decode2: Reformat to 4-space indentation

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
pull/193/head
Paul Mackerras 5 years ago
parent d5c8c33bae
commit afa82bea9c

@ -9,376 +9,376 @@ use work.helpers.all;
use work.insn_helpers.all; use work.insn_helpers.all;


entity decode2 is entity decode2 is
generic ( generic (
EX1_BYPASS : boolean := true EX1_BYPASS : boolean := true
); );
port ( port (
clk : in std_ulogic; clk : in std_ulogic;
rst : in std_ulogic; rst : in std_ulogic;


complete_in : in std_ulogic; complete_in : in std_ulogic;
stall_in : in std_ulogic; stall_in : in std_ulogic;
stall_out : out std_ulogic; stall_out : out std_ulogic;


stopped_out : out std_ulogic; stopped_out : out std_ulogic;


flush_in: in std_ulogic; flush_in: in std_ulogic;


d_in : in Decode1ToDecode2Type; d_in : in Decode1ToDecode2Type;


e_out : out Decode2ToExecute1Type; e_out : out Decode2ToExecute1Type;


r_in : in RegisterFileToDecode2Type; r_in : in RegisterFileToDecode2Type;
r_out : out Decode2ToRegisterFileType; r_out : out Decode2ToRegisterFileType;


c_in : in CrFileToDecode2Type; c_in : in CrFileToDecode2Type;
c_out : out Decode2ToCrFileType c_out : out Decode2ToCrFileType
); );
end entity decode2; end entity decode2;


architecture behaviour of decode2 is architecture behaviour of decode2 is
type reg_type is record type reg_type is record
e : Decode2ToExecute1Type; e : Decode2ToExecute1Type;
end record; end record;


signal r, rin : reg_type; signal r, rin : reg_type;


type decode_input_reg_t is record type decode_input_reg_t is record
reg_valid : std_ulogic; reg_valid : std_ulogic;
reg : gspr_index_t; reg : gspr_index_t;
data : std_ulogic_vector(63 downto 0); data : std_ulogic_vector(63 downto 0);
end record; end record;


type decode_output_reg_t is record type decode_output_reg_t is record
reg_valid : std_ulogic; reg_valid : std_ulogic;
reg : gspr_index_t; reg : gspr_index_t;
end record; end record;


function decode_input_reg_a (t : input_reg_a_t; insn_in : std_ulogic_vector(31 downto 0); function decode_input_reg_a (t : input_reg_a_t; insn_in : std_ulogic_vector(31 downto 0);
reg_data : std_ulogic_vector(63 downto 0); reg_data : std_ulogic_vector(63 downto 0);
ispr : gspr_index_t; ispr : gspr_index_t;
instr_addr : std_ulogic_vector(63 downto 0)) instr_addr : std_ulogic_vector(63 downto 0))
return decode_input_reg_t is return decode_input_reg_t is
begin begin
if t = RA or (t = RA_OR_ZERO and insn_ra(insn_in) /= "00000") then if t = RA or (t = RA_OR_ZERO and insn_ra(insn_in) /= "00000") then
assert is_fast_spr(ispr) = '0' report "Decode A says GPR but ISPR says SPR:" & assert is_fast_spr(ispr) = '0' report "Decode A says GPR but ISPR says SPR:" &
to_hstring(ispr) severity failure; to_hstring(ispr) severity failure;
return ('1', gpr_to_gspr(insn_ra(insn_in)), reg_data); return ('1', gpr_to_gspr(insn_ra(insn_in)), reg_data);
elsif t = SPR then elsif t = SPR then
-- ISPR must be either a valid fast SPR number or all 0 for a slow SPR. -- ISPR must be either a valid fast SPR number or all 0 for a slow SPR.
-- If it's all 0, we don't treat it as a dependency as slow SPRs -- If it's all 0, we don't treat it as a dependency as slow SPRs
-- operations are single issue. -- operations are single issue.
-- --
assert is_fast_spr(ispr) = '1' or ispr = "000000" assert is_fast_spr(ispr) = '1' or ispr = "000000"
report "Decode A says SPR but ISPR is invalid:" & report "Decode A says SPR but ISPR is invalid:" &
to_hstring(ispr) severity failure; to_hstring(ispr) severity failure;
return (is_fast_spr(ispr), ispr, reg_data); return (is_fast_spr(ispr), ispr, reg_data);
elsif t = CIA then elsif t = CIA then
return ('0', (others => '0'), instr_addr); return ('0', (others => '0'), instr_addr);
else else
return ('0', (others => '0'), (others => '0')); return ('0', (others => '0'), (others => '0'));
end if; end if;
end; end;


