You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
microwatt/fpu.vhdl

3280 lines
139 KiB
VHDL

-- Floating-point unit for Microwatt
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.insn_helpers.all;
use work.decode_types.all;
use work.crhelpers.all;
use work.helpers.all;
use work.common.all;
entity fpu is
port (
clk : in std_ulogic;
rst : in std_ulogic;
flush_in : in std_ulogic;
e_in : in Execute1ToFPUType;
e_out : out FPUToExecute1Type;
w_out : out FPUToWritebackType
);
end entity fpu;
architecture behaviour of fpu is
type fp_number_class is (ZERO, FINITE, INFINITY, NAN);
constant EXP_BITS : natural := 13;
constant UNIT_BIT : natural := 56;
constant QNAN_BIT : natural := UNIT_BIT - 1;
constant SP_LSB : natural := UNIT_BIT - 23;
constant SP_GBIT : natural := SP_LSB - 1;
constant SP_RBIT : natural := SP_LSB - 2;
constant DP_LSB : natural := UNIT_BIT - 52;
constant DP_GBIT : natural := DP_LSB - 1;
constant DP_RBIT : natural := DP_LSB - 2;
type fpu_reg_type is record
class : fp_number_class;
negative : std_ulogic;
exponent : signed(EXP_BITS-1 downto 0); -- unbiased
mantissa : std_ulogic_vector(63 downto 0); -- 8.56 format
end record;
type state_t is (IDLE, DO_ILLEGAL,
DO_MCRFS, DO_MTFSB, DO_MTFSFI, DO_MFFS, DO_MTFSF,
DO_FMR, DO_FMRG, DO_FCMP, DO_FTDIV, DO_FTSQRT,
DO_FCFID, DO_FCTI,
DO_FRSP, DO_FRI,
DO_FADD, DO_FMUL, DO_FDIV, DO_FSQRT, DO_FMADD,
DO_FRE, DO_FRSQRTE,
DO_FSEL,
FRI_1,
ADD_1, ADD_SHIFT, ADD_2, ADD_3,
CMP_1, CMP_2,
MULT_1,
FMADD_0, FMADD_1, FMADD_2, FMADD_3,
FMADD_4, FMADD_5, FMADD_6,
LOOKUP,
DIV_2, DIV_3, DIV_4, DIV_5, DIV_6,
FRE_1,
RSQRT_1,
FTDIV_1,
SQRT_1, SQRT_2, SQRT_3, SQRT_4,
SQRT_5, SQRT_6, SQRT_7, SQRT_8,
SQRT_9, SQRT_10, SQRT_11, SQRT_12,
INT_SHIFT, INT_ROUND, INT_ISHIFT,
INT_FINAL, INT_CHECK, INT_OFLOW,
FINISH, NORMALIZE,
ROUND_UFLOW, ROUND_OFLOW,
ROUNDING, ROUNDING_2, ROUNDING_3,
DENORM,
RENORM_A, RENORM_A2,
RENORM_B, RENORM_B2,
RENORM_C, RENORM_C2,
NAN_RESULT, EXC_RESULT,
DO_IDIVMOD,
IDIV_NORMB, IDIV_NORMB2, IDIV_NORMB3,
IDIV_CLZA, IDIV_CLZA2, IDIV_CLZA3,
IDIV_NR0, IDIV_NR1, IDIV_NR2, IDIV_USE0_5,
IDIV_DODIV, IDIV_SH32,
IDIV_DIV, IDIV_DIV2, IDIV_DIV3, IDIV_DIV4, IDIV_DIV5,
IDIV_DIV6, IDIV_DIV7, IDIV_DIV8, IDIV_DIV9,
IDIV_EXT_TBH, IDIV_EXT_TBH2, IDIV_EXT_TBH3,
IDIV_EXT_TBH4, IDIV_EXT_TBH5,
IDIV_EXTDIV, IDIV_EXTDIV1, IDIV_EXTDIV2, IDIV_EXTDIV3,
IDIV_EXTDIV4, IDIV_EXTDIV5, IDIV_EXTDIV6,
IDIV_MODADJ, IDIV_MODSUB, IDIV_DIVADJ, IDIV_OVFCHK, IDIV_DONE, IDIV_ZERO);
type reg_type is record
state : state_t;
busy : std_ulogic;
f2stall : std_ulogic;
instr_done : std_ulogic;
complete : std_ulogic;
do_intr : std_ulogic;
illegal : std_ulogic;
op : insn_type_t;
insn : std_ulogic_vector(31 downto 0);
instr_tag : instr_tag_t;
dest_fpr : gspr_index_t;
fe_mode : std_ulogic;
rc : std_ulogic;
is_cmp : std_ulogic;
single_prec : std_ulogic;
sp_result : std_ulogic;
fpscr : std_ulogic_vector(31 downto 0);
comm_fpscr : std_ulogic_vector(31 downto 0); -- committed FPSCR value
a : fpu_reg_type;
b : fpu_reg_type;
c : fpu_reg_type;
r : std_ulogic_vector(63 downto 0); -- 8.56 format
s : std_ulogic_vector(55 downto 0); -- extended fraction
x : std_ulogic;
p : std_ulogic_vector(63 downto 0); -- 8.56 format
y : std_ulogic_vector(63 downto 0); -- 8.56 format
result_sign : std_ulogic;
result_class : fp_number_class;
result_exp : signed(EXP_BITS-1 downto 0);
shift : signed(EXP_BITS-1 downto 0);
writing_fpr : std_ulogic;
write_reg : gspr_index_t;
complete_tag : instr_tag_t;
writing_cr : std_ulogic;
writing_xer : std_ulogic;
int_result : std_ulogic;
cr_result : std_ulogic_vector(3 downto 0);
cr_mask : std_ulogic_vector(7 downto 0);
old_exc : std_ulogic_vector(4 downto 0);
update_fprf : std_ulogic;
quieten_nan : std_ulogic;
nsnan_result : std_ulogic;
tiny : std_ulogic;
denorm : std_ulogic;
round_mode : std_ulogic_vector(2 downto 0);
is_subtract : std_ulogic;
exp_cmp : std_ulogic;
madd_cmp : std_ulogic;
add_bsmall : std_ulogic;
is_multiply : std_ulogic;
is_sqrt : std_ulogic;
first : std_ulogic;
count : unsigned(1 downto 0);
doing_ftdiv : std_ulogic_vector(1 downto 0);
opsel_a : std_ulogic_vector(1 downto 0);
use_a : std_ulogic;
use_b : std_ulogic;
use_c : std_ulogic;
invalid : std_ulogic;
negate : std_ulogic;
longmask : std_ulogic;
integer_op : std_ulogic;
divext : std_ulogic;
divmod : std_ulogic;
is_signed : std_ulogic;
int_ovf : std_ulogic;
div_close : std_ulogic;
inc_quot : std_ulogic;
a_hi : std_ulogic_vector(7 downto 0);
a_lo : std_ulogic_vector(55 downto 0);
m32b : std_ulogic;
oe : std_ulogic;
xerc : xer_common_t;
xerc_result : xer_common_t;
end record;
type lookup_table is array(0 to 1023) of std_ulogic_vector(17 downto 0);
signal r, rin : reg_type;
signal fp_result : std_ulogic_vector(63 downto 0);
signal opsel_b : std_ulogic_vector(1 downto 0);
signal opsel_r : std_ulogic_vector(1 downto 0);
signal opsel_s : std_ulogic_vector(1 downto 0);
signal opsel_ainv : std_ulogic;
signal opsel_mask : std_ulogic;
signal opsel_binv : std_ulogic;
signal in_a : std_ulogic_vector(63 downto 0);
signal in_b : std_ulogic_vector(63 downto 0);
signal result : std_ulogic_vector(63 downto 0);
signal carry_in : std_ulogic;
signal lost_bits : std_ulogic;
signal r_hi_nz : std_ulogic;
signal r_lo_nz : std_ulogic;
signal r_gt_1 : std_ulogic;
signal s_nz : std_ulogic;
signal misc_sel : std_ulogic_vector(3 downto 0);
signal f_to_multiply : MultiplyInputType;
signal multiply_to_f : MultiplyOutputType;
signal msel_1 : std_ulogic_vector(1 downto 0);
signal msel_2 : std_ulogic_vector(1 downto 0);
signal msel_add : std_ulogic_vector(1 downto 0);
signal msel_inv : std_ulogic;
signal inverse_est : std_ulogic_vector(18 downto 0);
-- opsel values
constant AIN_R : std_ulogic_vector(1 downto 0) := "00";
constant AIN_A : std_ulogic_vector(1 downto 0) := "01";
constant AIN_B : std_ulogic_vector(1 downto 0) := "10";
constant AIN_C : std_ulogic_vector(1 downto 0) := "11";
constant BIN_ZERO : std_ulogic_vector(1 downto 0) := "00";
constant BIN_R : std_ulogic_vector(1 downto 0) := "01";
constant BIN_RND : std_ulogic_vector(1 downto 0) := "10";
constant BIN_PS8 : std_ulogic_vector(1 downto 0) := "11";
constant RES_SUM : std_ulogic_vector(1 downto 0) := "00";
constant RES_SHIFT : std_ulogic_vector(1 downto 0) := "01";
constant RES_MULT : std_ulogic_vector(1 downto 0) := "10";
constant RES_MISC : std_ulogic_vector(1 downto 0) := "11";
constant S_ZERO : std_ulogic_vector(1 downto 0) := "00";
constant S_NEG : std_ulogic_vector(1 downto 0) := "01";
constant S_SHIFT : std_ulogic_vector(1 downto 0) := "10";
constant S_MULT : std_ulogic_vector(1 downto 0) := "11";
-- msel values
constant MUL1_A : std_ulogic_vector(1 downto 0) := "00";
constant MUL1_B : std_ulogic_vector(1 downto 0) := "01";
constant MUL1_Y : std_ulogic_vector(1 downto 0) := "10";
constant MUL1_R : std_ulogic_vector(1 downto 0) := "11";
constant MUL2_C : std_ulogic_vector(1 downto 0) := "00";
constant MUL2_LUT : std_ulogic_vector(1 downto 0) := "01";
constant MUL2_P : std_ulogic_vector(1 downto 0) := "10";
constant MUL2_R : std_ulogic_vector(1 downto 0) := "11";
constant MULADD_ZERO : std_ulogic_vector(1 downto 0) := "00";
constant MULADD_CONST : std_ulogic_vector(1 downto 0) := "01";
constant MULADD_A : std_ulogic_vector(1 downto 0) := "10";
constant MULADD_RS : std_ulogic_vector(1 downto 0) := "11";
-- Inverse lookup table, indexed by the top 8 fraction bits
-- The first 256 entries are the reciprocal (1/x) lookup table,
-- and the remaining 768 entries are the reciprocal square root table.
-- Output range is [0.5, 1) in 0.19 format, though the top
-- bit isn't stored since it is always 1.
-- Each output value is the inverse of the center of the input
-- range for the value, i.e. entry 0 is 1 / (1 + 1/512),
-- entry 1 is 1 / (1 + 3/512), etc.
constant inverse_table : lookup_table := (
-- 1/x lookup table
-- Unit bit is assumed to be 1, so input range is [1, 2)
18x"3fc01", 18x"3f411", 18x"3ec31", 18x"3e460", 18x"3dc9f", 18x"3d4ec", 18x"3cd49", 18x"3c5b5",
18x"3be2f", 18x"3b6b8", 18x"3af4f", 18x"3a7f4", 18x"3a0a7", 18x"39968", 18x"39237", 18x"38b14",
18x"383fe", 18x"37cf5", 18x"375f9", 18x"36f0a", 18x"36828", 18x"36153", 18x"35a8a", 18x"353ce",
18x"34d1e", 18x"3467a", 18x"33fe3", 18x"33957", 18x"332d7", 18x"32c62", 18x"325f9", 18x"31f9c",
18x"3194a", 18x"31303", 18x"30cc7", 18x"30696", 18x"30070", 18x"2fa54", 18x"2f443", 18x"2ee3d",
18x"2e841", 18x"2e250", 18x"2dc68", 18x"2d68b", 18x"2d0b8", 18x"2caee", 18x"2c52e", 18x"2bf79",
18x"2b9cc", 18x"2b429", 18x"2ae90", 18x"2a900", 18x"2a379", 18x"29dfb", 18x"29887", 18x"2931b",
18x"28db8", 18x"2885e", 18x"2830d", 18x"27dc4", 18x"27884", 18x"2734d", 18x"26e1d", 18x"268f6",
18x"263d8", 18x"25ec1", 18x"259b3", 18x"254ac", 18x"24fad", 18x"24ab7", 18x"245c8", 18x"240e1",
18x"23c01", 18x"23729", 18x"23259", 18x"22d90", 18x"228ce", 18x"22413", 18x"21f60", 18x"21ab4",
18x"2160f", 18x"21172", 18x"20cdb", 18x"2084b", 18x"203c2", 18x"1ff40", 18x"1fac4", 18x"1f64f",
18x"1f1e1", 18x"1ed79", 18x"1e918", 18x"1e4be", 18x"1e069", 18x"1dc1b", 18x"1d7d4", 18x"1d392",
18x"1cf57", 18x"1cb22", 18x"1c6f3", 18x"1c2ca", 18x"1bea7", 18x"1ba8a", 18x"1b672", 18x"1b261",
18x"1ae55", 18x"1aa50", 18x"1a64f", 18x"1a255", 18x"19e60", 18x"19a70", 18x"19686", 18x"192a2",
18x"18ec3", 18x"18ae9", 18x"18715", 18x"18345", 18x"17f7c", 18x"17bb7", 18x"177f7", 18x"1743d",
18x"17087", 18x"16cd7", 18x"1692c", 18x"16585", 18x"161e4", 18x"15e47", 18x"15ab0", 18x"1571d",
18x"1538e", 18x"15005", 18x"14c80", 18x"14900", 18x"14584", 18x"1420d", 18x"13e9b", 18x"13b2d",
18x"137c3", 18x"1345e", 18x"130fe", 18x"12da2", 18x"12a4a", 18x"126f6", 18x"123a7", 18x"1205c",
18x"11d15", 18x"119d2", 18x"11694", 18x"11359", 18x"11023", 18x"10cf1", 18x"109c2", 18x"10698",
18x"10372", 18x"10050", 18x"0fd31", 18x"0fa17", 18x"0f700", 18x"0f3ed", 18x"0f0de", 18x"0edd3",
18x"0eacb", 18x"0e7c7", 18x"0e4c7", 18x"0e1ca", 18x"0ded2", 18x"0dbdc", 18x"0d8eb", 18x"0d5fc",
18x"0d312", 18x"0d02b", 18x"0cd47", 18x"0ca67", 18x"0c78a", 18x"0c4b1", 18x"0c1db", 18x"0bf09",
18x"0bc3a", 18x"0b96e", 18x"0b6a5", 18x"0b3e0", 18x"0b11e", 18x"0ae5f", 18x"0aba3", 18x"0a8eb",
18x"0a636", 18x"0a383", 18x"0a0d4", 18x"09e28", 18x"09b80", 18x"098da", 18x"09637", 18x"09397",
18x"090fb", 18x"08e61", 18x"08bca", 18x"08936", 18x"086a5", 18x"08417", 18x"0818c", 18x"07f04",
18x"07c7e", 18x"079fc", 18x"0777c", 18x"074ff", 18x"07284", 18x"0700d", 18x"06d98", 18x"06b26",
18x"068b6", 18x"0664a", 18x"063e0", 18x"06178", 18x"05f13", 18x"05cb1", 18x"05a52", 18x"057f5",
18x"0559a", 18x"05342", 18x"050ed", 18x"04e9a", 18x"04c4a", 18x"049fc", 18x"047b0", 18x"04567",
18x"04321", 18x"040dd", 18x"03e9b", 18x"03c5c", 18x"03a1f", 18x"037e4", 18x"035ac", 18x"03376",
18x"03142", 18x"02f11", 18x"02ce2", 18x"02ab5", 18x"0288b", 18x"02663", 18x"0243d", 18x"02219",
18x"01ff7", 18x"01dd8", 18x"01bbb", 18x"019a0", 18x"01787", 18x"01570", 18x"0135b", 18x"01149",
18x"00f39", 18x"00d2a", 18x"00b1e", 18x"00914", 18x"0070c", 18x"00506", 18x"00302", 18x"00100",
-- 1/sqrt(x) lookup table
-- Input is in the range [1, 4), i.e. two bits to the left of the
-- binary point. Those 2 bits index the following 3 blocks of 256 values.
