You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
microwatt/fetch1.vhdl

443 lines
16 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
Move iTLB from icache to fetch1 This moves the address translation step for instruction fetches one cycle earlier, so that it now happens in the fetch1 stage. There is now a 2-entry mini translation cache ("ERAT", or effective to real address translation cache) which operates on the output of the multiplexer that selects the instruction address for the next cycle. The ERAT consists of two effective address registers and two corresponding real address registers. They store the page number part of the addresses for a 4kB page size, which is the smallest page size supported by the architecture. If the effective address doesn't match either of the EA registers, and address translation is enabled, then i_out.req goes low for two cycles while the iTLB is looked up. Experimentally, this delay results in a 0.1% drop in coremark performance; allowing two cycles for the lookup results in better timing. The result from the iTLB is placed into the least recently used ERAT entry and then used to translate the address as normal. If address translation is not enabled then the EA is used directly as the real address. The iTLB structure is the same as it was before; direct mapped, indexed using a hashed EA. The "fetch failed" signal, which indicates a TLB miss or protection violation, is now generated in fetch1 and passed through icache. When it is asserted, fetch1 goes into a stalled state until a PTE arrives from the MMU (which gets put into both the iTLB and the ERAT), or an interrupt or redirect occurs. Any TLB invalidations from the MMU invalidate the whole ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
use work.utils.all;
use work.common.all;
entity fetch1 is
generic(
RESET_ADDRESS : std_logic_vector(63 downto 0) := (others => '0');
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
ALT_RESET_ADDRESS : std_logic_vector(63 downto 0) := (others => '0');
Move iTLB from icache to fetch1 This moves the address translation step for instruction fetches one cycle earlier, so that it now happens in the fetch1 stage. There is now a 2-entry mini translation cache ("ERAT", or effective to real address translation cache) which operates on the output of the multiplexer that selects the instruction address for the next cycle. The ERAT consists of two effective address registers and two corresponding real address registers. They store the page number part of the addresses for a 4kB page size, which is the smallest page size supported by the architecture. If the effective address doesn't match either of the EA registers, and address translation is enabled, then i_out.req goes low for two cycles while the iTLB is looked up. Experimentally, this delay results in a 0.1% drop in coremark performance; allowing two cycles for the lookup results in better timing. The result from the iTLB is placed into the least recently used ERAT entry and then used to translate the address as normal. If address translation is not enabled then the EA is used directly as the real address. The iTLB structure is the same as it was before; direct mapped, indexed using a hashed EA. The "fetch failed" signal, which indicates a TLB miss or protection violation, is now generated in fetch1 and passed through icache. When it is asserted, fetch1 goes into a stalled state until a PTE arrives from the MMU (which gets put into both the iTLB and the ERAT), or an interrupt or redirect occurs. Any TLB invalidations from the MMU invalidate the whole ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
TLB_SIZE : positive := 64; -- L1 ITLB number of entries (direct mapped)
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
HAS_BTC : boolean := true
);
port(
clk : in std_ulogic;
rst : in std_ulogic;
-- Control inputs:
stall_in : in std_ulogic;
flush_in : in std_ulogic;
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
inval_btc : in std_ulogic;
stop_in : in std_ulogic;
alt_reset_in : in std_ulogic;
Move iTLB from icache to fetch1 This moves the address translation step for instruction fetches one cycle earlier, so that it now happens in the fetch1 stage. There is now a 2-entry mini translation cache ("ERAT", or effective to real address translation cache) which operates on the output of the multiplexer that selects the instruction address for the next cycle. The ERAT consists of two effective address registers and two corresponding real address registers. They store the page number part of the addresses for a 4kB page size, which is the smallest page size supported by the architecture. If the effective address doesn't match either of the EA registers, and address translation is enabled, then i_out.req goes low for two cycles while the iTLB is looked up. Experimentally, this delay results in a 0.1% drop in coremark performance; allowing two cycles for the lookup results in better timing. The result from the iTLB is placed into the least recently used ERAT entry and then used to translate the address as normal. If address translation is not enabled then the EA is used directly as the real address. The iTLB structure is the same as it was before; direct mapped, indexed using a hashed EA. The "fetch failed" signal, which indicates a TLB miss or protection violation, is now generated in fetch1 and passed through icache. When it is asserted, fetch1 goes into a stalled state until a PTE arrives from the MMU (which gets put into both the iTLB and the ERAT), or an interrupt or redirect occurs. Any TLB invalidations from the MMU invalidate the whole ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
m_in : in MmuToITLBType;
-- redirect from writeback unit
w_in : in WritebackToFetch1Type;
-- redirect from decode1
d_in : in Decode1ToFetch1Type;
-- Request to icache
i_out : out Fetch1ToIcacheType;
-- outputs to logger
log_out : out std_ulogic_vector(42 downto 0)
);
end entity fetch1;
architecture behaviour of fetch1 is
type reg_internal_t is record
mode_32bit: std_ulogic;
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
rd_is_niap4: std_ulogic;
Move iTLB from icache to fetch1 This moves the address translation step for instruction fetches one cycle earlier, so that it now happens in the fetch1 stage. There is now a 2-entry mini translation cache ("ERAT", or effective to real address translation cache) which operates on the output of the multiplexer that selects the instruction address for the next cycle. The ERAT consists of two effective address registers and two corresponding real address registers. They store the page number part of the addresses for a 4kB page size, which is the smallest page size supported by the architecture. If the effective address doesn't match either of the EA registers, and address translation is enabled, then i_out.req goes low for two cycles while the iTLB is looked up. Experimentally, this delay results in a 0.1% drop in coremark performance; allowing two cycles for the lookup results in better timing. The result from the iTLB is placed into the least recently used ERAT entry and then used to translate the address as normal. If address translation is not enabled then the EA is used directly as the real address. The iTLB structure is the same as it was before; direct mapped, indexed using a hashed EA. The "fetch failed" signal, which indicates a TLB miss or protection violation, is now generated in fetch1 and passed through icache. When it is asserted, fetch1 goes into a stalled state until a PTE arrives from the MMU (which gets put into both the iTLB and the ERAT), or an interrupt or redirect occurs. Any TLB invalidations from the MMU invalidate the whole ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
