1';
f_out.redirect_nia <= next_nia;
when OP_ICBI =>
icache_inval <= '1';
when OP_MUL_L64 | OP_MUL_H64 | OP_MUL_H32 =>
v.e.valid := '0';
v.mul_in_progress := '1';
stall_out <= '1';
x_to_multiply.valid <= '1';
when OP_DIV | OP_DIVE | OP_MOD =>
v.e.valid := '0';
v.div_in_progress := '1';
stall_out <= '1';
x_to_divider.valid <= '1';
when OP_LOAD | OP_STORE =>
-- loadstore/dcache has its own port to writeback
v.e.valid := '0';
when others =>
terminate_out <= '1';
report "illegal";
end case;
v.e.rc := e_in.rc and e_in.valid;
-- Update LR on the next cycle after a branch link
--
-- WARNING: The LR update isn't tracked by our hazard tracker. This
-- will work (well I hope) because it only happens on branches
-- which will flush all decoded instructions. By the time
-- fetch catches up, we'll have the new LR. This will
-- *not* work properly however if we have a branch predictor,
-- in which case the solution would probably be to keep a
-- local cache of the updated LR in execute1 (flushed on
-- exceptions) that is used instead of the value from
-- decode when its content is valid.
if e_in.lr = '1' then
v.lr_update := '1';
v.next_lr := next_nia;
v.e.valid := '0';
report "Delayed LR update to " & to_hstring(next_nia);
stall_out <= '1';
end if;
elsif r.lr_update = '1' then
result_en := '1';
result := r.next_lr;
v.e.write_reg := fast_spr_num(SPR_LR);
v.e.valid := '1';
elsif r.cntz_in_progress = '1' then
-- cnt[lt]z always takes two cycles
result := countzero_result;
result_en := '1';
v.e.write_reg := gpr_to_gspr(v.slow_op_dest);
v.e.rc := v.slow_op_rc;
v.e.xerc := v.slow_op_xerc;
v.e.valid := '1';
elsif r.mul_in_progress = '1' or r.div_in_progress = '1' then
if (r.mul_in_progress = '1' and multiply_to_x.valid = '1') or
(r.div_in_progress = '1' and divider_to_x.valid = '1') then
if r.mul_in_progress = '1' then
result := multiply_to_x.write_reg_data;
overflow := multiply_to_x.overflow;
else
result := divider_to_x.write_reg_data;
overflow := divider_to_x.overflow;
end if;
result_en := '1';
v.e.write_reg := gpr_to_gspr(v.slow_op_dest);
v.e.rc := v.slow_op_rc;
v.e.xerc := v.slow_op_xerc;
v.e.write_xerc_enable := v.slow_op_oe;
-- We must test oe because the RC update code in writeback
-- will use the xerc value to set CR0:SO so we must not clobber
-- xerc if OE wasn't set.
if v.slow_op_oe = '1' then
v.e.xerc.ov := overflow;
v.e.xerc.ov32 := overflow;
v.e.xerc.so := v.slow_op_xerc.so or overflow;
end if;
v.e.valid := '1';
else
stall_out <= '1';
v.mul_in_progress := r.mul_in_progress;
v.div_in_progress := r.div_in_progress;
end if;
end if;
if exception = '1' then
if e_in.valid = '1' then
v.e.exc_write_enable := '1';
if exception_nextpc = '1' then
v.e.exc_write_data := std_logic_vector(unsigned(e_in.nia) + 4);
end if;
ctrl_tmp.irq_state <= WRITE_SRR1;
stall_out <= '1';
v.e.valid := '0';
result_en := '0';
end if;
end if;
v.e.write_data := result;
v.e.write_enable := result_en;
-- Outputs to loadstore1 (async)
lv := Execute1ToLoadstore1Init;
if e_in.valid = '1' and (e_in.insn_type = OP_LOAD or e_in.insn_type = OP_STORE) then
lv.valid := '1';
end if;
if e_in.insn_type = OP_LOAD then
lv.load := '1';
end if;
lv.addr1 := a_in;
lv.addr2 := b_in;
lv.data := c_in;
lv.write_reg := gspr_to_gpr(e_in.write_reg);
lv.length := e_in.data_len;
lv.byte_reverse := e_in.byte_reverse;
lv.sign_extend := e_in.sign_extend;
lv.update := e_in.update;
lv.update_reg := gspr_to_gpr(e_in.read_reg1);
lv.xerc := v.e.xerc;
lv.reserve := e_in.reserve;
lv.rc := e_in.rc;
-- decode l*cix and st*cix instructions here
if e_in.insn(31 downto 26) = "011111" and e_in.insn(10 downto 9) = "11" and
e_in.insn(5 downto 1) = "10101" then
lv.ci := '1';
end if;
-- Update registers
rin <= v;
-- update outputs
--f_out <= r.f;
l_out <= lv;
e_out <= r.e;
flush_out <= f_out.redirect;
end process;
end architecture behaviour;