-- 1.0 ... 1.9999
18x"3fe00", 18x"3fa06", 18x"3f612", 18x"3f224", 18x"3ee3a", 18x"3ea58", 18x"3e67c", 18x"3e2a4",
18x"3ded2", 18x"3db06", 18x"3d73e", 18x"3d37e", 18x"3cfc2", 18x"3cc0a", 18x"3c85a", 18x"3c4ae",
18x"3c106", 18x"3bd64", 18x"3b9c8", 18x"3b630", 18x"3b29e", 18x"3af10", 18x"3ab86", 18x"3a802",
18x"3a484", 18x"3a108", 18x"39d94", 18x"39a22", 18x"396b6", 18x"3934e", 18x"38fea", 18x"38c8c",
18x"38932", 18x"385dc", 18x"3828a", 18x"37f3e", 18x"37bf6", 18x"378b2", 18x"37572", 18x"37236",
18x"36efe", 18x"36bca", 18x"3689a", 18x"36570", 18x"36248", 18x"35f26", 18x"35c06", 18x"358ea",
18x"355d4", 18x"352c0", 18x"34fb0", 18x"34ca4", 18x"3499c", 18x"34698", 18x"34398", 18x"3409c",
18x"33da2", 18x"33aac", 18x"337bc", 18x"334cc", 18x"331e2", 18x"32efc", 18x"32c18", 18x"32938",
18x"3265a", 18x"32382", 18x"320ac", 18x"31dd8", 18x"31b0a", 18x"3183e", 18x"31576", 18x"312b0",
18x"30fee", 18x"30d2e", 18x"30a74", 18x"307ba", 18x"30506", 18x"30254", 18x"2ffa4", 18x"2fcf8",
18x"2fa4e", 18x"2f7a8", 18x"2f506", 18x"2f266", 18x"2efca", 18x"2ed2e", 18x"2ea98", 18x"2e804",
18x"2e572", 18x"2e2e4", 18x"2e058", 18x"2ddce", 18x"2db48", 18x"2d8c6", 18x"2d646", 18x"2d3c8",
18x"2d14c", 18x"2ced4", 18x"2cc5e", 18x"2c9ea", 18x"2c77a", 18x"2c50c", 18x"2c2a2", 18x"2c038",
18x"2bdd2", 18x"2bb70", 18x"2b90e", 18x"2b6b0", 18x"2b454", 18x"2b1fa", 18x"2afa4", 18x"2ad4e",
18x"2aafc", 18x"2a8ac", 18x"2a660", 18x"2a414", 18x"2a1cc", 18x"29f86", 18x"29d42", 18x"29b00",
18x"298c2", 18x"29684", 18x"2944a", 18x"29210", 18x"28fda", 18x"28da6", 18x"28b74", 18x"28946",
18x"28718", 18x"284ec", 18x"282c4", 18x"2809c", 18x"27e78", 18x"27c56", 18x"27a34", 18x"27816",
18x"275fa", 18x"273e0", 18x"271c8", 18x"26fb0", 18x"26d9c", 18x"26b8a", 18x"2697a", 18x"2676c",
18x"26560", 18x"26356", 18x"2614c", 18x"25f46", 18x"25d42", 18x"25b40", 18x"2593e", 18x"25740",
18x"25542", 18x"25348", 18x"2514e", 18x"24f58", 18x"24d62", 18x"24b6e", 18x"2497c", 18x"2478c",
18x"2459e", 18x"243b0", 18x"241c6", 18x"23fde", 18x"23df6", 18x"23c10", 18x"23a2c", 18x"2384a",
18x"2366a", 18x"2348c", 18x"232ae", 18x"230d2", 18x"22efa", 18x"22d20", 18x"22b4a", 18x"22976",
18x"227a2", 18x"225d2", 18x"22402", 18x"22234", 18x"22066", 18x"21e9c", 18x"21cd2", 18x"21b0a",
18x"21944", 18x"2177e", 18x"215ba", 18x"213fa", 18x"21238", 18x"2107a", 18x"20ebc", 18x"20d00",
18x"20b46", 18x"2098e", 18x"207d6", 18x"20620", 18x"2046c", 18x"202b8", 18x"20108", 18x"1ff58",
18x"1fda8", 18x"1fbfc", 18x"1fa50", 18x"1f8a4", 18x"1f6fc", 18x"1f554", 18x"1f3ae", 18x"1f208",
18x"1f064", 18x"1eec2", 18x"1ed22", 18x"1eb82", 18x"1e9e4", 18x"1e846", 18x"1e6aa", 18x"1e510",
18x"1e378", 18x"1e1e0", 18x"1e04a", 18x"1deb4", 18x"1dd20", 18x"1db8e", 18x"1d9fc", 18x"1d86c",
18x"1d6de", 18x"1d550", 18x"1d3c4", 18x"1d238", 18x"1d0ae", 18x"1cf26", 18x"1cd9e", 18x"1cc18",
18x"1ca94", 18x"1c910", 18x"1c78c", 18x"1c60a", 18x"1c48a", 18x"1c30c", 18x"1c18e", 18x"1c010",
18x"1be94", 18x"1bd1a", 18x"1bba0", 18x"1ba28", 18x"1b8b2", 18x"1b73c", 18x"1b5c6", 18x"1b452",
18x"1b2e0", 18x"1b16e", 18x"1affe", 18x"1ae8e", 18x"1ad20", 18x"1abb4", 18x"1aa46", 18x"1a8dc",
-- 2.0 ... 2.9999
18x"1a772", 18x"1a608", 18x"1a4a0", 18x"1a33a", 18x"1a1d4", 18x"1a070", 18x"19f0c", 18x"19da8",
18x"19c48", 18x"19ae6", 18x"19986", 18x"19828", 18x"196ca", 18x"1956e", 18x"19412", 18x"192b8",
18x"1915e", 18x"19004", 18x"18eae", 18x"18d56", 18x"18c00", 18x"18aac", 18x"18958", 18x"18804",
18x"186b2", 18x"18562", 18x"18412", 18x"182c2", 18x"18174", 18x"18026", 18x"17eda", 18x"17d8e",
18x"17c44", 18x"17afa", 18x"179b2", 18x"1786a", 18x"17724", 18x"175de", 18x"17498", 18x"17354",
18x"17210", 18x"170ce", 18x"16f8c", 18x"16e4c", 18x"16d0c", 18x"16bcc", 18x"16a8e", 18x"16950",
18x"16814", 18x"166d8", 18x"1659e", 18x"16464", 18x"1632a", 18x"161f2", 18x"160ba", 18x"15f84",
18x"15e4e", 18x"15d1a", 18x"15be6", 18x"15ab2", 18x"15980", 18x"1584e", 18x"1571c", 18x"155ec",
18x"154bc", 18x"1538e", 18x"15260", 18x"15134", 18x"15006", 18x"14edc", 18x"14db0", 18x"14c86",
18x"14b5e", 18x"14a36", 18x"1490e", 18x"147e6", 18x"146c0", 18x"1459a", 18x"14476", 18x"14352",
18x"14230", 18x"1410c", 18x"13fea", 18x"13eca", 18x"13daa", 18x"13c8a", 18x"13b6c", 18x"13a4e",
18x"13930", 18x"13814", 18x"136f8", 18x"135dc", 18x"134c2", 18x"133a8", 18x"1328e", 18x"13176",
18x"1305e", 18x"12f48", 18x"12e30", 18x"12d1a", 18x"12c06", 18x"12af2", 18x"129de", 18x"128ca",
18x"127b8", 18x"126a6", 18x"12596", 18x"12486", 18x"12376", 18x"12266", 18x"12158", 18x"1204a",
18x"11f3e", 18x"11e32", 18x"11d26", 18x"11c1a", 18x"11b10", 18x"11a06", 18x"118fc", 18x"117f4",
18x"116ec", 18x"115e4", 18x"114de", 18x"113d8", 18x"112d2", 18x"111ce", 18x"110ca", 18x"10fc6",
18x"10ec2", 18x"10dc0", 18x"10cbe", 18x"10bbc", 18x"10abc", 18x"109bc", 18x"108bc", 18x"107be",
18x"106c0", 18x"105c2", 18x"104c4", 18x"103c8", 18x"102cc", 18x"101d0", 18x"100d6", 18x"0ffdc",
18x"0fee2", 18x"0fdea", 18x"0fcf0", 18x"0fbf8", 18x"0fb02", 18x"0fa0a", 18x"0f914", 18x"0f81e",
18x"0f72a", 18x"0f636", 18x"0f542", 18x"0f44e", 18x"0f35a", 18x"0f268", 18x"0f176", 18x"0f086",
18x"0ef94", 18x"0eea4", 18x"0edb4", 18x"0ecc6", 18x"0ebd6", 18x"0eae8", 18x"0e9fa", 18x"0e90e",
18x"0e822", 18x"0e736", 18x"0e64a", 18x"0e55e", 18x"0e474", 18x"0e38a", 18x"0e2a0", 18x"0e1b8",
18x"0e0d0", 18x"0dfe8", 18x"0df00", 18x"0de1a", 18x"0dd32", 18x"0dc4c", 18x"0db68", 18x"0da82",
18x"0d99e", 18x"0d8ba", 18x"0d7d6", 18x"0d6f4", 18x"0d612", 18x"0d530", 18x"0d44e", 18x"0d36c",
18x"0d28c", 18x"0d1ac", 18x"0d0cc", 18x"0cfee", 18x"0cf0e", 18x"0ce30", 18x"0cd54", 18x"0cc76",
18x"0cb9a", 18x"0cabc", 18x"0c9e0", 18x"0c906", 18x"0c82a", 18x"0c750", 18x"0c676", 18x"0c59c",
18x"0c4c4", 18x"0c3ea", 18x"0c312", 18x"0c23a", 18x"0c164", 18x"0c08c", 18x"0bfb6", 18x"0bee0",
18x"0be0a", 18x"0bd36", 18x"0bc62", 18x"0bb8c", 18x"0baba", 18x"0b9e6", 18x"0b912", 18x"0b840",
18x"0b76e", 18x"0b69c", 18x"0b5cc", 18x"0b4fa", 18x"0b42a", 18x"0b35a", 18x"0b28a", 18x"0b1bc",
18x"0b0ee", 18x"0b01e", 18x"0af50", 18x"0ae84", 18x"0adb6", 18x"0acea", 18x"0ac1e", 18x"0ab52",
18x"0aa86", 18x"0a9bc", 18x"0a8f0", 18x"0a826", 18x"0a75c", 18x"0a694", 18x"0a5ca", 18x"0a502",
18x"0a43a", 18x"0a372", 18x"0a2aa", 18x"0a1e4", 18x"0a11c", 18x"0a056", 18x"09f90", 18x"09ecc",
-- 3.0 ... 3.9999
18x"09e06", 18x"09d42", 18x"09c7e", 18x"09bba", 18x"09af6", 18x"09a32", 18x"09970", 18x"098ae",
18x"097ec", 18x"0972a", 18x"09668", 18x"095a8", 18x"094e8", 18x"09426", 18x"09368", 18x"092a8",
18x"091e8", 18x"0912a", 18x"0906c", 18x"08fae", 18x"08ef0", 18x"08e32", 18x"08d76", 18x"08cba",
18x"08bfe", 18x"08b42", 18x"08a86", 18x"089ca", 18x"08910", 18x"08856", 18x"0879c", 18x"086e2",
18x"08628", 18x"08570", 18x"084b6", 18x"083fe", 18x"08346", 18x"0828e", 18x"081d8", 18x"08120",
18x"0806a", 18x"07fb4", 18x"07efe", 18x"07e48", 18x"07d92", 18x"07cde", 18x"07c2a", 18x"07b76",
18x"07ac2", 18x"07a0e", 18x"0795a", 18x"078a8", 18x"077f4", 18x"07742", 18x"07690", 18x"075de",
18x"0752e", 18x"0747c", 18x"073cc", 18x"0731c", 18x"0726c", 18x"071bc", 18x"0710c", 18x"0705e",
18x"06fae", 18x"06f00", 18x"06e52", 18x"06da4", 18x"06cf6", 18x"06c4a", 18x"06b9c", 18x"06af0",
18x"06a44", 18x"06998", 18x"068ec", 18x"06840", 18x"06796", 18x"066ea", 18x"06640", 18x"06596",
18x"064ec", 18x"06442", 18x"0639a", 18x"062f0", 18x"06248", 18x"061a0", 18x"060f8", 18x"06050",
18x"05fa8", 18x"05f00", 18x"05e5a", 18x"05db4", 18x"05d0e", 18x"05c68", 18x"05bc2", 18x"05b1c",
18x"05a76", 18x"059d2", 18x"0592e", 18x"05888", 18x"057e4", 18x"05742", 18x"0569e", 18x"055fa",
18x"05558", 18x"054b6", 18x"05412", 18x"05370", 18x"052ce", 18x"0522e", 18x"0518c", 18x"050ec",
18x"0504a", 18x"04faa", 18x"04f0a", 18x"04e6a", 18x"04dca", 18x"04d2c", 18x"04c8c", 18x"04bee",
18x"04b50", 18x"04ab0", 18x"04a12", 18x"04976", 18x"048d8", 18x"0483a", 18x"0479e", 18x"04700",
18x"04664", 18x"045c8", 18x"0452c", 18x"04490", 18x"043f6", 18x"0435a", 18x"042c0", 18x"04226",
18x"0418a", 18x"040f0", 18x"04056", 18x"03fbe", 18x"03f24", 18x"03e8c", 18x"03df2", 18x"03d5a",
18x"03cc2", 18x"03c2a", 18x"03b92", 18x"03afa", 18x"03a62", 18x"039cc", 18x"03934", 18x"0389e",
18x"03808", 18x"03772", 18x"036dc", 18x"03646", 18x"035b2", 18x"0351c", 18x"03488", 18x"033f2",
18x"0335e", 18x"032ca", 18x"03236", 18x"031a2", 18x"03110", 18x"0307c", 18x"02fea", 18x"02f56",
18x"02ec4", 18x"02e32", 18x"02da0", 18x"02d0e", 18x"02c7c", 18x"02bec", 18x"02b5a", 18x"02aca",
18x"02a38", 18x"029a8", 18x"02918", 18x"02888", 18x"027f8", 18x"0276a", 18x"026da", 18x"0264a",
18x"025bc", 18x"0252e", 18x"024a0", 18x"02410", 18x"02384", 18x"022f6", 18x"02268", 18x"021da",
18x"0214e", 18x"020c0", 18x"02034", 18x"01fa8", 18x"01f1c", 18x"01e90", 18x"01e04", 18x"01d78",
18x"01cee", 18x"01c62", 18x"01bd8", 18x"01b4c", 18x"01ac2", 18x"01a38", 18x"019ae", 18x"01924",
18x"0189c", 18x"01812", 18x"01788", 18x"01700", 18x"01676", 18x"015ee", 18x"01566", 18x"014de",
18x"01456", 18x"013ce", 18x"01346", 18x"012c0", 18x"01238", 18x"011b2", 18x"0112c", 18x"010a4",
18x"0101e", 18x"00f98", 18x"00f12", 18x"00e8c", 18x"00e08", 18x"00d82", 18x"00cfe", 18x"00c78",
18x"00bf4", 18x"00b70", 18x"00aec", 18x"00a68", 18x"009e4", 18x"00960", 18x"008dc", 18x"00858",
18x"007d6", 18x"00752", 18x"006d0", 18x"0064e", 18x"005cc", 18x"0054a", 18x"004c8", 18x"00446",
18x"003c4", 18x"00342", 18x"002c2", 18x"00240", 18x"001c0", 18x"00140", 18x"000c0", 18x"00040"
);
-- Left and right shifter with 120 bit input and 64 bit output.