tlbcheck: std_ulogic;
tlbstall: std_ulogic;
next_nia: std_ulogic_vector(63 downto 0);
end record;
Move iTLB from icache to fetch1 This moves the address translation step for instruction fetches one cycle earlier, so that it now happens in the fetch1 stage. There is now a 2-entry mini translation cache ("ERAT", or effective to real address translation cache) which operates on the output of the multiplexer that selects the instruction address for the next cycle. The ERAT consists of two effective address registers and two corresponding real address registers. They store the page number part of the addresses for a 4kB page size, which is the smallest page size supported by the architecture. If the effective address doesn't match either of the EA registers, and address translation is enabled, then i_out.req goes low for two cycles while the iTLB is looked up. Experimentally, this delay results in a 0.1% drop in coremark performance; allowing two cycles for the lookup results in better timing. The result from the iTLB is placed into the least recently used ERAT entry and then used to translate the address as normal. If address translation is not enabled then the EA is used directly as the real address. The iTLB structure is the same as it was before; direct mapped, indexed using a hashed EA. The "fetch failed" signal, which indicates a TLB miss or protection violation, is now generated in fetch1 and passed through icache. When it is asserted, fetch1 goes into a stalled state until a PTE arrives from the MMU (which gets put into both the iTLB and the ERAT), or an interrupt or redirect occurs. Any TLB invalidations from the MMU invalidate the whole ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
-- Mini effective to real translation cache
type erat_t is record
epn0: std_ulogic_vector(63 - MIN_LG_PGSZ downto 0);
epn1: std_ulogic_vector(63 - MIN_LG_PGSZ downto 0);
rpn0: std_ulogic_vector(REAL_ADDR_BITS - MIN_LG_PGSZ - 1 downto 0);
rpn1: std_ulogic_vector(REAL_ADDR_BITS - MIN_LG_PGSZ - 1 downto 0);
priv0: std_ulogic;
priv1: std_ulogic;
valid: std_ulogic_vector(1 downto 0);
mru: std_ulogic; -- '1' => entry 1 most recently used
end record;
signal r, r_next : Fetch1ToIcacheType;
signal r_int, r_next_int : reg_internal_t;
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
signal advance_nia : std_ulogic;
signal log_nia : std_ulogic_vector(42 downto 0);
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
Move iTLB from icache to fetch1 This moves the address translation step for instruction fetches one cycle earlier, so that it now happens in the fetch1 stage. There is now a 2-entry mini translation cache ("ERAT", or effective to real address translation cache) which operates on the output of the multiplexer that selects the instruction address for the next cycle. The ERAT consists of two effective address registers and two corresponding real address registers. They store the page number part of the addresses for a 4kB page size, which is the smallest page size supported by the architecture. If the effective address doesn't match either of the EA registers, and address translation is enabled, then i_out.req goes low for two cycles while the iTLB is looked up. Experimentally, this delay results in a 0.1% drop in coremark performance; allowing two cycles for the lookup results in better timing. The result from the iTLB is placed into the least recently used ERAT entry and then used to translate the address as normal. If address translation is not enabled then the EA is used directly as the real address. The iTLB structure is the same as it was before; direct mapped, indexed using a hashed EA. The "fetch failed" signal, which indicates a TLB miss or protection violation, is now generated in fetch1 and passed through icache. When it is asserted, fetch1 goes into a stalled state until a PTE arrives from the MMU (which gets put into both the iTLB and the ERAT), or an interrupt or redirect occurs. Any TLB invalidations from the MMU invalidate the whole ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
signal erat : erat_t;
signal erat_hit : std_ulogic;
signal erat_sel : std_ulogic;
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
constant BTC_ADDR_BITS : integer := 10;
constant BTC_TAG_BITS : integer := 62 - BTC_ADDR_BITS;
constant BTC_TARGET_BITS : integer := 62;
constant BTC_SIZE : integer := 2 ** BTC_ADDR_BITS;
constant BTC_WIDTH : integer := BTC_TAG_BITS + BTC_TARGET_BITS + 2;
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
type btc_mem_type is array (0 to BTC_SIZE - 1) of std_ulogic_vector(BTC_WIDTH - 1 downto 0);
signal btc_rd_addr : unsigned(BTC_ADDR_BITS - 1 downto 0);
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
signal btc_rd_data : std_ulogic_vector(BTC_WIDTH - 1 downto 0) := (others => '0');
signal btc_rd_valid : std_ulogic := '0';
Move iTLB from icache to fetch1 This moves the address translation step for instruction fetches one cycle earlier, so that it now happens in the fetch1 stage. There is now a 2-entry mini translation cache ("ERAT", or effective to real address translation cache) which operates on the output of the multiplexer that selects the instruction address for the next cycle. The ERAT consists of two effective address registers and two corresponding real address registers. They store the page number part of the addresses for a 4kB page size, which is the smallest page size supported by the architecture. If the effective address doesn't match either of the EA registers, and address translation is enabled, then i_out.req goes low for two cycles while the iTLB is looked up. Experimentally, this delay results in a 0.1% drop in coremark performance; allowing two cycles for the lookup results in better timing. The result from the iTLB is placed into the least recently used ERAT entry and then used to translate the address as normal. If address translation is not enabled then the EA is used directly as the real address. The iTLB structure is the same as it was before; direct mapped, indexed using a hashed EA. The "fetch failed" signal, which indicates a TLB miss or protection violation, is now generated in fetch1 and passed through icache. When it is asserted, fetch1 goes into a stalled state until a PTE arrives from the MMU (which gets put into both the iTLB and the ERAT), or an interrupt or redirect occurs. Any TLB invalidations from the MMU invalidate the whole ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
-- L1 ITLB.