function decode_input_reg_b (t : input_reg_b_t; insn_in : std_ulogic_vector(31 downto 0); function decode_input_reg_b (t : input_reg_b_t; insn_in : std_ulogic_vector(31 downto 0);
reg_data : std_ulogic_vector(63 downto 0); reg_data : std_ulogic_vector(63 downto 0);
ispr : gspr_index_t) return decode_input_reg_t is ispr : gspr_index_t) return decode_input_reg_t is
variable ret : decode_input_reg_t; variable ret : decode_input_reg_t;
begin begin
case t is case t is
when RB => when RB =>
assert is_fast_spr(ispr) = '0' report "Decode B says GPR but ISPR says SPR:" & assert is_fast_spr(ispr) = '0' report "Decode B says GPR but ISPR says SPR:" &
to_hstring(ispr) severity failure; to_hstring(ispr) severity failure;
ret := ('1', gpr_to_gspr(insn_rb(insn_in)), reg_data); ret := ('1', gpr_to_gspr(insn_rb(insn_in)), reg_data);
when CONST_UI => when CONST_UI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_ui(insn_in)), 64))); ret := ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_ui(insn_in)), 64)));
when CONST_SI => when CONST_SI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)), 64))); ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)), 64)));
when CONST_SI_HI => when CONST_SI_HI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)) & x"0000", 64))); ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_si(insn_in)) & x"0000", 64)));
when CONST_UI_HI => when CONST_UI_HI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_si(insn_in)) & x"0000", 64))); ret := ('0', (others => '0'), std_ulogic_vector(resize(unsigned(insn_si(insn_in)) & x"0000", 64)));
when CONST_LI => when CONST_LI =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_li(insn_in)) & "00", 64))); ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_li(insn_in)) & "00", 64)));
when CONST_BD => when CONST_BD =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_bd(insn_in)) & "00", 64))); ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_bd(insn_in)) & "00", 64)));
when CONST_DS => when CONST_DS =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_ds(insn_in)) & "00", 64))); ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_ds(insn_in)) & "00", 64)));
when CONST_DXHI4 => when CONST_DXHI4 =>
ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_dx(insn_in)) & x"0004", 64))); ret := ('0', (others => '0'), std_ulogic_vector(resize(signed(insn_dx(insn_in)) & x"0004", 64)));
when CONST_M1 => when CONST_M1 =>
ret := ('0', (others => '0'), x"FFFFFFFFFFFFFFFF"); ret := ('0', (others => '0'), x"FFFFFFFFFFFFFFFF");
when CONST_SH => when CONST_SH =>
ret := ('0', (others => '0'), x"00000000000000" & "00" & insn_in(1) & insn_in(15 downto 11)); ret := ('0', (others => '0'), x"00000000000000" & "00" & insn_in(1) & insn_in(15 downto 11));
when CONST_SH32 => when CONST_SH32 =>
ret := ('0', (others => '0'), x"00000000000000" & "000" & insn_in(15 downto 11)); ret := ('0', (others => '0'), x"00000000000000" & "000" & insn_in(15 downto 11));
when SPR => when SPR =>
-- ISPR must be either a valid fast SPR number or all 0 for a slow SPR. -- ISPR must be either a valid fast SPR number or all 0 for a slow SPR.
-- If it's all 0, we don't treat it as a dependency as slow SPRs -- If it's all 0, we don't treat it as a dependency as slow SPRs
-- operations are single issue. -- operations are single issue.
assert is_fast_spr(ispr) = '1' or ispr = "000000" assert is_fast_spr(ispr) = '1' or ispr = "000000"
report "Decode B says SPR but ISPR is invalid:" & report "Decode B says SPR but ISPR is invalid:" &
to_hstring(ispr) severity failure; to_hstring(ispr) severity failure;
ret := (is_fast_spr(ispr), ispr, reg_data); ret := (is_fast_spr(ispr), ispr, reg_data);
when NONE => when NONE =>
ret := ('0', (others => '0'), (others => '0')); ret := ('0', (others => '0'), (others => '0'));
end case; end case;


return ret; return ret;
end; end;


function decode_input_reg_c (t : input_reg_c_t; insn_in : std_ulogic_vector(31 downto 0); function decode_input_reg_c (t : input_reg_c_t; insn_in : std_ulogic_vector(31 downto 0);
reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is reg_data : std_ulogic_vector(63 downto 0)) return decode_input_reg_t is
begin begin
case t is case t is
when RS => when RS =>
return ('1', gpr_to_gspr(insn_rs(insn_in)), reg_data); return ('1', gpr_to_gspr(insn_rs(insn_in)), reg_data);
when NONE => when NONE =>
return ('0', (others => '0'), (others => '0')); return ('0', (others => '0'), (others => '0'));
end case; end case;
end; end;