-- Shifts inp left by shift bits and returns the upper 64 bits of
-- the result. The shift parameter is interpreted as a signed
-- number in the range -64..63, with negative values indicating
-- right shifts.
function shifter_64(inp: std_ulogic_vector(119 downto 0);
shift: std_ulogic_vector(6 downto 0))
return std_ulogic_vector is
variable s1 : std_ulogic_vector(94 downto 0);
variable s2 : std_ulogic_vector(70 downto 0);
variable shift_result : std_ulogic_vector(63 downto 0);
begin
case shift(6 downto 5) is
when "00" =>
s1 := inp(119 downto 25);
when "01" =>
s1 := inp(87 downto 0) & "0000000";
when "10" =>
s1 := x"0000000000000000" & inp(119 downto 89);
when others =>
s1 := x"00000000" & inp(119 downto 57);
end case;
case shift(4 downto 3) is
when "00" =>
s2 := s1(94 downto 24);
when "01" =>
s2 := s1(86 downto 16);
when "10" =>
s2 := s1(78 downto 8);
when others =>
s2 := s1(70 downto 0);
end case;
case shift(2 downto 0) is
when "000" =>
shift_result := s2(70 downto 7);
when "001" =>
shift_result := s2(69 downto 6);
when "010" =>
shift_result := s2(68 downto 5);
when "011" =>
shift_result := s2(67 downto 4);
when "100" =>
shift_result := s2(66 downto 3);
when "101" =>
shift_result := s2(65 downto 2);
when "110" =>
shift_result := s2(64 downto 1);
when others =>
shift_result := s2(63 downto 0);
end case;
return shift_result;
end;
-- Generate a mask with 0-bits on the left and 1-bits on the right which
-- selects the bits will be lost in doing a right shift. The shift
-- parameter is the bottom 6 bits of a negative shift count,
-- indicating a right shift.
function right_mask(shift: unsigned(5 downto 0)) return std_ulogic_vector is
variable mask_result: std_ulogic_vector(63 downto 0);
begin
mask_result := (others => '0');
if is_X(shift) then
mask_result := (others => 'X');
return mask_result;
end if;
for i in 0 to 63 loop
if i >= shift then
mask_result(63 - i) := '1';
end if;
end loop;
return mask_result;
end;
-- Split a DP floating-point number into components and work out its class.
-- If is_int = 1, the input is considered an integer
function decode_dp(fpr: std_ulogic_vector(63 downto 0); is_int: std_ulogic;
is_32bint: std_ulogic; is_signed: std_ulogic) return fpu_reg_type is
variable reg : fpu_reg_type;
variable exp_nz : std_ulogic;
variable exp_ao : std_ulogic;
variable frac_nz : std_ulogic;
variable low_nz : std_ulogic;
variable cls : std_ulogic_vector(2 downto 0);
begin
reg.negative := fpr(63);
exp_nz := or (fpr(62 downto 52));
exp_ao := and (fpr(62 downto 52));
frac_nz := or (fpr(51 downto 0));
low_nz := or (fpr(31 downto 0));
if is_int = '0' then
reg.exponent := signed(resize(unsigned(fpr(62 downto 52)), EXP_BITS)) - to_signed(1023, EXP_BITS);
if exp_nz = '0' then
reg.exponent := to_signed(-1022, EXP_BITS);
end if;
reg.mantissa := std_ulogic_vector(shift_left(resize(unsigned(exp_nz & fpr(51 downto 0)), 64),
UNIT_BIT - 52));
cls := exp_ao & exp_nz & frac_nz;
case cls is
when "000" => reg.class := ZERO;
when "001" => reg.class := FINITE; -- denormalized
when "010" => reg.class := FINITE;
when "011" => reg.class := FINITE;
when "110" => reg.class := INFINITY;
when others => reg.class := NAN;
end case;
elsif is_32bint = '1' then
reg.negative := fpr(31);
reg.mantissa(31 downto 0) := fpr(31 downto 0);
reg.mantissa(63 downto 32) := (others => (is_signed and fpr(31)));
reg.exponent := (others => '0');
if low_nz = '1' then
reg.class := FINITE;
else
reg.class := ZERO;
end if;
else
reg.mantissa := fpr;
reg.exponent := (others => '0');
if (fpr(63) or exp_nz or frac_nz) = '1' then
reg.class := FINITE;
else
reg.class := ZERO;
end if;
end if;
return reg;
end;
-- Construct a DP floating-point result from components
function pack_dp(sign: std_ulogic; class: fp_number_class; exp: signed(EXP_BITS-1 downto 0);
mantissa: std_ulogic_vector; single_prec: std_ulogic; quieten_nan: std_ulogic)
return std_ulogic_vector is
variable dp_result : std_ulogic_vector(63 downto 0);
begin
dp_result := (others => '0');
dp_result(63) := sign;
case class is
when ZERO =>
when FINITE =>
if mantissa(UNIT_BIT) = '1' then
-- normalized number
dp_result(62 downto 52) := std_ulogic_vector(resize(exp, 11) + 1023);
end if;
dp_result(51 downto 29) := mantissa(UNIT_BIT - 1 downto SP_LSB);
if single_prec = '0' then
dp_result(28 downto 0) := mantissa(SP_LSB - 1 downto DP_LSB);
end if;
when INFINITY =>
dp_result(62 downto 52) := "11111111111";
when NAN =>
dp_result(62 downto 52) := "11111111111";
dp_result(51) := quieten_nan or mantissa(QNAN_BIT);
dp_result(50 downto 29) := mantissa(QNAN_BIT - 1 downto SP_LSB);
if single_prec = '0' then
dp_result(28 downto 0) := mantissa(SP_LSB - 1 downto DP_LSB);
end if;
end case;
return dp_result;
end;
-- Determine whether to increment when rounding
-- Returns rounding_inc & inexact
-- If single_prec = 1, assumes x includes the bottom 31 (== SP_LSB - 2)
-- bits of the mantissa already (usually arranged by setting set_x = 1 earlier).
function fp_rounding(mantissa: std_ulogic_vector(63 downto 0); x: std_ulogic;
single_prec: std_ulogic; rn: std_ulogic_vector(2 downto 0);
sign: std_ulogic)
return std_ulogic_vector is
variable grx : std_ulogic_vector(2 downto 0);
variable ret : std_ulogic_vector(1 downto 0);
variable lsb : std_ulogic;
begin
if single_prec = '0' then
grx := mantissa(DP_GBIT downto DP_RBIT) & (x or (or mantissa(DP_RBIT - 1 downto 0)));
lsb := mantissa(DP_LSB);
else
grx := mantissa(SP_GBIT downto SP_RBIT) & x;
lsb := mantissa(SP_LSB);
end if;
ret(1) := '0';
ret(0) := or (grx);
case rn(1 downto 0) is
when "00" => -- round to nearest
if grx = "100" and rn(2) = '0' then
ret(1) := lsb; -- tie, round to even
else
ret(1) := grx(2);
end if;
when "01" => -- round towards zero
when others => -- round towards +/- inf
if rn(0) = sign then
-- round towards greater magnitude
ret(1) := ret(0);
end if;
end case;
return ret;
end;
-- Determine result flags to write into the FPSCR
function result_flags(sign: std_ulogic; class: fp_number_class; unitbit: std_ulogic)
return std_ulogic_vector is
begin
case class is
when ZERO =>
return sign & "0010";
when FINITE =>
return (not unitbit) & sign & (not sign) & "00";
when INFINITY =>
return '0' & sign & (not sign) & "01";
when NAN =>
return "10001";
end case;
end;
begin
fpu_multiply_0: entity work.multiply
port map (
clk => clk,
m_in => f_to_multiply,
m_out => multiply_to_f
);
fpu_0: process(clk)
begin
if rising_edge(clk) then
if rst = '1' or flush_in = '1' then
r.state <= IDLE;
r.busy <= '0';
r.f2stall <= '0';
r.instr_done <= '0';
r.complete <= '0';
r.illegal <= '0';
r.do_intr <= '0';
r.writing_fpr <= '0';
r.writing_cr <= '0';
r.writing_xer <= '0';
r.fpscr <= (others => '0');
r.write_reg <= (others =>'0');
r.complete_tag.valid <= '0';
r.cr_mask <= (others =>'0');
r.cr_result <= (others =>'0');
r.instr_tag.valid <= '0';
if rst = '1' then
r.fpscr <= (others => '0');
r.comm_fpscr <= (others => '0');
elsif r.do_intr = '0' then
-- flush_in = 1 and not due to us generating an interrupt,
-- roll back to committed fpscr
r.fpscr <= r.comm_fpscr;
end if;
else
assert not (r.state /= IDLE and e_in.valid = '1') severity failure;
r <= rin;
end if;
end if;
end process;
-- synchronous reads from lookup table
lut_access: process(clk)
variable addrhi : std_ulogic_vector(1 downto 0);
variable addr : std_ulogic_vector(9 downto 0);
begin
if rising_edge(clk) then
if r.is_sqrt = '1' then
addrhi := r.b.mantissa(UNIT_BIT + 1 downto UNIT_BIT);
else
addrhi := "00";
end if;
addr := addrhi & r.b.mantissa(UNIT_BIT - 1 downto UNIT_BIT - 8);
if is_X(addr) then
inverse_est <= (others => 'X');
else
inverse_est <= '1' & inverse_table(to_integer(unsigned(addr)));
end if;
end if;
end process;
e_out.busy <= r.busy;
e_out.f2stall <= r.f2stall;
e_out.exception <= r.fpscr(FPSCR_FEX);
-- Note that the cycle where r.complete = 1 for an instruction can be as
-- late as the second cycle of the following instruction (i.e. in the state
-- following IDLE state). Hence it is important that none of the fields of
-- r that are used below are modified in IDLE state.
w_out.valid <= r.complete;
w_out.instr_tag <= r.complete_tag;
w_out.write_enable <= r.writing_fpr and r.complete;
w_out.write_reg <= r.write_reg;
w_out.write_data <= fp_result;
w_out.write_cr_enable <= r.writing_cr and r.complete;
w_out.write_cr_mask <= r.cr_mask;
w_out.write_cr_data <= r.cr_result & r.cr_result & r.cr_result & r.cr_result &
r.cr_result & r.cr_result & r.cr_result & r.cr_result;
w_out.write_xerc <= r.writing_xer and r.complete;
w_out.xerc <= r.xerc_result;
w_out.interrupt <= r.do_intr;
w_out.intr_vec <= 16#700#;
w_out.srr1 <= (47-44 => r.illegal, 47-43 => not r.illegal, others => '0');
fpu_1: process(all)
variable v : reg_type;
variable adec : fpu_reg_type;
variable bdec : fpu_reg_type;
variable cdec : fpu_reg_type;
variable fpscr_mask : std_ulogic_vector(31 downto 0);
variable j, k : integer;
variable flm : std_ulogic_vector(7 downto 0);
variable int_input : std_ulogic;
variable is_32bint : std_ulogic;
variable mask : std_ulogic_vector(63 downto 0);
variable in_a0 : std_ulogic_vector(63 downto 0);
variable in_b0 : std_ulogic_vector(63 downto 0);
variable misc : std_ulogic_vector(63 downto 0);
variable shift_res : std_ulogic_vector(63 downto 0);
variable round : std_ulogic_vector(1 downto 0);
variable update_fx : std_ulogic;
variable arith_done : std_ulogic;
variable invalid : std_ulogic;
variable zero_divide : std_ulogic;
variable mant_nz : std_ulogic;
variable min_exp : signed(EXP_BITS-1 downto 0);
variable max_exp : signed(EXP_BITS-1 downto 0);
variable bias_exp : signed(EXP_BITS-1 downto 0);
variable new_exp : signed(EXP_BITS-1 downto 0);
variable exp_tiny : std_ulogic;
variable exp_huge : std_ulogic;
variable renormalize : std_ulogic;
variable clz : std_ulogic_vector(5 downto 0);
variable set_x : std_ulogic;
variable mshift : signed(EXP_BITS-1 downto 0);
variable need_check : std_ulogic;
variable msb : std_ulogic;
variable is_add : std_ulogic;
variable set_a : std_ulogic;
variable set_a_exp : std_ulogic;
variable set_a_mant : std_ulogic;
variable set_a_hi : std_ulogic;
variable set_a_lo : std_ulogic;
variable set_b : std_ulogic;
variable set_b_mant : std_ulogic;
variable set_c : std_ulogic;
variable set_y : std_ulogic;
variable set_s : std_ulogic;
variable qnan_result : std_ulogic;
variable px_nz : std_ulogic;
variable pcmpb_eq : std_ulogic;
variable pcmpb_lt : std_ulogic;
variable pcmpc_eq : std_ulogic;
variable pcmpc_lt : std_ulogic;
variable pshift : std_ulogic;
variable renorm_sqrt : std_ulogic;
variable sqrt_exp : signed(EXP_BITS-1 downto 0);
variable shiftin : std_ulogic;
variable shiftin0 : std_ulogic;
variable mulexp : signed(EXP_BITS-1 downto 0);
variable maddend : std_ulogic_vector(127 downto 0);
variable sum : std_ulogic_vector(63 downto 0);
variable round_inc : std_ulogic_vector(63 downto 0);
variable rbit_inc : std_ulogic;
variable mult_mask : std_ulogic;
variable sign_bit : std_ulogic;
variable rnd_b32 : std_ulogic;
variable int_result : std_ulogic;
variable illegal : std_ulogic;
begin
v := r;
v.complete := '0';
v.do_intr := '0';
int_input := '0';
is_32bint := '0';
if r.complete = '1' or r.do_intr = '1' then
v.instr_done := '0';
v.writing_fpr := '0';
v.writing_cr := '0';
v.writing_xer := '0';
v.comm_fpscr := r.fpscr;
v.illegal := '0';
end if;
-- capture incoming instruction
if e_in.valid = '1' then
v.insn := e_in.insn;
v.op := e_in.op;
v.instr_tag := e_in.itag;
v.fe_mode := or (e_in.fe_mode);
v.dest_fpr := e_in.frt;
v.single_prec := e_in.single;
v.is_signed := e_in.is_signed;
v.rc := e_in.rc;
v.is_cmp := e_in.out_cr;
v.oe := e_in.oe;
v.m32b := e_in.m32b;
v.xerc := e_in.xerc;
v.longmask := '0';
v.integer_op := '0';
v.divext := '0';
v.divmod := '0';
if e_in.op = OP_FPOP or e_in.op = OP_FPOP_I then
v.longmask := e_in.single;
if e_in.op = OP_FPOP_I then
int_input := '1';
end if;
else -- OP_DIV, OP_DIVE, OP_MOD
v.integer_op := '1';
int_input := '1';
is_32bint := e_in.single;
if e_in.op = OP_DIVE then
v.divext := '1';