constant TLB_BITS : natural := log2(TLB_SIZE);
constant TLB_EA_TAG_BITS : natural := 64 - (MIN_LG_PGSZ + TLB_BITS);
constant TLB_PTE_BITS : natural := 64;
subtype tlb_index_t is integer range 0 to TLB_SIZE - 1;
type tlb_valids_t is array(tlb_index_t) of std_ulogic;
subtype tlb_tag_t is std_ulogic_vector(TLB_EA_TAG_BITS - 1 downto 0);
type tlb_tags_t is array(tlb_index_t) of tlb_tag_t;
subtype tlb_pte_t is std_ulogic_vector(TLB_PTE_BITS - 1 downto 0);
type tlb_ptes_t is array(tlb_index_t) of tlb_pte_t;
signal itlb_valids : tlb_valids_t;
signal itlb_tags : tlb_tags_t;
signal itlb_ptes : tlb_ptes_t;
-- Values read from above arrays on a clock edge
signal itlb_valid : std_ulogic;
signal itlb_ttag : tlb_tag_t;
signal itlb_pte : tlb_pte_t;
signal itlb_hit : std_ulogic;
-- Simple hash for direct-mapped TLB index
function hash_ea(addr: std_ulogic_vector(63 downto 0)) return std_ulogic_vector is
variable hash : std_ulogic_vector(TLB_BITS - 1 downto 0);
begin
hash := addr(MIN_LG_PGSZ + TLB_BITS - 1 downto MIN_LG_PGSZ)
xor addr(MIN_LG_PGSZ + 2 * TLB_BITS - 1 downto MIN_LG_PGSZ + TLB_BITS)
xor addr(MIN_LG_PGSZ + 3 * TLB_BITS - 1 downto MIN_LG_PGSZ + 2 * TLB_BITS);
return hash;
end;
begin
regs : process(clk)
begin
if rising_edge(clk) then
log_nia <= r.nia(63) & r.nia(43 downto 2);
if r /= r_next and advance_nia = '1' then
report "fetch1 rst:" & std_ulogic'image(rst) &
" IR:" & std_ulogic'image(r_next.virt_mode) &
" P:" & std_ulogic'image(r_next.priv_mode) &
" E:" & std_ulogic'image(r_next.big_endian) &
" 32:" & std_ulogic'image(r_next_int.mode_32bit) &
" I:" & std_ulogic'image(w_in.interrupt) &
" R:" & std_ulogic'image(w_in.redirect) & std_ulogic'image(d_in.redirect) &
" S:" & std_ulogic'image(stall_in) &
" T:" & std_ulogic'image(stop_in) &
" nia:" & to_hstring(r_next.nia) &
Move iTLB from icache to fetch1 This moves the address translation step for instruction fetches one cycle earlier, so that it now happens in the fetch1 stage. There is now a 2-entry mini translation cache ("ERAT", or effective to real address translation cache) which operates on the output of the multiplexer that selects the instruction address for the next cycle. The ERAT consists of two effective address registers and two corresponding real address registers. They store the page number part of the addresses for a 4kB page size, which is the smallest page size supported by the architecture. If the effective address doesn't match either of the EA registers, and address translation is enabled, then i_out.req goes low for two cycles while the iTLB is looked up. Experimentally, this delay results in a 0.1% drop in coremark performance; allowing two cycles for the lookup results in better timing. The result from the iTLB is placed into the least recently used ERAT entry and then used to translate the address as normal. If address translation is not enabled then the EA is used directly as the real address. The iTLB structure is the same as it was before; direct mapped, indexed using a hashed EA. The "fetch failed" signal, which indicates a TLB miss or protection violation, is now generated in fetch1 and passed through icache. When it is asserted, fetch1 goes into a stalled state until a PTE arrives from the MMU (which gets put into both the iTLB and the ERAT), or an interrupt or redirect occurs. Any TLB invalidations from the MMU invalidate the whole ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
" req:" & std_ulogic'image(r_next.req) &
" FF:" & std_ulogic'image(r_next.fetch_fail);
end if;
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
if advance_nia = '1' then
r <= r_next;
r_int <= r_next_int;
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
end if;
-- always send the up-to-date stop mark and req
r.stop_mark <= stop_in;
r.req <= r_next.req;
Move iTLB from icache to fetch1 This moves the address translation step for instruction fetches one cycle earlier, so that it now happens in the fetch1 stage. There is now a 2-entry mini translation cache ("ERAT", or effective to real address translation cache) which operates on the output of the multiplexer that selects the instruction address for the next cycle. The ERAT consists of two effective address registers and two corresponding real address registers. They store the page number part of the addresses for a 4kB page size, which is the smallest page size supported by the architecture. If the effective address doesn't match either of the EA registers, and address translation is enabled, then i_out.req goes low for two cycles while the iTLB is looked up. Experimentally, this delay results in a 0.1% drop in coremark performance; allowing two cycles for the lookup results in better timing. The result from the iTLB is placed into the least recently used ERAT entry and then used to translate the address as normal. If address translation is not enabled then the EA is used directly as the real address. The iTLB structure is the same as it was before; direct mapped, indexed using a hashed EA. The "fetch failed" signal, which indicates a TLB miss or protection violation, is now generated in fetch1 and passed through icache. When it is asserted, fetch1 goes into a stalled state until a PTE arrives from the MMU (which gets put into both the iTLB and the ERAT), or an interrupt or redirect occurs. Any TLB invalidations from the MMU invalidate the whole ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
r.fetch_fail <= r_next.fetch_fail;
r_int.tlbcheck <= r_next_int.tlbcheck;
r_int.tlbstall <= r_next_int.tlbstall;
end if;
end process;
log_out <= log_nia;
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
btc : if HAS_BTC generate
signal btc_memory : btc_mem_type;
attribute ram_style : string;
attribute ram_style of btc_memory : signal is "block";
signal btc_valids : std_ulogic_vector(BTC_SIZE - 1 downto 0);
-- attribute ram_style of btc_valids : signal is "distributed";
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
signal btc_wr : std_ulogic;
signal btc_wr_data : std_ulogic_vector(BTC_WIDTH - 1 downto 0);
signal btc_wr_addr : std_ulogic_vector(BTC_ADDR_BITS - 1 downto 0);
begin
btc_wr_data <= w_in.br_taken &
r.virt_mode &
w_in.br_nia(63 downto BTC_ADDR_BITS + 2) &
w_in.redirect_nia(63 downto 2);
btc_wr_addr <= w_in.br_nia(BTC_ADDR_BITS + 1 downto 2);
btc_wr <= w_in.br_last;
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
btc_ram : process(clk)
variable raddr : unsigned(BTC_ADDR_BITS - 1 downto 0);
begin
if rising_edge(clk) then
if advance_nia = '1' then
if is_X(btc_rd_addr) then
btc_rd_data <= (others => 'X');
btc_rd_valid <= 'X';
else
btc_rd_data <= btc_memory(to_integer(btc_rd_addr));
btc_rd_valid <= btc_valids(to_integer(btc_rd_addr));
end if;
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
end if;
if btc_wr = '1' then
assert not is_X(btc_wr_addr) report "Writing to unknown address" severity FAILURE;
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
btc_memory(to_integer(unsigned(btc_wr_addr))) <= btc_wr_data;
end if;
if inval_btc = '1' or rst = '1' then
btc_valids <= (others => '0');
elsif btc_wr = '1' then
assert not is_X(btc_wr_addr) report "Writing to unknown address" severity FAILURE;
btc_valids(to_integer(unsigned(btc_wr_addr))) <= '1';
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
end if;
end if;
end process;
end generate;
Move iTLB from icache to fetch1 This moves the address translation step for instruction fetches one cycle earlier, so that it now happens in the fetch1 stage. There is now a 2-entry mini translation cache ("ERAT", or effective to real address translation cache) which operates on the output of the multiplexer that selects the instruction address for the next cycle. The ERAT consists of two effective address registers and two corresponding real address registers. They store the page number part of the addresses for a 4kB page size, which is the smallest page size supported by the architecture. If the effective address doesn't match either of the EA registers, and address translation is enabled, then i_out.req goes low for two cycles while the iTLB is looked up. Experimentally, this delay results in a 0.1% drop in coremark performance; allowing two cycles for the lookup results in better timing. The result from the iTLB is placed into the least recently used ERAT entry and then used to translate the address as normal. If address translation is not enabled then the EA is used directly as the real address. The iTLB structure is the same as it was before; direct mapped, indexed using a hashed EA. The "fetch failed" signal, which indicates a TLB miss or protection violation, is now generated in fetch1 and passed through icache. When it is asserted, fetch1 goes into a stalled state until a PTE arrives from the MMU (which gets put into both the iTLB and the ERAT), or an interrupt or redirect occurs. Any TLB invalidations from the MMU invalidate the whole ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
erat_sync : process(clk)
begin
if rising_edge(clk) then
if rst /= '0' or m_in.tlbie = '1' then
erat.valid <= "00";
erat.mru <= '0';
else
if erat_hit = '1' then
erat.mru <= erat_sel;
end if;
if m_in.tlbld = '1' then
erat.epn0 <= m_in.addr(63 downto MIN_LG_PGSZ);
erat.rpn0 <= m_in.pte(REAL_ADDR_BITS-1 downto MIN_LG_PGSZ);
erat.priv0 <= m_in.pte(3);
erat.valid(0) <= '1';
erat.valid(1) <= '0';
erat.mru <= '0';
elsif r_int.tlbcheck = '1' and itlb_hit = '1' then
if erat.mru = '0' then
erat.epn1 <= r.nia(63 downto MIN_LG_PGSZ);
erat.rpn1 <= itlb_pte(REAL_ADDR_BITS-1 downto MIN_LG_PGSZ);
erat.priv1 <= itlb_pte(3);
erat.valid(1) <= '1';
else
erat.epn0 <= r.nia(63 downto MIN_LG_PGSZ);
erat.rpn0 <= itlb_pte(REAL_ADDR_BITS-1 downto MIN_LG_PGSZ);
erat.priv0 <= itlb_pte(3);
erat.valid(0) <= '1';
end if;
erat.mru <= not erat.mru;
end if;
end if;
end if;
end process;
-- Read TLB using the NIA for the next cycle
itlb_read : process(clk)
variable tlb_req_index : std_ulogic_vector(TLB_BITS - 1 downto 0);
begin
if rising_edge(clk) then
if advance_nia = '1' then
tlb_req_index := hash_ea(r_next.nia);
if is_X(tlb_req_index) then
itlb_pte <= (others => 'X');
itlb_ttag <= (others => 'X');
itlb_valid <= 'X';
else
itlb_pte <= itlb_ptes(to_integer(unsigned(tlb_req_index)));