elsif e_in.op = OP_MOD then
v.divmod := '1';
end if;
end if;
v.quieten_nan := '1';
v.tiny := '0';
v.denorm := '0';
v.round_mode := '0' & r.fpscr(FPSCR_RN+1 downto FPSCR_RN);
v.is_subtract := '0';
v.is_multiply := '0';
v.is_sqrt := '0';
v.add_bsmall := '0';
v.doing_ftdiv := "00";
v.int_ovf := '0';
v.div_close := '0';
adec := decode_dp(e_in.fra, int_input, is_32bint, e_in.is_signed);
bdec := decode_dp(e_in.frb, int_input, is_32bint, e_in.is_signed);
cdec := decode_dp(e_in.frc, int_input, '0', '0');
v.a := adec;
v.b := bdec;
v.c := cdec;
v.exp_cmp := '0';
if adec.exponent > bdec.exponent then
v.exp_cmp := '1';
end if;
v.madd_cmp := '0';
if (adec.exponent + cdec.exponent + 1) >= bdec.exponent then
v.madd_cmp := '1';
end if;
v.a_hi := 8x"0";
v.a_lo := 56x"0";
end if;
r_hi_nz <= or (r.r(UNIT_BIT + 1 downto SP_LSB));
r_lo_nz <= or (r.r(SP_LSB - 1 downto DP_LSB));
r_gt_1 <= or (r.r(63 downto 1));
s_nz <= or (r.s);
if r.single_prec = '0' then
if r.doing_ftdiv(1) = '0' then
max_exp := to_signed(1023, EXP_BITS);
else
max_exp := to_signed(1020, EXP_BITS);
end if;
if r.doing_ftdiv(0) = '0' then
min_exp := to_signed(-1022, EXP_BITS);
else
min_exp := to_signed(-1021, EXP_BITS);
end if;
bias_exp := to_signed(1536, EXP_BITS);
else
max_exp := to_signed(127, EXP_BITS);
min_exp := to_signed(-126, EXP_BITS);
bias_exp := to_signed(192, EXP_BITS);
end if;
new_exp := r.result_exp - r.shift;
exp_tiny := '0';
exp_huge := '0';
if is_X(new_exp) or is_X(min_exp) then
exp_tiny := 'X';
elsif new_exp < min_exp then
exp_tiny := '1';
end if;
if is_X(new_exp) or is_X(min_exp) then
exp_huge := 'X';
elsif new_exp > max_exp then
exp_huge := '1';
end if;
-- Compare P with zero and with B
px_nz := or (r.p(UNIT_BIT + 1 downto 4));
pcmpb_eq := '0';
if r.p(59 downto 4) = r.b.mantissa(UNIT_BIT + 1 downto DP_RBIT) then
pcmpb_eq := '1';
end if;
pcmpb_lt := '0';
if is_X(r.p(59 downto 4)) or is_X(r.b.mantissa(55 downto 0)) then
pcmpb_lt := 'X';
elsif unsigned(r.p(59 downto 4)) < unsigned(r.b.mantissa(UNIT_BIT + 1 downto DP_RBIT)) then
pcmpb_lt := '1';
end if;
pcmpc_eq := '0';
if r.p = r.c.mantissa then
pcmpc_eq := '1';
end if;
pcmpc_lt := '0';
if is_X(r.p) or is_X(r.c.mantissa) then
pcmpc_lt := 'X';
elsif unsigned(r.p) < unsigned(r.c.mantissa) then
pcmpc_lt := '1';
end if;
v.update_fprf := '0';
v.shift := to_signed(0, EXP_BITS);
v.first := '0';
v.opsel_a := AIN_R;
opsel_ainv <= '0';
opsel_mask <= '0';
opsel_b <= BIN_ZERO;
opsel_binv <= '0';
opsel_r <= RES_SUM;
opsel_s <= S_ZERO;
carry_in <= '0';
misc_sel <= "0000";
fpscr_mask := (others => '1');
update_fx := '0';
arith_done := '0';
invalid := '0';
zero_divide := '0';
renormalize := '0';
set_x := '0';
qnan_result := '0';
set_a := '0';
set_a_exp := '0';
set_a_mant := '0';
set_a_hi := '0';
set_a_lo := '0';
set_b := '0';
set_b_mant := '0';
set_c := '0';
set_s := '0';
f_to_multiply.is_32bit <= '0';
f_to_multiply.valid <= '0';
msel_1 <= MUL1_A;
msel_2 <= MUL2_C;
msel_add <= MULADD_ZERO;
msel_inv <= '0';
set_y := '0';
pshift := '0';
renorm_sqrt := '0';
shiftin := '0';
shiftin0 := '0';
rbit_inc := '0';
mult_mask := '0';
rnd_b32 := '0';
int_result := '0';
illegal := '0';
case r.state is
when IDLE =>
v.use_a := '0';
v.use_b := '0';
v.use_c := '0';
v.invalid := '0';
v.negate := '0';
if e_in.valid = '1' then
v.busy := '1';
case e_in.insn(5 downto 1) is
when "00000" =>
if e_in.insn(8) = '1' then
if e_in.insn(6) = '0' then
v.state := DO_FTDIV;
else
v.state := DO_FTSQRT;
end if;
elsif e_in.insn(7) = '1' then
v.state := DO_MCRFS;
else
v.opsel_a := AIN_B;
v.state := DO_FCMP;
end if;
when "00110" =>
if e_in.insn(10) = '0' then
if e_in.insn(8) = '0' then
v.state := DO_MTFSB;
else
v.state := DO_MTFSFI;
end if;
else
v.state := DO_FMRG;
end if;
when "00111" =>
if e_in.insn(8) = '0' then
v.state := DO_MFFS;
else
v.state := DO_MTFSF;
end if;
when "01000" =>
v.opsel_a := AIN_B;
if e_in.insn(9 downto 8) /= "11" then
v.state := DO_FMR;
else
v.state := DO_FRI;
end if;
when "01001" | "01011" =>
-- integer divides and mods, major opcode 31
v.opsel_a := AIN_B;
v.state := DO_IDIVMOD;
when "01100" =>
v.opsel_a := AIN_B;
v.state := DO_FRSP;
when "01110" =>
v.opsel_a := AIN_B;
if int_input = '1' then
-- fcfid[u][s]
v.state := DO_FCFID;
else
v.state := DO_FCTI;
end if;
when "01111" =>
v.round_mode := "001";
v.opsel_a := AIN_B;
v.state := DO_FCTI;
when "10010" =>
v.opsel_a := AIN_A;
if v.b.mantissa(UNIT_BIT) = '0' and v.a.mantissa(UNIT_BIT) = '1' then
v.opsel_a := AIN_B;
end if;
v.state := DO_FDIV;
when "10100" | "10101" =>
v.opsel_a := AIN_A;
v.state := DO_FADD;
when "10110" =>
v.is_sqrt := '1';
v.opsel_a := AIN_B;
v.state := DO_FSQRT;
when "10111" =>
v.state := DO_FSEL;
when "11000" =>
v.opsel_a := AIN_B;
v.state := DO_FRE;
when "11001" =>
v.is_multiply := '1';
v.opsel_a := AIN_A;
if v.c.mantissa(UNIT_BIT) = '0' and v.a.mantissa(UNIT_BIT) = '1' then
v.opsel_a := AIN_C;
end if;
v.state := DO_FMUL;
when "11010" =>
v.is_sqrt := '1';
v.opsel_a := AIN_B;
v.state := DO_FRSQRTE;
when "11100" | "11101" | "11110" | "11111" =>
if v.a.mantissa(UNIT_BIT) = '0' then
v.opsel_a := AIN_A;
elsif v.c.mantissa(UNIT_BIT) = '0' then
v.opsel_a := AIN_C;
else
v.opsel_a := AIN_B;
end if;
v.state := DO_FMADD;
when others =>
v.state := DO_ILLEGAL;
end case;
end if;
v.x := '0';
v.old_exc := r.fpscr(FPSCR_VX downto FPSCR_XX);
set_s := '1';
when DO_ILLEGAL =>
illegal := '1';
v.instr_done := '1';
when DO_MCRFS =>
j := to_integer(unsigned(insn_bfa(r.insn)));
for i in 0 to 7 loop
if i = j then
k := (7 - i) * 4;
v.cr_result := r.fpscr(k + 3 downto k);
fpscr_mask(k + 3 downto k) := "0000";
end if;
end loop;
v.fpscr := r.fpscr and (fpscr_mask or x"6007F8FF");
v.instr_done := '1';
when DO_FTDIV =>
v.instr_done := '1';
v.cr_result := "0000";
if r.a.class = INFINITY or r.b.class = ZERO or r.b.class = INFINITY or
(r.b.class = FINITE and r.b.mantissa(UNIT_BIT) = '0') then
v.cr_result(2) := '1';
end if;
if r.a.class = NAN or r.a.class = INFINITY or
r.b.class = NAN or r.b.class = ZERO or r.b.class = INFINITY or
(r.a.class = FINITE and r.a.exponent <= to_signed(-970, EXP_BITS)) then
v.cr_result(1) := '1';
else
v.doing_ftdiv := "11";
v.first := '1';
v.state := FTDIV_1;
v.instr_done := '0';
end if;
when DO_FTSQRT =>
v.instr_done := '1';
v.cr_result := "0000";
if r.b.class = ZERO or r.b.class = INFINITY or
(r.b.class = FINITE and r.b.mantissa(UNIT_BIT) = '0') then
v.cr_result(2) := '1';
end if;
if r.b.class = NAN or r.b.class = INFINITY or r.b.class = ZERO
or r.b.negative = '1' or r.b.exponent <= to_signed(-970, EXP_BITS) then
v.cr_result(1) := '0';
end if;
when DO_FCMP =>
-- fcmp[uo]
-- r.opsel_a = AIN_B
v.instr_done := '1';
update_fx := '1';
v.result_exp := r.b.exponent;
if (r.a.class = NAN and r.a.mantissa(QNAN_BIT) = '0') or
(r.b.class = NAN and r.b.mantissa(QNAN_BIT) = '0') then
-- Signalling NAN
v.fpscr(FPSCR_VXSNAN) := '1';
if r.insn(6) = '1' and r.fpscr(FPSCR_VE) = '0' then
v.fpscr(FPSCR_VXVC) := '1';
end if;
invalid := '1';
v.cr_result := "0001"; -- unordered
elsif r.a.class = NAN or r.b.class = NAN then
if r.insn(6) = '1' then
-- fcmpo
v.fpscr(FPSCR_VXVC) := '1';
invalid := '1';
end if;
v.cr_result := "0001"; -- unordered
elsif r.a.class = ZERO and r.b.class = ZERO then
v.cr_result := "0010"; -- equal
elsif r.a.negative /= r.b.negative then
v.cr_result := r.a.negative & r.b.negative & "00";
elsif r.a.class = ZERO then
-- A and B are the same sign from here down
v.cr_result := not r.b.negative & r.b.negative & "00";
elsif r.a.class = INFINITY then
if r.b.class = INFINITY then
v.cr_result := "0010";
else
v.cr_result := r.a.negative & not r.a.negative & "00";
end if;
elsif r.b.class = ZERO then
-- A is finite from here down
v.cr_result := r.a.negative & not r.a.negative & "00";
elsif r.b.class = INFINITY then
v.cr_result := not r.b.negative & r.b.negative & "00";
elsif r.exp_cmp = '1' then
-- A and B are both finite from here down
v.cr_result := r.a.negative & not r.a.negative & "00";
elsif r.a.exponent /= r.b.exponent then
-- A exponent is smaller than B
v.cr_result := not r.a.negative & r.a.negative & "00";
else
-- Prepare to subtract mantissas, put B in R
v.cr_result := "0000";
v.instr_done := '0';
v.opsel_a := AIN_A;
v.state := CMP_1;
end if;
v.fpscr(FPSCR_FL downto FPSCR_FU) := v.cr_result;
when DO_MTFSB =>
-- mtfsb{0,1}
j := to_integer(unsigned(insn_bt(r.insn)));
for i in 0 to 31 loop
if i = j then
v.fpscr(31 - i) := r.insn(6);
end if;
end loop;
v.instr_done := '1';
when DO_MTFSFI =>
-- mtfsfi
j := to_integer(unsigned(insn_bf(r.insn)));
if r.insn(16) = '0' then
for i in 0 to 7 loop
if i = j then
k := (7 - i) * 4;
v.fpscr(k + 3 downto k) := insn_u(r.insn);
end if;
end loop;
end if;
v.instr_done := '1';
when DO_FMRG =>
-- fmrgew, fmrgow
opsel_r <= RES_MISC;
misc_sel <= "01" & r.insn(8) & '0';
int_result := '1';
v.writing_fpr := '1';
v.instr_done := '1';
when DO_MFFS =>
v.writing_fpr := '1';
opsel_r <= RES_MISC;
case r.insn(20 downto 16) is
when "00000" =>
-- mffs
when "00001" =>
-- mffsce
v.fpscr(FPSCR_VE downto FPSCR_XE) := "00000";
when "10100" | "10101" =>
-- mffscdrn[i] (but we don't implement DRN)
fpscr_mask := x"000000FF";
when "10110" =>
-- mffscrn
fpscr_mask := x"000000FF";
v.fpscr(FPSCR_RN+1 downto FPSCR_RN) :=
r.b.mantissa(FPSCR_RN+1 downto FPSCR_RN);
when "10111" =>
-- mffscrni
fpscr_mask := x"000000FF";
v.fpscr(FPSCR_RN+1 downto FPSCR_RN) := r.insn(12 downto 11);
when "11000" =>
-- mffsl
fpscr_mask := x"0007F0FF";
when others =>
v.illegal := '1';
v.writing_fpr := '0';
end case;
int_result := '1';
v.instr_done := '1';
when DO_MTFSF =>
if r.insn(25) = '1' then
flm := x"FF";
elsif r.insn(16) = '1' then
flm := x"00";
else
flm := r.insn(24 downto 17);
end if;
for i in 0 to 7 loop
k := i * 4;
if flm(i) = '1' then
v.fpscr(k + 3 downto k) := r.b.mantissa(k + 3 downto k);
end if;
end loop;
v.instr_done := '1';
when DO_FMR =>
-- r.opsel_a = AIN_B
v.result_class := r.b.class;
v.result_exp := r.b.exponent;
v.quieten_nan := '0';
if r.insn(9) = '1' then
v.result_sign := '0'; -- fabs
elsif r.insn(8) = '1' then
v.result_sign := '1'; -- fnabs
elsif r.insn(7) = '1' then
v.result_sign := r.b.negative; -- fmr
elsif r.insn(6) = '1' then
v.result_sign := not r.b.negative; -- fneg
else
v.result_sign := r.a.negative; -- fcpsgn
end if;
v.writing_fpr := '1';
v.instr_done := '1';
when DO_FRI => -- fri[nzpm]
-- r.opsel_a = AIN_B
v.result_class := r.b.class;
v.result_sign := r.b.negative;
v.result_exp := r.b.exponent;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
if r.b.class = NAN and r.b.mantissa(QNAN_BIT) = '0' then
-- Signalling NAN
v.fpscr(FPSCR_VXSNAN) := '1';
invalid := '1';
end if;
if r.b.class = FINITE then
if r.b.exponent >= to_signed(52, EXP_BITS) then
-- integer already, no rounding required
arith_done := '1';
else
v.shift := r.b.exponent - to_signed(52, EXP_BITS);
v.state := FRI_1;
v.round_mode := '1' & r.insn(7 downto 6);
end if;
else
arith_done := '1';
end if;
when DO_FRSP =>
-- r.opsel_a = AIN_B, r.shift = 0
v.result_class := r.b.class;
v.result_sign := r.b.negative;
v.result_exp := r.b.exponent;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
if r.b.class = NAN and r.b.mantissa(53) = '0' then
-- Signalling NAN
v.fpscr(FPSCR_VXSNAN) := '1';
invalid := '1';
end if;
set_x := '1';
if r.b.class = FINITE then
if r.b.exponent < to_signed(-126, EXP_BITS) then
v.shift := r.b.exponent - to_signed(-126, EXP_BITS);
v.state := ROUND_UFLOW;
elsif r.b.exponent > to_signed(127, EXP_BITS) then
v.state := ROUND_OFLOW;
else
v.state := ROUNDING;
end if;
else
arith_done := '1';
end if;
when DO_FCTI =>
-- instr bit 9: 1=dword 0=word
-- instr bit 8: 1=unsigned 0=signed
-- instr bit 1: 1=round to zero 0=use fpscr[RN]
-- r.opsel_a = AIN_B
v.result_class := r.b.class;
v.result_sign := r.b.negative;
v.result_exp := r.b.exponent;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
if r.b.class = NAN and r.b.mantissa(53) = '0' then
-- Signalling NAN
v.fpscr(FPSCR_VXSNAN) := '1';
invalid := '1';
end if;
int_result := '1';
case r.b.class is
when ZERO =>
arith_done := '1';