itlb_ttag <= itlb_tags(to_integer(unsigned(tlb_req_index)));
itlb_valid <= itlb_valids(to_integer(unsigned(tlb_req_index)));
end if;
end if;
end if;
end process;
-- TLB hit detection
itlb_lookup : process(all)
begin
itlb_hit <= '0';
if itlb_ttag = r.nia(63 downto MIN_LG_PGSZ + TLB_BITS) then
itlb_hit <= itlb_valid;
end if;
end process;
-- iTLB update
itlb_update: process(clk)
variable wr_index : std_ulogic_vector(TLB_BITS - 1 downto 0);
begin
if rising_edge(clk) then
wr_index := hash_ea(m_in.addr);
if rst = '1' or (m_in.tlbie = '1' and m_in.doall = '1') then
-- clear all valid bits
for i in tlb_index_t loop
itlb_valids(i) <= '0';
end loop;
elsif m_in.tlbie = '1' then
assert not is_X(wr_index) report "icache index invalid on write" severity FAILURE;
-- clear entry regardless of hit or miss
itlb_valids(to_integer(unsigned(wr_index))) <= '0';
elsif m_in.tlbld = '1' then
assert not is_X(wr_index) report "icache index invalid on write" severity FAILURE;
itlb_tags(to_integer(unsigned(wr_index))) <= m_in.addr(63 downto MIN_LG_PGSZ + TLB_BITS);
itlb_ptes(to_integer(unsigned(wr_index))) <= m_in.pte;
itlb_valids(to_integer(unsigned(wr_index))) <= '1';
end if;
--ev.itlb_miss_resolved <= m_in.tlbld and not rst;
end if;
end process;
comb : process(all)
variable v : Fetch1ToIcacheType;
variable v_int : reg_internal_t;
variable next_nia : std_ulogic_vector(63 downto 0);
variable m32 : std_ulogic;
Move iTLB from icache to fetch1 This moves the address translation step for instruction fetches one cycle earlier, so that it now happens in the fetch1 stage. There is now a 2-entry mini translation cache ("ERAT", or effective to real address translation cache) which operates on the output of the multiplexer that selects the instruction address for the next cycle. The ERAT consists of two effective address registers and two corresponding real address registers. They store the page number part of the addresses for a 4kB page size, which is the smallest page size supported by the architecture. If the effective address doesn't match either of the EA registers, and address translation is enabled, then i_out.req goes low for two cycles while the iTLB is looked up. Experimentally, this delay results in a 0.1% drop in coremark performance; allowing two cycles for the lookup results in better timing. The result from the iTLB is placed into the least recently used ERAT entry and then used to translate the address as normal. If address translation is not enabled then the EA is used directly as the real address. The iTLB structure is the same as it was before; direct mapped, indexed using a hashed EA. The "fetch failed" signal, which indicates a TLB miss or protection violation, is now generated in fetch1 and passed through icache. When it is asserted, fetch1 goes into a stalled state until a PTE arrives from the MMU (which gets put into both the iTLB and the ERAT), or an interrupt or redirect occurs. Any TLB invalidations from the MMU invalidate the whole ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
variable ehit, esel : std_ulogic;
variable eaa_priv : std_ulogic;
begin
v := r;
v_int := r_int;
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
v.predicted := '0';
v.pred_ntaken := '0';
Move iTLB from icache to fetch1 This moves the address translation step for instruction fetches one cycle earlier, so that it now happens in the fetch1 stage. There is now a 2-entry mini translation cache ("ERAT", or effective to real address translation cache) which operates on the output of the multiplexer that selects the instruction address for the next cycle. The ERAT consists of two effective address registers and two corresponding real address registers. They store the page number part of the addresses for a 4kB page size, which is the smallest page size supported by the architecture. If the effective address doesn't match either of the EA registers, and address translation is enabled, then i_out.req goes low for two cycles while the iTLB is looked up. Experimentally, this delay results in a 0.1% drop in coremark performance; allowing two cycles for the lookup results in better timing. The result from the iTLB is placed into the least recently used ERAT entry and then used to translate the address as normal. If address translation is not enabled then the EA is used directly as the real address. The iTLB structure is the same as it was before; direct mapped, indexed using a hashed EA. The "fetch failed" signal, which indicates a TLB miss or protection violation, is now generated in fetch1 and passed through icache. When it is asserted, fetch1 goes into a stalled state until a PTE arrives from the MMU (which gets put into both the iTLB and the ERAT), or an interrupt or redirect occurs. Any TLB invalidations from the MMU invalidate the whole ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
v.req := not stop_in;
v_int.tlbstall := r_int.tlbcheck;
v_int.tlbcheck := '0';
if r_int.tlbcheck = '1' and itlb_hit = '0' then
v.fetch_fail := '1';
end if;
-- Combinatorial computation of the CIA for the next cycle.