when FINITE =>
if r.b.exponent >= to_signed(64, EXP_BITS) or
(r.insn(9) = '0' and r.b.exponent >= to_signed(32, EXP_BITS)) then
v.state := INT_OFLOW;
elsif r.b.exponent >= to_signed(52, EXP_BITS) then
-- integer already, no rounding required,
-- shift into final position
v.shift := r.b.exponent - to_signed(UNIT_BIT, EXP_BITS);
if r.insn(8) = '1' and r.b.negative = '1' then
v.state := INT_OFLOW;
else
v.state := INT_ISHIFT;
end if;
else
v.shift := r.b.exponent - to_signed(52, EXP_BITS);
v.state := INT_SHIFT;
end if;
when INFINITY | NAN =>
v.state := INT_OFLOW;
end case;
when DO_FCFID =>
-- r.opsel_a = AIN_B
v.result_sign := '0';
if r.insn(8) = '0' and r.b.negative = '1' then
-- fcfid[s] with negative operand, set R = -B
opsel_ainv <= '1';
carry_in <= '1';
v.result_sign := '1';
end if;
v.result_class := r.b.class;
v.result_exp := to_signed(UNIT_BIT, EXP_BITS);
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
if r.b.class = ZERO then
arith_done := '1';
else
v.state := FINISH;
end if;
when DO_FADD =>
-- fadd[s] and fsub[s]
-- r.opsel_a = AIN_A
v.result_sign := r.a.negative;
v.result_class := r.a.class;
v.result_exp := r.a.exponent;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
v.use_a := '1';
v.use_b := '1';
is_add := r.a.negative xor r.b.negative xor r.insn(1);
if r.a.class = FINITE and r.b.class = FINITE then
v.is_subtract := not is_add;
v.add_bsmall := r.exp_cmp;
v.opsel_a := AIN_B;
if r.exp_cmp = '0' then
v.shift := r.a.exponent - r.b.exponent;
v.result_sign := r.b.negative xnor r.insn(1);
if r.a.exponent = r.b.exponent then
v.state := ADD_2;
else
v.longmask := '0';
v.state := ADD_SHIFT;
end if;
else
v.state := ADD_1;
end if;
else
if r.a.class = NAN or r.b.class = NAN then
v.state := NAN_RESULT;
elsif r.a.class = INFINITY and r.b.class = INFINITY and is_add = '0' then
-- invalid operation, construct QNaN
v.fpscr(FPSCR_VXISI) := '1';
qnan_result := '1';
arith_done := '1';
elsif r.a.class = ZERO and r.b.class = ZERO and is_add = '0' then
-- return -0 for rounding to -infinity
v.result_sign := r.round_mode(1) and r.round_mode(0);
arith_done := '1';
elsif r.a.class = INFINITY or r.b.class = ZERO then
-- result is A
v.opsel_a := AIN_A;
v.state := EXC_RESULT;
else
-- result is +/- B
v.opsel_a := AIN_B;
v.negate := not r.insn(1);
v.state := EXC_RESULT;
end if;
end if;
when DO_FMUL =>
-- fmul[s]
-- r.opsel_a = AIN_A unless C is denorm and A isn't
v.result_sign := r.a.negative xor r.c.negative;
v.result_class := r.a.class;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
v.use_a := '1';
v.use_c := '1';
if r.a.class = FINITE and r.c.class = FINITE then
v.result_exp := r.a.exponent + r.c.exponent;
-- Renormalize denorm operands
if r.a.mantissa(UNIT_BIT) = '0' then
v.state := RENORM_A;
elsif r.c.mantissa(UNIT_BIT) = '0' then
v.state := RENORM_C;
else
f_to_multiply.valid <= '1';
v.state := MULT_1;
end if;
else
if r.a.class = NAN or r.c.class = NAN then
v.state := NAN_RESULT;
elsif (r.a.class = INFINITY and r.c.class = ZERO) or
(r.a.class = ZERO and r.c.class = INFINITY) then
-- invalid operation, construct QNaN
v.fpscr(FPSCR_VXIMZ) := '1';
qnan_result := '1';
elsif r.a.class = ZERO or r.a.class = INFINITY then
-- result is +/- A
arith_done := '1';
else
-- r.c.class is ZERO or INFINITY
v.opsel_a := AIN_C;
v.negate := r.a.negative;
v.state := EXC_RESULT;
end if;
end if;
when DO_FDIV =>
-- r.opsel_a = AIN_A unless B is denorm and A isn't
v.result_class := r.a.class;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
v.use_a := '1';
v.use_b := '1';
v.result_sign := r.a.negative xor r.b.negative;
v.result_exp := r.a.exponent - r.b.exponent;
v.count := "00";
if r.a.class = FINITE and r.b.class = FINITE then
-- Renormalize denorm operands
if r.a.mantissa(UNIT_BIT) = '0' then
v.state := RENORM_A;
elsif r.b.mantissa(UNIT_BIT) = '0' then
v.state := RENORM_B;
else
v.first := '1';
v.state := DIV_2;
end if;
else
if r.a.class = NAN or r.b.class = NAN then
v.state := NAN_RESULT;
elsif r.b.class = INFINITY then
if r.a.class = INFINITY then
v.fpscr(FPSCR_VXIDI) := '1';
qnan_result := '1';
else
v.result_class := ZERO;
end if;
arith_done := '1';
elsif r.b.class = ZERO then
if r.a.class = ZERO then
v.fpscr(FPSCR_VXZDZ) := '1';
qnan_result := '1';
else
if r.a.class = FINITE then
zero_divide := '1';
end if;
v.result_class := INFINITY;
end if;
arith_done := '1';
else -- r.b.class = FINITE, result_class = r.a.class
arith_done := '1';
end if;
end if;
when DO_FSEL =>
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
if r.a.class = ZERO or (r.a.negative = '0' and r.a.class /= NAN) then
v.opsel_a := AIN_C;
else
v.opsel_a := AIN_B;
end if;
v.quieten_nan := '0';
v.state := EXC_RESULT;
when DO_FSQRT =>
-- r.opsel_a = AIN_B
v.result_class := r.b.class;
v.result_sign := r.b.negative;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
v.use_b := '1';
case r.b.class is
when FINITE =>
v.result_exp := r.b.exponent;
if r.b.negative = '1' then
v.fpscr(FPSCR_VXSQRT) := '1';
qnan_result := '1';
elsif r.b.mantissa(UNIT_BIT) = '0' then
v.state := RENORM_B;
elsif r.b.exponent(0) = '0' then
v.state := SQRT_1;
else
v.shift := to_signed(1, EXP_BITS);
v.state := RENORM_B2;
end if;
when NAN =>
v.state := NAN_RESULT;
when ZERO =>
-- result is B
arith_done := '1';
when INFINITY =>
if r.b.negative = '1' then
v.fpscr(FPSCR_VXSQRT) := '1';
qnan_result := '1';
-- else result is B
end if;
arith_done := '1';
end case;
when DO_FRE =>
-- r.opsel_a = AIN_B
v.result_class := r.b.class;
v.result_sign := r.b.negative;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
v.use_b := '1';
v.result_exp := r.b.exponent;
case r.b.class is
when FINITE =>
if r.b.mantissa(UNIT_BIT) = '0' then
v.state := RENORM_B;
else
v.state := FRE_1;
end if;
when NAN =>
v.state := NAN_RESULT;
when INFINITY =>
v.result_class := ZERO;
arith_done := '1';
when ZERO =>
v.result_class := INFINITY;
zero_divide := '1';
arith_done := '1';
end case;
when DO_FRSQRTE =>
-- r.opsel_a = AIN_B
v.result_class := r.b.class;
v.result_sign := r.b.negative;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
v.use_b := '1';
v.shift := to_signed(1, EXP_BITS);
case r.b.class is
when FINITE =>
v.result_exp := r.b.exponent;
if r.b.negative = '1' then
v.fpscr(FPSCR_VXSQRT) := '1';
qnan_result := '1';
elsif r.b.mantissa(UNIT_BIT) = '0' then
v.state := RENORM_B;
elsif r.b.exponent(0) = '0' then
v.state := RSQRT_1;
else
v.state := RENORM_B2;
end if;
when NAN =>
v.state := NAN_RESULT;
when INFINITY =>
if r.b.negative = '1' then
v.fpscr(FPSCR_VXSQRT) := '1';
qnan_result := '1';
else
v.result_class := ZERO;
end if;
arith_done := '1';
when ZERO =>
v.result_class := INFINITY;
zero_divide := '1';
arith_done := '1';
end case;
when DO_FMADD =>
-- fmadd, fmsub, fnmadd, fnmsub
-- r.opsel_a = AIN_A if A is denorm, else AIN_C if C is denorm,
-- else AIN_B
v.result_sign := r.a.negative;
v.result_class := r.a.class;
v.result_exp := r.a.exponent + r.c.exponent;
v.fpscr(FPSCR_FR) := '0';
v.fpscr(FPSCR_FI) := '0';
v.use_a := '1';
v.use_b := '1';
v.use_c := '1';
is_add := r.a.negative xor r.c.negative xor r.b.negative xor r.insn(1);
if r.a.class = FINITE and r.c.class = FINITE and
(r.b.class = FINITE or r.b.class = ZERO) then
v.is_subtract := not is_add;
-- Make sure A and C are normalized
if r.a.mantissa(UNIT_BIT) = '0' then
v.state := RENORM_A;
elsif r.c.mantissa(UNIT_BIT) = '0' then
v.state := RENORM_C;
elsif r.b.class = ZERO then
-- no addend, degenerates to multiply
v.result_sign := r.a.negative xor r.c.negative xor r.insn(2);
f_to_multiply.valid <= '1';
v.is_multiply := '1';
v.state := MULT_1;
elsif r.madd_cmp = '0' then
-- addend is bigger, do multiply first
v.result_sign := not (r.b.negative xor r.insn(1) xor r.insn(2));
f_to_multiply.valid <= '1';
v.state := FMADD_0;
else
-- product is bigger, shift B first
v.state := FMADD_1;
end if;
else
if r.a.class = NAN or r.b.class = NAN or r.c.class = NAN then
v.state := NAN_RESULT;
elsif (r.a.class = ZERO and r.c.class = INFINITY) or
(r.a.class = INFINITY and r.c.class = ZERO) then
-- invalid operation, construct QNaN
v.fpscr(FPSCR_VXIMZ) := '1';
qnan_result := '1';
elsif r.a.class = INFINITY or r.c.class = INFINITY then
if r.b.class = INFINITY and is_add = '0' then
-- invalid operation, construct QNaN
v.fpscr(FPSCR_VXISI) := '1';
qnan_result := '1';
else
-- result is infinity
v.result_class := INFINITY;
v.result_sign := r.a.negative xor r.c.negative xor r.insn(2);
arith_done := '1';
end if;
else
-- Here A is zero, C is zero, or B is infinity
-- Result is +/-B in all of those cases
v.opsel_a := AIN_B;
if r.b.class /= ZERO or is_add = '1' then
v.negate := not (r.insn(1) xor r.insn(2));
else
-- have to be careful about rule for 0 - 0 result sign
v.negate := r.b.negative xor (r.round_mode(1) and r.round_mode(0)) xor r.insn(2);
end if;
v.state := EXC_RESULT;
end if;
end if;
when RENORM_A =>
renormalize := '1';
v.state := RENORM_A2;
if r.insn(4) = '1' then
v.opsel_a := AIN_C;
else
v.opsel_a := AIN_B;
end if;
when RENORM_A2 =>
-- r.opsel_a = AIN_C for fmul/fmadd, AIN_B for fdiv
set_a := '1';
v.result_exp := new_exp;
if r.insn(4) = '1' then
if r.c.mantissa(UNIT_BIT) = '1' then
if r.insn(3) = '0' or r.b.class = ZERO then
v.first := '1';
v.state := MULT_1;
else
v.madd_cmp := '0';
if new_exp + 1 >= r.b.exponent then
v.madd_cmp := '1';
end if;
v.opsel_a := AIN_B;
v.state := DO_FMADD;
end if;
else
v.state := RENORM_C;
end if;
else
if r.b.mantissa(UNIT_BIT) = '1' then
v.first := '1';
v.state := DIV_2;
else
v.state := RENORM_B;
end if;
end if;
when RENORM_B =>
renormalize := '1';
renorm_sqrt := r.is_sqrt;
v.state := RENORM_B2;
when RENORM_B2 =>
set_b := '1';
v.result_exp := new_exp;
v.opsel_a := AIN_B;
v.state := LOOKUP;
when RENORM_C =>
renormalize := '1';
v.state := RENORM_C2;
when RENORM_C2 =>
set_c := '1';
v.result_exp := new_exp;
if r.insn(3) = '0' or r.b.class = ZERO then
v.first := '1';
v.state := MULT_1;
else
v.madd_cmp := '0';
if new_exp + 1 >= r.b.exponent then
v.madd_cmp := '1';
end if;
v.opsel_a := AIN_B;
v.state := DO_FMADD;
end if;
when ADD_1 =>
-- transferring B to R
v.shift := r.b.exponent - r.a.exponent;
v.result_exp := r.b.exponent;
v.longmask := '0';
v.state := ADD_SHIFT;
when ADD_SHIFT =>
-- r.shift = - exponent difference, r.longmask = 0
opsel_r <= RES_SHIFT;
v.x := s_nz;
set_x := '1';
v.longmask := r.single_prec;
if r.add_bsmall = '1' then
v.opsel_a := AIN_A;
else
v.opsel_a := AIN_B;
end if;
v.state := ADD_2;
when ADD_2 =>
-- r.opsel_a = AIN_A if r.add_bsmall = 1 else AIN_B
opsel_b <= BIN_R;
opsel_binv <= r.is_subtract;
carry_in <= r.is_subtract and not r.x;
v.shift := to_signed(-1, EXP_BITS);
v.state := ADD_3;
when ADD_3 =>
-- check for overflow or negative result (can't get both)
-- r.shift = -1
if r.r(63) = '1' then
-- result is opposite sign to expected
v.result_sign := not r.result_sign;
opsel_ainv <= '1';
carry_in <= '1';
v.state := FINISH;
elsif r.r(UNIT_BIT + 1) = '1' then
-- sum overflowed, shift right
opsel_r <= RES_SHIFT;
set_x := '1';
if exp_huge = '1' then
v.state := ROUND_OFLOW;
else
v.state := ROUNDING;
end if;
elsif r.r(UNIT_BIT) = '1' then
set_x := '1';
v.state := ROUNDING;
elsif (r_hi_nz or r_lo_nz or (or (r.r(DP_LSB - 1 downto 0)))) = '0' then
-- r.x must be zero at this point
v.result_class := ZERO;
if r.is_subtract = '1' then
-- set result sign depending on rounding mode
v.result_sign := r.round_mode(1) and r.round_mode(0);
end if;
arith_done := '1';
else
renormalize := '1';
v.state := NORMALIZE;
end if;
when CMP_1 =>
-- r.opsel_a = AIN_A
opsel_b <= BIN_R;
opsel_binv <= '1';
carry_in <= '1';
v.state := CMP_2;
when CMP_2 =>
if r.r(63) = '1' then
-- A is smaller in magnitude
v.cr_result := not r.a.negative & r.a.negative & "00";
elsif (r_hi_nz or r_lo_nz) = '0' then
v.cr_result := "0010";
else
v.cr_result := r.a.negative & not r.a.negative & "00";
end if;
v.fpscr(FPSCR_FL downto FPSCR_FU) := v.cr_result;
v.instr_done := '1';
when MULT_1 =>
f_to_multiply.valid <= r.first;
opsel_r <= RES_MULT;
if multiply_to_f.valid = '1' then
v.state := FINISH;