-- Needs to be simple so the result can be used for RAM
-- and TLB access in the icache.
-- If we are stalled, this still advances, and the assumption
-- is that it will not be used.
m32 := r_int.mode_32bit;
if w_in.redirect = '1' then
next_nia := w_in.redirect_nia(63 downto 2) & "00";
m32 := w_in.mode_32bit;
v.virt_mode := w_in.virt_mode;
v.priv_mode := w_in.priv_mode;
v.big_endian := w_in.big_endian;
v_int.mode_32bit := w_in.mode_32bit;
Move iTLB from icache to fetch1 This moves the address translation step for instruction fetches one cycle earlier, so that it now happens in the fetch1 stage. There is now a 2-entry mini translation cache ("ERAT", or effective to real address translation cache) which operates on the output of the multiplexer that selects the instruction address for the next cycle. The ERAT consists of two effective address registers and two corresponding real address registers. They store the page number part of the addresses for a 4kB page size, which is the smallest page size supported by the architecture. If the effective address doesn't match either of the EA registers, and address translation is enabled, then i_out.req goes low for two cycles while the iTLB is looked up. Experimentally, this delay results in a 0.1% drop in coremark performance; allowing two cycles for the lookup results in better timing. The result from the iTLB is placed into the least recently used ERAT entry and then used to translate the address as normal. If address translation is not enabled then the EA is used directly as the real address. The iTLB structure is the same as it was before; direct mapped, indexed using a hashed EA. The "fetch failed" signal, which indicates a TLB miss or protection violation, is now generated in fetch1 and passed through icache. When it is asserted, fetch1 goes into a stalled state until a PTE arrives from the MMU (which gets put into both the iTLB and the ERAT), or an interrupt or redirect occurs. Any TLB invalidations from the MMU invalidate the whole ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
v.fetch_fail := '0';
elsif d_in.redirect = '1' then
next_nia := d_in.redirect_nia(63 downto 2) & "00";
Move iTLB from icache to fetch1 This moves the address translation step for instruction fetches one cycle earlier, so that it now happens in the fetch1 stage. There is now a 2-entry mini translation cache ("ERAT", or effective to real address translation cache) which operates on the output of the multiplexer that selects the instruction address for the next cycle. The ERAT consists of two effective address registers and two corresponding real address registers. They store the page number part of the addresses for a 4kB page size, which is the smallest page size supported by the architecture. If the effective address doesn't match either of the EA registers, and address translation is enabled, then i_out.req goes low for two cycles while the iTLB is looked up. Experimentally, this delay results in a 0.1% drop in coremark performance; allowing two cycles for the lookup results in better timing. The result from the iTLB is placed into the least recently used ERAT entry and then used to translate the address as normal. If address translation is not enabled then the EA is used directly as the real address. The iTLB structure is the same as it was before; direct mapped, indexed using a hashed EA. The "fetch failed" signal, which indicates a TLB miss or protection violation, is now generated in fetch1 and passed through icache. When it is asserted, fetch1 goes into a stalled state until a PTE arrives from the MMU (which gets put into both the iTLB and the ERAT), or an interrupt or redirect occurs. Any TLB invalidations from the MMU invalidate the whole ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
v.fetch_fail := '0';
elsif r_int.tlbstall = '1' then
-- this case is needed so that the correct icache tags are read
next_nia := r.nia;
else
next_nia := r_int.next_nia;
end if;
if m32 = '1' then
next_nia(63 downto 32) := (others => '0');
end if;
v.nia := next_nia;
v_int.next_nia := std_ulogic_vector(unsigned(next_nia) + 4);
-- Use v_int.next_nia as the BTC read address before it gets possibly
-- overridden with the reset or interrupt address or the predicted branch
-- target address, in order to improve timing. If it gets overridden then
-- rd_is_niap4 gets cleared to indicate that the BTC data doesn't apply.
btc_rd_addr <= unsigned(v_int.next_nia(BTC_ADDR_BITS + 1 downto 2));
v_int.rd_is_niap4 := '1';
Move iTLB from icache to fetch1 This moves the address translation step for instruction fetches one cycle earlier, so that it now happens in the fetch1 stage. There is now a 2-entry mini translation cache ("ERAT", or effective to real address translation cache) which operates on the output of the multiplexer that selects the instruction address for the next cycle. The ERAT consists of two effective address registers and two corresponding real address registers. They store the page number part of the addresses for a 4kB page size, which is the smallest page size supported by the architecture. If the effective address doesn't match either of the EA registers, and address translation is enabled, then i_out.req goes low for two cycles while the iTLB is looked up. Experimentally, this delay results in a 0.1% drop in coremark performance; allowing two cycles for the lookup results in better timing. The result from the iTLB is placed into the least recently used ERAT entry and then used to translate the address as normal. If address translation is not enabled then the EA is used directly as the real address. The iTLB structure is the same as it was before; direct mapped, indexed using a hashed EA. The "fetch failed" signal, which indicates a TLB miss or protection violation, is now generated in fetch1 and passed through icache. When it is asserted, fetch1 goes into a stalled state until a PTE arrives from the MMU (which gets put into both the iTLB and the ERAT), or an interrupt or redirect occurs. Any TLB invalidations from the MMU invalidate the whole ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
-- If the last NIA value went down with a stop mark, it didn't get
-- executed, and hence we shouldn't increment NIA.