end if;
when FMADD_0 =>
-- Addend is bigger here
v.result_sign := not (r.b.negative xor r.insn(1) xor r.insn(2));
-- note v.shift is at most -2 here
v.shift := r.result_exp - r.b.exponent;
opsel_r <= RES_MULT;
opsel_s <= S_MULT;
set_s := '1';
f_to_multiply.valid <= r.first;
if multiply_to_f.valid = '1' then
v.longmask := '0';
v.state := ADD_SHIFT;
end if;
when FMADD_1 =>
-- product is bigger here
-- shift B right and use it as the addend to the multiplier
v.shift := r.b.exponent - r.result_exp + to_signed(64, EXP_BITS);
-- for subtract, multiplier does B - A * C
v.result_sign := r.a.negative xor r.c.negative xor r.insn(2) xor r.is_subtract;
v.result_exp := r.b.exponent;
v.state := FMADD_2;
when FMADD_2 =>
-- Product is potentially bigger here
-- r.shift = addend exp - product exp + 64, r.r = r.b.mantissa
set_s := '1';
opsel_s <= S_SHIFT;
v.shift := r.shift - to_signed(64, EXP_BITS);
v.state := FMADD_3;
when FMADD_3 =>
-- r.shift = addend exp - product exp
opsel_r <= RES_SHIFT;
v.first := '1';
v.state := FMADD_4;
when FMADD_4 =>
msel_add <= MULADD_RS;
f_to_multiply.valid <= r.first;
msel_inv <= r.is_subtract;
opsel_r <= RES_MULT;
opsel_s <= S_MULT;
set_s := '1';
if multiply_to_f.valid = '1' then
v.state := FMADD_5;
end if;
when FMADD_5 =>
-- negate R:S:X if negative
if r.r(63) = '1' then
v.result_sign := not r.result_sign;
opsel_ainv <= '1';
carry_in <= not (s_nz or r.x);
opsel_s <= S_NEG;
set_s := '1';
end if;
v.shift := to_signed(UNIT_BIT, EXP_BITS);
v.state := FMADD_6;
when FMADD_6 =>
-- r.shift = UNIT_BIT (or 0, but only if r is now nonzero)
if (r.r(UNIT_BIT + 2) or r_hi_nz or r_lo_nz or (or (r.r(DP_LSB - 1 downto 0)))) = '0' then
if s_nz = '0' then
-- must be a subtraction, and r.x must be zero
v.result_class := ZERO;
v.result_sign := r.round_mode(1) and r.round_mode(0);
arith_done := '1';
else
-- R is all zeroes but there are non-zero bits in S
-- so shift them into R and set S to 0
opsel_r <= RES_SHIFT;
set_s := '1';
-- stay in state FMADD_6
end if;
elsif r.r(UNIT_BIT + 2 downto UNIT_BIT) = "001" then
v.state := FINISH;
else
renormalize := '1';
v.state := NORMALIZE;
end if;
when LOOKUP =>
-- r.opsel_a = AIN_B
-- wait one cycle for inverse_table[B] lookup
v.first := '1';
if r.insn(4) = '0' then
if r.insn(3) = '0' then
v.state := DIV_2;
else
v.state := SQRT_1;
end if;
elsif r.insn(2) = '0' then
v.state := FRE_1;
else
v.state := RSQRT_1;
end if;
when DIV_2 =>
-- compute Y = inverse_table[B] (when count=0); P = 2 - B * Y
msel_1 <= MUL1_B;
msel_add <= MULADD_CONST;
msel_inv <= '1';
if r.count = 0 then
msel_2 <= MUL2_LUT;
else
msel_2 <= MUL2_P;
end if;
set_y := r.first;
pshift := '1';
f_to_multiply.valid <= r.first;
if multiply_to_f.valid = '1' then
v.first := '1';
v.count := r.count + 1;
v.state := DIV_3;
end if;
when DIV_3 =>
-- compute Y = P = P * Y
msel_1 <= MUL1_Y;
msel_2 <= MUL2_P;
f_to_multiply.valid <= r.first;
pshift := '1';
if multiply_to_f.valid = '1' then
v.first := '1';
if r.count = 3 then
v.state := DIV_4;
else
v.state := DIV_2;
end if;
end if;
when DIV_4 =>
-- compute R = P = A * Y (quotient)
msel_1 <= MUL1_A;
msel_2 <= MUL2_P;
set_y := r.first;
f_to_multiply.valid <= r.first;
pshift := '1';
mult_mask := '1';
if multiply_to_f.valid = '1' then
opsel_r <= RES_MULT;
v.first := '1';
v.state := DIV_5;
end if;
when DIV_5 =>
-- compute P = A - B * R (remainder)
msel_1 <= MUL1_B;
msel_2 <= MUL2_R;
msel_add <= MULADD_A;
msel_inv <= '1';
f_to_multiply.valid <= r.first;
if multiply_to_f.valid = '1' then
v.state := DIV_6;
end if;
when DIV_6 =>
-- r.opsel_a = AIN_R
-- test if remainder is 0 or >= B
if pcmpb_lt = '1' then
-- quotient is correct, set X if remainder non-zero
v.x := r.p(UNIT_BIT + 2) or px_nz;
else
-- quotient needs to be incremented by 1 in R-bit position
rbit_inc := '1';
opsel_b <= BIN_RND;
v.x := not pcmpb_eq;
end if;
v.state := FINISH;
when FRE_1 =>
v.result_exp := - r.result_exp;
opsel_r <= RES_MISC;
misc_sel <= "0111";
v.shift := to_signed(1, EXP_BITS);
v.state := NORMALIZE;
when FTDIV_1 =>
v.cr_result(1) := exp_tiny or exp_huge;
if exp_tiny = '1' or exp_huge = '1' or r.a.class = ZERO or r.first = '0' then
v.instr_done := '1';
else
v.shift := r.a.exponent;
v.doing_ftdiv := "10";
end if;
when RSQRT_1 =>
opsel_r <= RES_MISC;
misc_sel <= "0111";
sqrt_exp := r.b.exponent(EXP_BITS-1) & r.b.exponent(EXP_BITS-1 downto 1);
v.result_exp := - sqrt_exp;
v.shift := to_signed(1, EXP_BITS);
v.state := NORMALIZE;
when SQRT_1 =>
-- put invsqr[B] in R and compute P = invsqr[B] * B
-- also transfer B (in R) to A
set_a := '1';
opsel_r <= RES_MISC;
misc_sel <= "0111";
msel_1 <= MUL1_B;
msel_2 <= MUL2_LUT;
f_to_multiply.valid <= '1';
v.shift := to_signed(-1, EXP_BITS);
v.count := "00";
v.state := SQRT_2;
when SQRT_2 =>
-- shift R right one place
-- not expecting multiplier result yet
-- r.shift = -1
opsel_r <= RES_SHIFT;
v.first := '1';
v.state := SQRT_3;
when SQRT_3 =>
-- put R into Y, wait for product from multiplier
msel_2 <= MUL2_R;
set_y := r.first;
pshift := '1';
mult_mask := '1';
if multiply_to_f.valid = '1' then
-- put result into R
opsel_r <= RES_MULT;
v.first := '1';
v.state := SQRT_4;
end if;
when SQRT_4 =>
-- compute 1.5 - Y * P
msel_1 <= MUL1_Y;
msel_2 <= MUL2_P;
msel_add <= MULADD_CONST;
msel_inv <= '1';
f_to_multiply.valid <= r.first;
pshift := '1';
if multiply_to_f.valid = '1' then
v.state := SQRT_5;
end if;
when SQRT_5 =>
-- compute Y = Y * P
msel_1 <= MUL1_Y;
msel_2 <= MUL2_P;
f_to_multiply.valid <= '1';
v.first := '1';
v.state := SQRT_6;
when SQRT_6 =>
-- pipeline in R = R * P
msel_1 <= MUL1_R;
msel_2 <= MUL2_P;
f_to_multiply.valid <= r.first;
pshift := '1';
if multiply_to_f.valid = '1' then
v.first := '1';
v.state := SQRT_7;
end if;
when SQRT_7 =>
-- first multiply is done, put result in Y
msel_2 <= MUL2_P;
set_y := r.first;
-- wait for second multiply (should be here already)
pshift := '1';
mult_mask := '1';
if multiply_to_f.valid = '1' then
-- put result into R
opsel_r <= RES_MULT;
v.first := '1';
v.count := r.count + 1;
if r.count < 2 then
v.state := SQRT_4;
else
v.first := '1';
v.state := SQRT_8;
end if;
end if;
when SQRT_8 =>
-- compute P = A - R * R, which can be +ve or -ve
-- we arranged for B to be put into A earlier
msel_1 <= MUL1_R;
msel_2 <= MUL2_R;
msel_add <= MULADD_A;
msel_inv <= '1';
pshift := '1';
f_to_multiply.valid <= r.first;
if multiply_to_f.valid = '1' then
v.first := '1';
v.state := SQRT_9;
end if;
when SQRT_9 =>
-- compute P = P * Y
-- since Y is an estimate of 1/sqrt(B), this makes P an
-- estimate of the adjustment needed to R. Since the error
-- could be negative and we have an unsigned multiplier, the
-- upper bits can be wrong, but it turns out the lowest 8 bits
-- are correct and are all we need (given 3 iterations through
-- SQRT_4 to SQRT_7).
msel_1 <= MUL1_Y;
msel_2 <= MUL2_P;
pshift := '1';
f_to_multiply.valid <= r.first;
if multiply_to_f.valid = '1' then
v.state := SQRT_10;
end if;
when SQRT_10 =>
-- Add the bottom 8 bits of P, sign-extended, onto R.
opsel_b <= BIN_PS8;
sqrt_exp := r.b.exponent(EXP_BITS-1) & r.b.exponent(EXP_BITS-1 downto 1);
v.result_exp := sqrt_exp;
v.shift := to_signed(1, EXP_BITS);
v.first := '1';
v.state := SQRT_11;
when SQRT_11 =>
-- compute P = A - R * R (remainder)
-- also put 2 * R + 1 into B for comparison with P
msel_1 <= MUL1_R;
msel_2 <= MUL2_R;
msel_add <= MULADD_A;
msel_inv <= '1';
f_to_multiply.valid <= r.first;
shiftin := '1';
set_b := r.first;
if multiply_to_f.valid = '1' then
v.state := SQRT_12;
end if;
when SQRT_12 =>
-- test if remainder is 0 or >= B = 2*R + 1
if pcmpb_lt = '1' then
-- square root is correct, set X if remainder non-zero
v.x := r.p(UNIT_BIT + 2) or px_nz;
else
-- square root needs to be incremented by 1
carry_in <= '1';
v.x := not pcmpb_eq;
end if;
v.state := FINISH;
when INT_SHIFT =>
-- r.shift = b.exponent - 52
opsel_r <= RES_SHIFT;
set_x := '1';
v.state := INT_ROUND;
v.shift := to_signed(52 - UNIT_BIT, EXP_BITS);
when INT_ROUND =>
-- r.shift = -4 (== 52 - UNIT_BIT)
opsel_r <= RES_SHIFT;
round := fp_rounding(r.r, r.x, '0', r.round_mode, r.result_sign);
v.fpscr(FPSCR_FR downto FPSCR_FI) := round;
-- Check for negative values that don't round to 0 for fcti*u*
if r.insn(8) = '1' and r.result_sign = '1' and
(r_hi_nz or r_lo_nz or v.fpscr(FPSCR_FR)) = '1' then
v.state := INT_OFLOW;
else
v.state := INT_FINAL;
end if;
when INT_ISHIFT =>
-- r.shift = b.exponent - UNIT_BIT;
opsel_r <= RES_SHIFT;
v.state := INT_FINAL;
when INT_FINAL =>
-- Negate if necessary, and increment for rounding if needed
opsel_ainv <= r.result_sign;
carry_in <= r.fpscr(FPSCR_FR) xor r.result_sign;
-- Check for possible overflows
case r.insn(9 downto 8) is
when "00" => -- fctiw[z]
need_check := r.r(31) or (r.r(30) and not r.result_sign);
when "01" => -- fctiwu[z]
need_check := r.r(31);
when "10" => -- fctid[z]
need_check := r.r(63) or (r.r(62) and not r.result_sign);
when others => -- fctidu[z]
need_check := r.r(63);
end case;
int_result := '1';
if need_check = '1' then
v.state := INT_CHECK;
else
if r.fpscr(FPSCR_FI) = '1' then
v.fpscr(FPSCR_XX) := '1';
end if;
arith_done := '1';
end if;
when INT_CHECK =>
if r.insn(9) = '0' then
msb := r.r(31);
else
msb := r.r(63);
end if;
misc_sel <= '1' & r.insn(9 downto 8) & r.result_sign;
if (r.insn(8) = '0' and msb /= r.result_sign) or
(r.insn(8) = '1' and msb /= '1') then
opsel_r <= RES_MISC;
v.fpscr(FPSCR_VXCVI) := '1';
invalid := '1';
else
if r.fpscr(FPSCR_FI) = '1' then
v.fpscr(FPSCR_XX) := '1';
end if;
end if;
int_result := '1';
arith_done := '1';
when INT_OFLOW =>
opsel_r <= RES_MISC;
misc_sel <= '1' & r.insn(9 downto 8) & r.result_sign;
if r.b.class = NAN then
misc_sel(0) <= '1';
end if;
v.fpscr(FPSCR_VXCVI) := '1';
invalid := '1';
int_result := '1';
arith_done := '1';
when FRI_1 =>
-- r.shift = b.exponent - 52
opsel_r <= RES_SHIFT;
set_x := '1';
v.state := ROUNDING;
when FINISH =>
if r.is_multiply = '1' and px_nz = '1' then
v.x := '1';
end if;
if r.r(63 downto UNIT_BIT) /= std_ulogic_vector(to_unsigned(1, 64 - UNIT_BIT)) then
renormalize := '1';
v.state := NORMALIZE;
else
set_x := '1';
if exp_tiny = '1' then
v.shift := new_exp - min_exp;
v.state := ROUND_UFLOW;
elsif exp_huge = '1' then
v.state := ROUND_OFLOW;
else
v.state := ROUNDING;
end if;
end if;
when NORMALIZE =>
-- Shift so we have 9 leading zeroes (we know R is non-zero)
-- r.shift = clz(r.r) - 9
opsel_r <= RES_SHIFT;
set_x := '1';
if exp_tiny = '1' then
v.shift := new_exp - min_exp;
v.state := ROUND_UFLOW;
elsif exp_huge = '1' then
v.state := ROUND_OFLOW;
else
v.state := ROUNDING;
end if;
when ROUND_UFLOW =>
-- r.shift = - amount by which exponent underflows
v.tiny := '1';
if r.fpscr(FPSCR_UE) = '0' then
-- disabled underflow exception case
-- have to denormalize before rounding
opsel_r <= RES_SHIFT;
set_x := '1';
v.state := ROUNDING;
else
-- enabled underflow exception case
-- if denormalized, have to normalize before rounding
v.fpscr(FPSCR_UX) := '1';
v.result_exp := r.result_exp + bias_exp;
if r.r(UNIT_BIT) = '0' then
renormalize := '1';
v.state := NORMALIZE;
else
v.state := ROUNDING;
end if;
end if;
when ROUND_OFLOW =>
v.fpscr(FPSCR_OX) := '1';
if r.fpscr(FPSCR_OE) = '0' then
-- disabled overflow exception
-- result depends on rounding mode
v.fpscr(FPSCR_XX) := '1';
v.fpscr(FPSCR_FI) := '1';
if r.round_mode(1 downto 0) = "00" or
(r.round_mode(1) = '1' and r.round_mode(0) = r.result_sign) then
v.result_class := INFINITY;
v.fpscr(FPSCR_FR) := '1';
else
v.fpscr(FPSCR_FR) := '0';
end if;
-- construct largest representable number
v.result_exp := max_exp;
opsel_r <= RES_MISC;
misc_sel <= "001" & r.single_prec;
arith_done := '1';
else
-- enabled overflow exception
v.result_exp := r.result_exp - bias_exp;
v.state := ROUNDING;
end if;
when ROUNDING =>
opsel_mask <= '1';
round := fp_rounding(r.r, r.x, r.single_prec, r.round_mode, r.result_sign);
v.fpscr(FPSCR_FR downto FPSCR_FI) := round;
if round(1) = '1' then
-- increment the LSB for the precision
opsel_b <= BIN_RND;
v.shift := to_signed(-1, EXP_BITS);
v.state := ROUNDING_2;
else
if r.r(UNIT_BIT) = '0' then
-- result after masking could be zero, or could be a
-- denormalized result that needs to be renormalized
renormalize := '1';
v.state := ROUNDING_3;
else
arith_done := '1';
end if;
end if;
if round(0) = '1' then
v.fpscr(FPSCR_XX) := '1';
if r.tiny = '1' then
v.fpscr(FPSCR_UX) := '1';
end if;
end if;
when ROUNDING_2 =>
-- Check for overflow during rounding
-- r.shift = -1
v.x := '0';
if r.r(UNIT_BIT + 1) = '1' then
opsel_r <= RES_SHIFT;
if exp_huge = '1' then
v.state := ROUND_OFLOW;
else
arith_done := '1';
end if;
elsif r.r(UNIT_BIT) = '0' then
-- Do CLZ so we can renormalize the result
renormalize := '1';
v.state := ROUNDING_3;
else
arith_done := '1';
end if;
when ROUNDING_3 =>
-- r.shift = clz(r.r) - 9
mant_nz := r_hi_nz or (r_lo_nz and not r.single_prec);
if mant_nz = '0' then
v.result_class := ZERO;
if r.is_subtract = '1' then
-- set result sign depending on rounding mode
v.result_sign := r.round_mode(1) and r.round_mode(0);
end if;
arith_done := '1';
else
-- Renormalize result after rounding
opsel_r <= RES_SHIFT;
v.denorm := exp_tiny;
v.shift := new_exp - to_signed(-1022, EXP_BITS);
if new_exp < to_signed(-1022, EXP_BITS) then
v.state := DENORM;
else
arith_done := '1';
end if;
end if;
when DENORM =>
-- r.shift = result_exp - -1022
opsel_r <= RES_SHIFT;
arith_done := '1';
when NAN_RESULT =>
if (r.use_a = '1' and r.a.class = NAN and r.a.mantissa(QNAN_BIT) = '0') or
(r.use_b = '1' and r.b.class = NAN and r.b.mantissa(QNAN_BIT) = '0') or
(r.use_c = '1' and r.c.class = NAN and r.c.mantissa(QNAN_BIT) = '0') then
-- Signalling NAN
v.fpscr(FPSCR_VXSNAN) := '1';
invalid := '1';
end if;
if r.use_a = '1' and r.a.class = NAN then
v.opsel_a := AIN_A;
elsif r.use_b = '1' and r.b.class = NAN then
v.opsel_a := AIN_B;
elsif r.use_c = '1' and r.c.class = NAN then
v.opsel_a := AIN_C;
end if;
v.state := EXC_RESULT;
when EXC_RESULT =>
-- r.opsel_a = AIN_A, AIN_B or AIN_C according to which input is the result
case r.opsel_a is
when AIN_B =>
v.result_sign := r.b.negative xor r.negate;
v.result_exp := r.b.exponent;
v.result_class := r.b.class;
when AIN_C =>
v.result_sign := r.c.negative xor r.negate;
v.result_exp := r.c.exponent;
v.result_class := r.c.class;
when others =>
v.result_sign := r.a.negative xor r.negate;
v.result_exp := r.a.exponent;
v.result_class := r.a.class;
end case;
arith_done := '1';
when DO_IDIVMOD =>
-- r.opsel_a = AIN_B
v.result_sign := r.is_signed and (r.a.negative xor (r.b.negative and not r.divmod));
if r.b.class = ZERO then
-- B is zero, signal overflow
v.int_ovf := '1';
v.state := IDIV_ZERO;
elsif r.a.class = ZERO then
-- A is zero, result is zero (both for div and for mod)
v.state := IDIV_ZERO;
else
-- take absolute value for signed division, and
-- normalize and round up B to 8.56 format, like fcfid[u]
if r.is_signed = '1' and r.b.negative = '1' then
opsel_ainv <= '1';
carry_in <= '1';
end if;
v.result_class := FINITE;
v.result_exp := to_signed(UNIT_BIT, EXP_BITS);
v.state := IDIV_NORMB;
end if;
when IDIV_NORMB =>
-- do count-leading-zeroes on B (now in R)
renormalize := '1';
-- save the original value of B or |B| in C
set_c := '1';
v.state := IDIV_NORMB2;
when IDIV_NORMB2 =>
-- get B into the range [1, 2) in 8.56 format
set_x := '1'; -- record if any 1 bits shifted out
opsel_r <= RES_SHIFT;
v.state := IDIV_NORMB3;
when IDIV_NORMB3 =>
-- add the X bit onto R to round up B
carry_in <= r.x;
-- prepare to do count-leading-zeroes on A
v.opsel_a := AIN_A;
v.state := IDIV_CLZA;
when IDIV_CLZA =>
set_b := '1'; -- put R back into B
-- r.opsel_a = AIN_A
if r.is_signed = '1' and r.a.negative = '1' then
opsel_ainv <= '1';
carry_in <= '1';
end if;
v.result_exp := to_signed(UNIT_BIT, EXP_BITS);
v.opsel_a := AIN_C;
v.state := IDIV_CLZA2;
when IDIV_CLZA2 =>
-- r.opsel_a = AIN_C
renormalize := '1';
-- write the dividend back into A in case we negated it
set_a_mant := '1';
-- while doing the count-leading-zeroes on A,
-- also compute A - B to tell us whether A >= B
-- (using the original value of B, which is now in C)
opsel_b <= BIN_R;
opsel_ainv <= '1';
carry_in <= '1';
v.state := IDIV_CLZA3;
when IDIV_CLZA3 =>
-- save the exponent of A (but don't overwrite the mantissa)
v.a.exponent := new_exp;
v.div_close := '0';
if new_exp = r.b.exponent then
v.div_close := '1';
end if;
v.state := IDIV_NR0;
if new_exp > r.b.exponent or (v.div_close = '1' and r.r(63) = '0') then
-- A >= B, overflow if extended division
if r.divext = '1' then
v.int_ovf := '1';
-- return 0 in overflow cases
v.state := IDIV_ZERO;
end if;
else
-- A < B, result is zero for normal division
if r.divmod = '0' and r.divext = '0' then
v.state := IDIV_ZERO;
end if;
end if;
when IDIV_NR0 =>
-- reduce number of Newton-Raphson iterations for small A
if r.divext = '1' or new_exp >= to_signed(32, EXP_BITS) then
v.count := "00";
elsif new_exp >= to_signed(16, EXP_BITS) then
v.count := "01";
else
v.count := "10";
end if;
-- first NR iteration does Y = LUT; P = 2 - B * LUT
msel_1 <= MUL1_B;
msel_add <= MULADD_CONST;
msel_inv <= '1';
msel_2 <= MUL2_LUT;
set_y := '1';
if r.b.mantissa(UNIT_BIT + 1) = '1' then
-- rounding up of the mantissa caused overflow, meaning the
-- normalized B is 2.0. Since this is outside the range
-- of the LUT, just use 0.5 as the estimated inverse.
v.state := IDIV_USE0_5;
else
-- start the first multiply now
f_to_multiply.valid <= '1';
-- note we don't set v.first, thus the following IDIV_NR1
-- state doesn't start a multiply (we already did that)
v.state := IDIV_NR1;
end if;
when IDIV_NR1 =>
-- subsequent NR iterations do Y = P; P = 2 - B * P
msel_1 <= MUL1_B;
msel_add <= MULADD_CONST;
msel_inv <= '1';
msel_2 <= MUL2_P;
set_y := r.first;
pshift := '1';
f_to_multiply.valid <= r.first;
if multiply_to_f.valid = '1' then
v.first := '1';
v.count := r.count + 1;
v.state := IDIV_NR2;
end if;
when IDIV_NR2 =>
-- compute P = Y * P
msel_1 <= MUL1_Y;
msel_2 <= MUL2_P;
f_to_multiply.valid <= r.first;
pshift := '1';
v.opsel_a := AIN_A;
v.shift := to_signed(64, EXP_BITS);
-- Get 0.5 into R in case the inverse estimate turns out to be
-- less than 0.5, in which case we want to use 0.5, to avoid
-- infinite loops in some cases.
opsel_r <= RES_MISC;
misc_sel <= "0001";
if multiply_to_f.valid = '1' then
v.first := '1';
if r.count = "11" then
v.state := IDIV_DODIV;
else
v.state := IDIV_NR1;
end if;
end if;
when IDIV_USE0_5 =>
-- Get 0.5 into R; it turns out the generated
-- QNaN mantissa is actually what we want
opsel_r <= RES_MISC;
misc_sel <= "0001";
v.opsel_a := AIN_A;
v.shift := to_signed(64, EXP_BITS);
v.state := IDIV_DODIV;
when IDIV_DODIV =>
-- r.opsel_a = AIN_A
-- r.shift = 64
-- inverse estimate is in P or in R; copy it to Y
if r.b.mantissa(UNIT_BIT + 1) = '1' or
(r.p(UNIT_BIT) = '0' and r.p(UNIT_BIT - 1) = '0') then
msel_2 <= MUL2_R;
else
msel_2 <= MUL2_P;
end if;
set_y := '1';
-- shift_res is 0 because r.shift = 64;
-- put that into B, which now holds the quotient
set_b_mant := '1';
if r.divext = '0' then
v.shift := to_signed(-UNIT_BIT, EXP_BITS);
v.first := '1';
v.state := IDIV_DIV;
elsif r.single_prec = '1' then
-- divwe[u][o], shift A left 32 bits
v.shift := to_signed(32, EXP_BITS);
v.state := IDIV_SH32;
elsif r.div_close = '0' then
v.shift := to_signed(64 - UNIT_BIT, EXP_BITS);
v.state := IDIV_EXTDIV;
else
-- handle top bit of quotient specially
-- for this we need the divisor left-justified in B
v.opsel_a := AIN_C;
v.state := IDIV_EXT_TBH;
end if;
when IDIV_SH32 =>
-- r.shift = 32, R contains the dividend
opsel_r <= RES_SHIFT;
v.shift := to_signed(-UNIT_BIT, EXP_BITS);
v.first := '1';
v.state := IDIV_DIV;
when IDIV_DIV =>
-- Dividing A by C, r.shift = -56; A is in R
-- Put A into the bottom 64 bits of Ahi/A/Alo
set_a_mant := r.first;
set_a_lo := r.first;
-- compute R = R * Y (quotient estimate)
msel_1 <= MUL1_Y;
msel_2 <= MUL2_R;
f_to_multiply.valid <= r.first;
pshift := '1';
opsel_r <= RES_MULT;
v.shift := - r.b.exponent;
if multiply_to_f.valid = '1' then
v.state := IDIV_DIV2;
end if;
when IDIV_DIV2 =>
-- r.shift = - b.exponent
-- shift the quotient estimate right by b.exponent bits
opsel_r <= RES_SHIFT;
v.first := '1';
v.state := IDIV_DIV3;
when IDIV_DIV3 =>
-- quotient (so far) is in R; multiply by C and subtract from A
msel_1 <= MUL1_R;
msel_2 <= MUL2_C;
msel_add <= MULADD_A;
msel_inv <= '1';
f_to_multiply.valid <= r.first;
-- store the current quotient estimate in B
set_b_mant := r.first;
opsel_r <= RES_MULT;
opsel_s <= S_MULT;
set_s := '1';
if multiply_to_f.valid = '1' then
v.state := IDIV_DIV4;
end if;
when IDIV_DIV4 =>
-- remainder is in R/S and P
msel_1 <= MUL1_Y;
msel_2 <= MUL2_P;
v.inc_quot := not pcmpc_lt and not r.divmod;
if r.divmod = '0' then
v.opsel_a := AIN_B;
end if;
v.shift := to_signed(UNIT_BIT, EXP_BITS);
if pcmpc_lt = '1' or pcmpc_eq = '1' then
if r.divmod = '0' then
v.state := IDIV_DIVADJ;
elsif pcmpc_eq = '1' then
v.state := IDIV_ZERO;
else
v.state := IDIV_MODADJ;
end if;
else
-- need to do another iteration, compute P * Y
f_to_multiply.valid <= '1';
v.state := IDIV_DIV5;
end if;
when IDIV_DIV5 =>
pshift := '1';
opsel_r <= RES_MULT;
v.shift := - r.b.exponent;
if multiply_to_f.valid = '1' then
v.state := IDIV_DIV6;
end if;
when IDIV_DIV6 =>
-- r.shift = - b.exponent
-- shift the quotient estimate right by b.exponent bits
opsel_r <= RES_SHIFT;
v.opsel_a := AIN_B;
v.first := '1';
v.state := IDIV_DIV7;
when IDIV_DIV7 =>
-- r.opsel_a = AIN_B
-- add shifted quotient delta onto the total quotient
opsel_b <= BIN_R;
v.first := '1';
v.state := IDIV_DIV8;
when IDIV_DIV8 =>
-- quotient (so far) is in R; multiply by C and subtract from A
msel_1 <= MUL1_R;
msel_2 <= MUL2_C;
msel_add <= MULADD_A;
msel_inv <= '1';
f_to_multiply.valid <= r.first;
-- store the current quotient estimate in B
set_b_mant := r.first;
opsel_r <= RES_MULT;
opsel_s <= S_MULT;
set_s := '1';
if multiply_to_f.valid = '1' then
v.state := IDIV_DIV9;
end if;
when IDIV_DIV9 =>
-- remainder is in R/S and P
msel_1 <= MUL1_Y;
msel_2 <= MUL2_P;
v.inc_quot := not pcmpc_lt and not r.divmod;
if r.divmod = '0' then
v.opsel_a := AIN_B;
end if;
v.shift := to_signed(UNIT_BIT, EXP_BITS);
if r.divmod = '0' then
v.state := IDIV_DIVADJ;
elsif pcmpc_eq = '1' then
v.state := IDIV_ZERO;
else
v.state := IDIV_MODADJ;
end if;
when IDIV_EXT_TBH =>
-- r.opsel_a = AIN_C; get divisor into R and prepare to shift left
v.shift := to_signed(63, EXP_BITS) - r.b.exponent;
v.opsel_a := AIN_A;
v.state := IDIV_EXT_TBH2;
when IDIV_EXT_TBH2 =>
-- r.opsel_a = AIN_A; divisor is in R
-- r.shift = 63 - b.exponent; shift and put into B
set_b_mant := '1';
v.shift := to_signed(64 - UNIT_BIT, EXP_BITS);
v.state := IDIV_EXT_TBH3;
when IDIV_EXT_TBH3 =>
-- Dividing (A << 64) by C
-- r.shift = 8
-- Put A in the top 64 bits of Ahi/A/Alo
set_a_hi := '1';
set_a_mant := '1';
v.shift := to_signed(64, EXP_BITS) - r.b.exponent;
v.state := IDIV_EXT_TBH4;
when IDIV_EXT_TBH4 =>
-- dividend (A) is in R
-- r.shift = 64 - B.exponent, so is at least 1
opsel_r <= RES_SHIFT;
-- top bit of A gets lost in the shift, so handle it specially
v.opsel_a := AIN_B;
v.shift := to_signed(63, EXP_BITS);
v.state := IDIV_EXT_TBH5;
when IDIV_EXT_TBH5 =>
-- r.opsel_a = AIN_B, r.shift = 63
-- shifted dividend is in R, subtract left-justified divisor
opsel_b <= BIN_R;
opsel_ainv <= '1';
carry_in <= '1';
-- and put 1<<63 into B as the divisor (S is still 0)
shiftin0 := '1';
set_b_mant := '1';
v.first := '1';
v.state := IDIV_EXTDIV2;
when IDIV_EXTDIV =>
-- Dividing (A << 64) by C
-- r.shift = 8
-- Put A in the top 64 bits of Ahi/A/Alo
set_a_hi := '1';
set_a_mant := '1';
v.shift := to_signed(64, EXP_BITS) - r.b.exponent;
v.state := IDIV_EXTDIV1;
when IDIV_EXTDIV1 =>
-- dividend is in R
-- r.shift = 64 - B.exponent
opsel_r <= RES_SHIFT;
v.first := '1';
v.state := IDIV_EXTDIV2;
when IDIV_EXTDIV2 =>
-- shifted remainder is in R; compute R = R * Y (quotient estimate)
msel_1 <= MUL1_Y;
msel_2 <= MUL2_R;
f_to_multiply.valid <= r.first;
pshift := '1';
v.opsel_a := AIN_B;
opsel_r <= RES_MULT;