advance_nia <= rst or w_in.interrupt or w_in.redirect or d_in.redirect or
(not r.stop_mark and not (r.req and stall_in));
-- reduce metavalue warnings in sim
if is_X(rst) then
advance_nia <= '1';
end if;
-- Translate next_nia to real if possible, otherwise we have to stall
-- and look up the TLB.
ehit := '0';
esel := '0';
eaa_priv := '1';
if next_nia(63 downto MIN_LG_PGSZ) = erat.epn1 and erat.valid(1) = '1' then
ehit := '1';
esel := '1';
end if;
if next_nia(63 downto MIN_LG_PGSZ) = erat.epn0 and erat.valid(0) = '1' then
ehit := '1';
end if;
if v.virt_mode = '0' then
v.rpn := v.nia(REAL_ADDR_BITS - 1 downto MIN_LG_PGSZ);
eaa_priv := '1';
elsif esel = '1' then
v.rpn := erat.rpn1;
eaa_priv := erat.priv1;
else
v.rpn := erat.rpn0;
eaa_priv := erat.priv0;
end if;
if advance_nia = '1' and ehit = '0' and v.virt_mode = '1' and
r_int.tlbcheck = '0' and v.fetch_fail = '0' then
v_int.tlbstall := '1';
v_int.tlbcheck := '1';
end if;
if ehit = '1' or v.virt_mode = '0' then
if eaa_priv = '1' and v.priv_mode = '0' then
v.fetch_fail := '1';
else
v.fetch_fail := '0';
end if;
end if;
erat_hit <= ehit and advance_nia;
erat_sel <= esel;
if rst /= '0' then
if alt_reset_in = '1' then
v_int.next_nia := ALT_RESET_ADDRESS;
else
v_int.next_nia := RESET_ADDRESS;
end if;
elsif w_in.interrupt = '1' then
v_int.next_nia := 47x"0" & w_in.intr_vec(16 downto 2) & "00";
end if;
if rst /= '0' or w_in.interrupt = '1' then
Move iTLB from icache to fetch1 This moves the address translation step for instruction fetches one cycle earlier, so that it now happens in the fetch1 stage. There is now a 2-entry mini translation cache ("ERAT", or effective to real address translation cache) which operates on the output of the multiplexer that selects the instruction address for the next cycle. The ERAT consists of two effective address registers and two corresponding real address registers. They store the page number part of the addresses for a 4kB page size, which is the smallest page size supported by the architecture. If the effective address doesn't match either of the EA registers, and address translation is enabled, then i_out.req goes low for two cycles while the iTLB is looked up. Experimentally, this delay results in a 0.1% drop in coremark performance; allowing two cycles for the lookup results in better timing. The result from the iTLB is placed into the least recently used ERAT entry and then used to translate the address as normal. If address translation is not enabled then the EA is used directly as the real address. The iTLB structure is the same as it was before; direct mapped, indexed using a hashed EA. The "fetch failed" signal, which indicates a TLB miss or protection violation, is now generated in fetch1 and passed through icache. When it is asserted, fetch1 goes into a stalled state until a PTE arrives from the MMU (which gets put into both the iTLB and the ERAT), or an interrupt or redirect occurs. Any TLB invalidations from the MMU invalidate the whole ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
v.req := '0';
Add TLB to icache This adds a direct-mapped TLB to the icache, with 64 entries by default. Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along with redirects to indicate whether instruction addresses should be translated through the TLB, and fetch1 sends that on to icache. Similarly a "priv_mode" signal is sent to indicate the privilege mode for instruction fetches. This means that changes to MSR[IR] or MSR[PR] don't take effect until the next redirect, meaning an isync, rfid, branch, etc. The icache uses a hash of the effective address (i.e. next instruction address) to index the TLB. The hash is an XOR of three fields of the address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and 24--29 of the address. TLB invalidations simply invalidate the indexed TLB entry without checking the contents. If the icache detects a TLB miss with virt_mode=1, it will send a fetch_failed indication through fetch2 to decode1, which will turn it into a special OP_FETCH_FAILED opcode with unit=LDST. That will get sent down to loadstore1 which will currently just raise a Instruction Storage Interrupt (0x400) exception. One bit in the PTE obtained from the TLB is used to check whether an instruction access is allowed -- the privilege bit (bit 3). If bit 3 is 1 and priv_mode=0, then a fetch_failed indication is sent down to fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put into the iTLB since such PTEs would not allow execution by any context. Tlbie operations get sent from mmu to icache over a new connection. Unfortunately the privileged instruction tests are broken for now. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
v.virt_mode := '0';
v.priv_mode := '1';
v.big_endian := '0';
v_int.mode_32bit := '0';
v_int.rd_is_niap4 := '0';
Move iTLB from icache to fetch1 This moves the address translation step for instruction fetches one cycle earlier, so that it now happens in the fetch1 stage. There is now a 2-entry mini translation cache ("ERAT", or effective to real address translation cache) which operates on the output of the multiplexer that selects the instruction address for the next cycle. The ERAT consists of two effective address registers and two corresponding real address registers. They store the page number part of the addresses for a 4kB page size, which is the smallest page size supported by the architecture. If the effective address doesn't match either of the EA registers, and address translation is enabled, then i_out.req goes low for two cycles while the iTLB is looked up. Experimentally, this delay results in a 0.1% drop in coremark performance; allowing two cycles for the lookup results in better timing. The result from the iTLB is placed into the least recently used ERAT entry and then used to translate the address as normal. If address translation is not enabled then the EA is used directly as the real address. The iTLB structure is the same as it was before; direct mapped, indexed using a hashed EA. The "fetch failed" signal, which indicates a TLB miss or protection violation, is now generated in fetch1 and passed through icache. When it is asserted, fetch1 goes into a stalled state until a PTE arrives from the MMU (which gets put into both the iTLB and the ERAT), or an interrupt or redirect occurs. Any TLB invalidations from the MMU invalidate the whole ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
v_int.tlbstall := '0';
v_int.tlbcheck := '0';
v.fetch_fail := '0';
end if;
if v.fetch_fail = '1' then
v_int.tlbstall := '1';
end if;
if v_int.tlbstall = '1' then
v.req := '0';
end if;
-- If there is a valid entry in the BTC which corresponds to the next instruction,
-- use that to predict the address of the instruction after that.