if multiply_to_f.valid = '1' then
v.first := '1';
v.state := IDIV_EXTDIV3;
end if;
when IDIV_EXTDIV3 =>
-- r.opsel_a = AIN_B
-- delta quotient is in R; add it to B
opsel_b <= BIN_R;
v.first := '1';
v.state := IDIV_EXTDIV4;
when IDIV_EXTDIV4 =>
-- quotient is in R; put it in B and compute remainder
set_b_mant := r.first;
msel_1 <= MUL1_R;
msel_2 <= MUL2_C;
msel_add <= MULADD_A;
msel_inv <= '1';
f_to_multiply.valid <= r.first;
opsel_r <= RES_MULT;
opsel_s <= S_MULT;
set_s := '1';
v.shift := to_signed(UNIT_BIT, EXP_BITS) - r.b.exponent;
if multiply_to_f.valid = '1' then
v.state := IDIV_EXTDIV5;
end if;
when IDIV_EXTDIV5 =>
-- r.shift = r.b.exponent - 56
-- remainder is in R/S; shift it right r.b.exponent bits
opsel_r <= RES_SHIFT;
-- test LS 64b of remainder in P against divisor in C
v.inc_quot := not pcmpc_lt;
v.opsel_a := AIN_B;
v.state := IDIV_EXTDIV6;
when IDIV_EXTDIV6 =>
-- r.opsel_a = AIN_B
-- shifted remainder is in R, see if it is > 1
-- and compute R = R * Y if so
msel_1 <= MUL1_Y;
msel_2 <= MUL2_R;
pshift := '1';
if r_gt_1 = '1' then
f_to_multiply.valid <= '1';
v.state := IDIV_EXTDIV2;
else
v.state := IDIV_DIVADJ;
end if;
when IDIV_MODADJ =>
-- r.shift = 56
-- result is in R/S
opsel_r <= RES_SHIFT;
if pcmpc_lt = '0' then
v.opsel_a := AIN_C;
v.state := IDIV_MODSUB;
elsif r.result_sign = '0' then
v.state := IDIV_DONE;
else
v.state := IDIV_DIVADJ;
end if;
when IDIV_MODSUB =>
-- r.opsel_a = AIN_C
-- Subtract divisor from remainder
opsel_ainv <= '1';
carry_in <= '1';
opsel_b <= BIN_R;
if r.result_sign = '0' then
v.state := IDIV_DONE;
else
v.state := IDIV_DIVADJ;
end if;
when IDIV_DIVADJ =>
-- result (so far) is on the A input of the adder
-- set carry to increment quotient if needed
-- and also negate R if the answer is negative
opsel_ainv <= r.result_sign;
carry_in <= r.inc_quot xor r.result_sign;
rnd_b32 := '1';
if r.divmod = '0' then
opsel_b <= BIN_RND;
end if;
if r.is_signed = '0' then
v.state := IDIV_DONE;
else
v.state := IDIV_OVFCHK;
end if;
when IDIV_OVFCHK =>
if r.single_prec = '0' then
sign_bit := r.r(63);
else
sign_bit := r.r(31);
end if;
v.int_ovf := sign_bit xor r.result_sign;
if v.int_ovf = '1' then
v.state := IDIV_ZERO;
else
v.state := IDIV_DONE;
end if;
when IDIV_DONE =>
v.xerc_result := v.xerc;
if r.oe = '1' then
v.xerc_result.ov := '0';
v.xerc_result.ov32 := '0';
v.writing_xer := '1';
end if;
if r.m32b = '0' then
v.cr_result(3) := r.r(63);
v.cr_result(2 downto 1) := "00";
if r.r = 64x"0" then
v.cr_result(1) := '1';
else
v.cr_result(2) := not r.r(63);
end if;
else
v.cr_result(3) := r.r(31);
v.cr_result(2 downto 1) := "00";
if r.r(31 downto 0) = 32x"0" then
v.cr_result(1) := '1';
else
v.cr_result(2) := not r.r(31);
end if;
end if;
v.cr_result(0) := v.xerc.so;
int_result := '1';
v.writing_fpr := '1';
v.instr_done := '1';
when IDIV_ZERO =>
opsel_r <= RES_MISC;
misc_sel <= "0101";
v.xerc_result := v.xerc;
if r.oe = '1' then
v.xerc_result.ov := r.int_ovf;
v.xerc_result.ov32 := r.int_ovf;
v.xerc_result.so := r.xerc.so or r.int_ovf;
v.writing_xer := '1';
end if;
v.cr_result := "001" & v.xerc_result.so;
int_result := '1';
v.writing_fpr := '1';
v.instr_done := '1';
end case;
if zero_divide = '1' then
v.fpscr(FPSCR_ZX) := '1';
end if;
if qnan_result = '1' then
invalid := '1';
v.result_class := NAN;
v.result_sign := '0';
misc_sel <= "0001";
opsel_r <= RES_MISC;
arith_done := '1';
end if;
if invalid = '1' then
v.invalid := '1';
end if;
if arith_done = '1' then
-- Enabled invalid exception doesn't write result or FPRF
-- Neither does enabled zero-divide exception
if (v.invalid and r.fpscr(FPSCR_VE)) = '0' and
(zero_divide and r.fpscr(FPSCR_ZE)) = '0' then
v.writing_fpr := '1';
v.update_fprf := '1';
end if;
v.instr_done := '1';
update_fx := '1';
end if;
-- Multiplier and divide/square root data path
case msel_1 is
when MUL1_A =>
f_to_multiply.data1 <= r.a.mantissa;
when MUL1_B =>
f_to_multiply.data1 <= r.b.mantissa;
when MUL1_Y =>
f_to_multiply.data1 <= r.y;
when others =>
f_to_multiply.data1 <= r.r;
end case;
case msel_2 is
when MUL2_C =>
f_to_multiply.data2 <= r.c.mantissa;
when MUL2_LUT =>
f_to_multiply.data2 <= std_ulogic_vector(shift_left(resize(unsigned(inverse_est), 64),
UNIT_BIT - 19));
when MUL2_P =>
f_to_multiply.data2 <= r.p;
when others =>
f_to_multiply.data2 <= r.r;
end case;
maddend := (others => '0');
case msel_add is
when MULADD_CONST =>
-- addend is 2.0 or 1.5 in 16.112 format
if r.is_sqrt = '0' then
maddend(2*UNIT_BIT + 1) := '1'; -- 2.0
else
maddend(2*UNIT_BIT downto 2*UNIT_BIT - 1) := "11"; -- 1.5
end if;
when MULADD_A =>
-- addend is A in 16.112 format
maddend(127 downto UNIT_BIT + 64) := r.a_hi;
maddend(UNIT_BIT + 63 downto UNIT_BIT) := r.a.mantissa;
maddend(UNIT_BIT - 1 downto 0) := r.a_lo;
when MULADD_RS =>
-- addend is concatenation of R and S in 16.112 format
maddend(UNIT_BIT + 63 downto UNIT_BIT) := r.r;
maddend(UNIT_BIT - 1 downto 0) := r.s;
when others =>
end case;
if msel_inv = '1' then
f_to_multiply.addend <= not maddend;
else
f_to_multiply.addend <= maddend;
end if;
f_to_multiply.not_result <= msel_inv;
if set_y = '1' then
v.y := f_to_multiply.data2;
end if;
if multiply_to_f.valid = '1' then
if pshift = '0' then
v.p := multiply_to_f.result(63 downto 0);
else
v.p := multiply_to_f.result(UNIT_BIT + 63 downto UNIT_BIT);
end if;
end if;
-- Data path.
-- This has A and B input multiplexers, an adder, a shifter,
-- count-leading-zeroes logic, and a result mux.
if r.longmask = '1' then
mshift := r.shift + to_signed(-29, EXP_BITS);
else
mshift := r.shift;
end if;
if is_X(mshift) then
mask := (others => 'X');
elsif mshift < to_signed(-64, EXP_BITS) then
mask := (others => '1');
elsif mshift >= to_signed(0, EXP_BITS) then
mask := (others => '0');
else
mask := right_mask(unsigned(mshift(5 downto 0)));
end if;
case r.opsel_a is
when AIN_R =>
in_a0 := r.r;
when AIN_A =>
in_a0 := r.a.mantissa;
when AIN_B =>
in_a0 := r.b.mantissa;
when others =>
in_a0 := r.c.mantissa;
end case;
if (or (mask and in_a0)) = '1' and set_x = '1' then
v.x := '1';
end if;
if opsel_ainv = '1' then
in_a0 := not in_a0;
end if;
in_a <= in_a0;
case opsel_b is
when BIN_ZERO =>
in_b0 := (others => '0');
when BIN_R =>
in_b0 := r.r;
when BIN_RND =>
if rnd_b32 = '1' then
round_inc := (32 => r.result_sign and r.single_prec, others => '0');
elsif rbit_inc = '0' then
round_inc := (SP_LSB => r.single_prec, DP_LSB => not r.single_prec, others => '0');
else
round_inc := (DP_RBIT => '1', others => '0');
end if;
in_b0 := round_inc;
when others =>
-- BIN_PS8, 8 LSBs of P sign-extended to 64
in_b0 := std_ulogic_vector(resize(signed(r.p(7 downto 0)), 64));
end case;
if opsel_binv = '1' then
in_b0 := not in_b0;
end if;
in_b <= in_b0;
if is_X(r.shift) then
shift_res := (others => 'X');
elsif r.shift >= to_signed(-64, EXP_BITS) and r.shift <= to_signed(63, EXP_BITS) then
shift_res := shifter_64(r.r(63 downto 1) & (shiftin0 or r.r(0)) &
(shiftin or r.s(55)) & r.s(54 downto 0),
std_ulogic_vector(r.shift(6 downto 0)));
else
shift_res := (others => '0');
end if;
sum := std_ulogic_vector(unsigned(in_a) + unsigned(in_b) + carry_in);
if opsel_mask = '1' then
sum(DP_LSB - 1 downto 0) := "0000";
if r.single_prec = '1' then
sum(SP_LSB - 1 downto DP_LSB) := (others => '0');
end if;
end if;
case opsel_r is
when RES_SUM =>
result <= sum;
when RES_SHIFT =>
result <= shift_res;
when RES_MULT =>
result <= multiply_to_f.result(UNIT_BIT + 63 downto UNIT_BIT);
if mult_mask = '1' then
-- trim to 54 fraction bits if mult_mask = 1, for quotient when dividing
result(UNIT_BIT - 55 downto 0) <= (others => '0');
end if;
when others =>
misc := (others => '0');
case misc_sel is
when "0000" =>
misc := x"00000000" & (r.fpscr and fpscr_mask);
when "0001" =>
-- generated QNaN mantissa
misc(QNAN_BIT) := '1';
when "0010" =>
-- mantissa of max representable DP number
misc(UNIT_BIT downto DP_LSB) := (others => '1');
when "0011" =>
-- mantissa of max representable SP number
misc(UNIT_BIT downto SP_LSB) := (others => '1');
when "0100" =>
-- fmrgow result
misc := r.a.mantissa(31 downto 0) & r.b.mantissa(31 downto 0);
when "0110" =>
-- fmrgew result
misc := r.a.mantissa(63 downto 32) & r.b.mantissa(63 downto 32);
when "0111" =>
misc := std_ulogic_vector(shift_left(resize(unsigned(inverse_est), 64),
UNIT_BIT - 19));
when "1000" =>
-- max positive result for fctiw[z]
misc := x"000000007fffffff";
when "1001" =>
-- max negative result for fctiw[z]
misc := x"ffffffff80000000";
when "1010" =>
-- max positive result for fctiwu[z]
misc := x"00000000ffffffff";
when "1011" =>
-- max negative result for fctiwu[z]
misc := x"0000000000000000";
when "1100" =>
-- max positive result for fctid[z]
misc := x"7fffffffffffffff";
when "1101" =>
-- max negative result for fctid[z]
misc := x"8000000000000000";
when "1110" =>
-- max positive result for fctidu[z]
misc := x"ffffffffffffffff";
when "1111" =>
-- max negative result for fctidu[z]
misc := x"0000000000000000";
when others =>
end case;
result <= misc;
end case;
v.r := result;
if set_s = '1' then
case opsel_s is
when S_NEG =>
v.s := std_ulogic_vector(unsigned(not r.s) + (not r.x));
when S_MULT =>
v.s := multiply_to_f.result(55 downto 0);
when S_SHIFT =>
v.s := shift_res(63 downto 8);
if shift_res(7 downto 0) /= x"00" then
v.x := '1';
end if;
when others =>
v.s := (others => '0');
end case;
end if;
if set_a = '1' or set_a_exp = '1' then
v.a.exponent := new_exp;
end if;
if set_a = '1' or set_a_mant = '1' then
v.a.mantissa := shift_res;
end if;
if e_in.valid = '1' then
v.a_hi := (others => '0');
v.a_lo := (others => '0');
else
if set_a_hi = '1' then
v.a_hi := r.r(63 downto 56);
end if;
if set_a_lo = '1' then
v.a_lo := r.r(55 downto 0);
end if;
end if;
if set_b = '1' then
v.b.exponent := new_exp;
end if;
if set_b = '1' or set_b_mant = '1' then
v.b.mantissa := shift_res;
end if;
if set_c = '1' then
v.c.exponent := new_exp;
v.c.mantissa := shift_res;
end if;
if opsel_r = RES_SHIFT then
v.result_exp := new_exp;
end if;
if renormalize = '1' then
clz := count_left_zeroes(r.r);
if renorm_sqrt = '1' then
-- make denormalized value end up with even exponent
clz(0) := '1';
end if;
v.shift := resize(signed('0' & clz) - (63 - UNIT_BIT), EXP_BITS);
end if;
if r.update_fprf = '1' then
v.fpscr(FPSCR_C downto FPSCR_FU) := result_flags(r.result_sign, r.result_class,
r.r(UNIT_BIT) and not r.denorm);
end if;
v.fpscr(FPSCR_VX) := (or (v.fpscr(FPSCR_VXSNAN downto FPSCR_VXVC))) or
(or (v.fpscr(FPSCR_VXSOFT downto FPSCR_VXCVI)));
v.fpscr(FPSCR_FEX) := or (v.fpscr(FPSCR_VX downto FPSCR_XX) and
v.fpscr(FPSCR_VE downto FPSCR_XE));
if update_fx = '1' and
(v.fpscr(FPSCR_VX downto FPSCR_XX) and not r.old_exc) /= "00000" then
v.fpscr(FPSCR_FX) := '1';
end if;
if v.instr_done = '1' then
if r.state /= IDLE then
v.state := IDLE;
v.busy := '0';
v.f2stall := '0';
if r.rc = '1' and (r.op = OP_FPOP or r.op = OP_FPOP_I) then
v.cr_result := v.fpscr(FPSCR_FX downto FPSCR_OX);
end if;
v.sp_result := r.single_prec;
v.int_result := int_result;
v.illegal := illegal;
v.nsnan_result := v.quieten_nan;
if r.integer_op = '1' then
v.cr_mask := num_to_fxm(0);
elsif r.is_cmp = '0' then
v.cr_mask := num_to_fxm(1);
elsif is_X(insn_bf(r.insn)) then
v.cr_mask := (others => 'X');
else
v.cr_mask := num_to_fxm(to_integer(unsigned(insn_bf(r.insn))));
end if;
v.writing_cr := r.is_cmp or r.rc;
v.write_reg := r.dest_fpr;
v.complete_tag := r.instr_tag;
end if;
if e_in.stall = '0' then
v.complete := not v.illegal;
v.do_intr := (v.fpscr(FPSCR_FEX) and r.fe_mode) or v.illegal;
end if;
-- N.B. We rely on execute1 to prevent any new instruction
-- coming in while e_in.stall = 1, without us needing to
-- have busy asserted.
else
if r.state /= IDLE and e_in.stall = '0' then
v.f2stall := '1';
end if;
end if;
-- This mustn't depend on any fields of r that are modified in IDLE state.
if r.int_result = '1' then
fp_result <= r.r;
else
fp_result <= pack_dp(r.result_sign, r.result_class, r.result_exp, r.r,
r.sp_result, r.nsnan_result);
end if;
rin <= v;
end process;
end architecture behaviour;