Move iTLB from icache to fetch1 This moves the address translation step for instruction fetches one cycle earlier, so that it now happens in the fetch1 stage. There is now a 2-entry mini translation cache ("ERAT", or effective to real address translation cache) which operates on the output of the multiplexer that selects the instruction address for the next cycle. The ERAT consists of two effective address registers and two corresponding real address registers. They store the page number part of the addresses for a 4kB page size, which is the smallest page size supported by the architecture. If the effective address doesn't match either of the EA registers, and address translation is enabled, then i_out.req goes low for two cycles while the iTLB is looked up. Experimentally, this delay results in a 0.1% drop in coremark performance; allowing two cycles for the lookup results in better timing. The result from the iTLB is placed into the least recently used ERAT entry and then used to translate the address as normal. If address translation is not enabled then the EA is used directly as the real address. The iTLB structure is the same as it was before; direct mapped, indexed using a hashed EA. The "fetch failed" signal, which indicates a TLB miss or protection violation, is now generated in fetch1 and passed through icache. When it is asserted, fetch1 goes into a stalled state until a PTE arrives from the MMU (which gets put into both the iTLB and the ERAT), or an interrupt or redirect occurs. Any TLB invalidations from the MMU invalidate the whole ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
1 year ago
-- (w_in.redirect = '0' and d_in.redirect = '0' and r_int.tlbstall = '0')
-- implies v.nia = r_int.next_nia.
-- r_int.rd_is_niap4 implies r_int.next_nia is the address used to read the BTC.
if v.req = '1' and w_in.redirect = '0' and d_in.redirect = '0' and r_int.tlbstall = '0' and
btc_rd_valid = '1' and r_int.rd_is_niap4 = '1' and
btc_rd_data(BTC_WIDTH - 2) = r.virt_mode and
btc_rd_data(BTC_WIDTH - 3 downto BTC_TARGET_BITS)
= r_int.next_nia(BTC_TAG_BITS + BTC_ADDR_BITS + 1 downto BTC_ADDR_BITS + 2) then
v.predicted := btc_rd_data(BTC_WIDTH - 1);
v.pred_ntaken := not btc_rd_data(BTC_WIDTH - 1);
if btc_rd_data(BTC_WIDTH - 1) = '1' then
v_int.next_nia := btc_rd_data(BTC_TARGET_BITS - 1 downto 0) & "00";
v_int.rd_is_niap4 := '0';
fetch1: Implement a simple branch target cache This implements a cache in fetch1, where each entry stores the address of a simple branch instruction (b or bc) and the target of the branch. When fetching sequentially, if the address being fetched matches the cache entry, then fetching will be redirected to the branch target. The cache has 1024 entries and is direct-mapped, i.e. indexed by bits 11..2 of the NIA. The bus from execute1 now carries information about taken and not-taken simple branches, which fetch1 uses to update the cache. The cache entry is updated for both taken and not-taken branches, with the valid bit being set if the branch was taken and cleared if the branch was not taken. If fetching is redirected to the branch target then that goes down the pipe as a predicted-taken branch, and decode1 does not do any static branch prediction. If fetching is not redirected, then the next instruction goes down the pipe as normal and decode1 does its static branch prediction. In order to make timing, the lookup of the cache is pipelined, so on each cycle the cache entry for the current NIA + 8 is read. This means that after a redirect (from decode1 or execute1), only the third and subsequent sequentially-fetched instructions will be able to be predicted. This improves the coremark value on the Arty A7-100 from about 180 to about 190 (more than 5%). The BTC is optional. Builds for the Artix 7 35-T part have it off by default because the extra ~1420 LUTs it takes mean that the design doesn't fit on the Arty A7-35 board. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
4 years ago
end if;
end if;
r_next <= v;
r_next_int <= v_int;
-- Update outputs to the icache
i_out <= r;
i_out.next_nia <= next_nia;
i_out.next_rpn <= v.rpn;
end process;
end architecture behaviour;