function decode_output_reg (t : output_reg_a_t; insn_in : std_ulogic_vector(31 downto 0); function decode_output_reg (t : output_reg_a_t; insn_in : std_ulogic_vector(31 downto 0);
ispr : gspr_index_t) return decode_output_reg_t is ispr : gspr_index_t) return decode_output_reg_t is
begin begin
case t is case t is
when RT => when RT =>
return ('1', gpr_to_gspr(insn_rt(insn_in))); return ('1', gpr_to_gspr(insn_rt(insn_in)));
when RA => when RA =>
return ('1', gpr_to_gspr(insn_ra(insn_in))); return ('1', gpr_to_gspr(insn_ra(insn_in)));
when SPR => when SPR =>
-- ISPR must be either a valid fast SPR number or all 0 for a slow SPR. -- ISPR must be either a valid fast SPR number or all 0 for a slow SPR.
-- If it's all 0, we don't treat it as a dependency as slow SPRs -- If it's all 0, we don't treat it as a dependency as slow SPRs
-- operations are single issue. -- operations are single issue.
assert is_fast_spr(ispr) = '1' or ispr = "000000" assert is_fast_spr(ispr) = '1' or ispr = "000000"
report "Decode B says SPR but ISPR is invalid:" & report "Decode B says SPR but ISPR is invalid:" &
to_hstring(ispr) severity failure; to_hstring(ispr) severity failure;
return (is_fast_spr(ispr), ispr); return (is_fast_spr(ispr), ispr);
when NONE => when NONE =>
return ('0', "000000"); return ('0', "000000");
end case; end case;
end; end;


function decode_rc (t : rc_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic is function decode_rc (t : rc_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic is
begin begin
case t is case t is
when RC => when RC =>
return insn_rc(insn_in); return insn_rc(insn_in);
when ONE => when ONE =>
return '1'; return '1';
when NONE => when NONE =>
return '0'; return '0';
end case; end case;
end; end;


-- For now, use "rc" in the decode table to decide whether oe exists. -- For now, use "rc" in the decode table to decide whether oe exists.
-- This is not entirely correct architecturally: For mulhd and -- This is not entirely correct architecturally: For mulhd and
-- mulhdu, the OE field is reserved. It remains to be seen what an -- mulhdu, the OE field is reserved. It remains to be seen what an
-- actual POWER9 does if we set it on those instructions, for now we -- actual POWER9 does if we set it on those instructions, for now we
-- test that further down when assigning to the multiplier oe input. -- test that further down when assigning to the multiplier oe input.
-- --
function decode_oe (t : rc_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic is function decode_oe (t : rc_t; insn_in : std_ulogic_vector(31 downto 0)) return std_ulogic is
begin begin
case t is case t is
when RC => when RC =>
return insn_oe(insn_in); return insn_oe(insn_in);
when OTHERS => when OTHERS =>
return '0'; return '0';
end case; end case;
end; end;


-- issue control signals -- issue control signals
signal control_valid_in : std_ulogic; signal control_valid_in : std_ulogic;
signal control_valid_out : std_ulogic; signal control_valid_out : std_ulogic;
signal control_sgl_pipe : std_logic; signal control_sgl_pipe : std_logic;


signal gpr_write_valid : std_ulogic; signal gpr_write_valid : std_ulogic;
signal gpr_write : gspr_index_t; signal gpr_write : gspr_index_t;
signal gpr_bypassable : std_ulogic; signal gpr_bypassable : std_ulogic;


signal gpr_a_read_valid : std_ulogic; signal gpr_a_read_valid : std_ulogic;
signal gpr_a_read :gspr_index_t; signal gpr_a_read :gspr_index_t;
signal gpr_a_bypass : std_ulogic; signal gpr_a_bypass : std_ulogic;


signal gpr_b_read_valid : std_ulogic; signal gpr_b_read_valid : std_ulogic;
signal gpr_b_read : gspr_index_t; signal gpr_b_read : gspr_index_t;
signal gpr_b_bypass : std_ulogic; signal gpr_b_bypass : std_ulogic;


signal gpr_c_read_valid : std_ulogic; signal gpr_c_read_valid : std_ulogic;
signal gpr_c_read : gpr_index_t; signal gpr_c_read : gpr_index_t;
signal gpr_c_bypass : std_ulogic; signal gpr_c_bypass : std_ulogic;


signal cr_write_valid : std_ulogic; signal cr_write_valid : std_ulogic;
begin begin
control_0: entity work.control control_0: entity work.control
generic map ( generic map (
PIPELINE_DEPTH => 1 PIPELINE_DEPTH => 1
) )
port map ( port map (
clk => clk, clk => clk,
rst => rst, rst => rst,


complete_in => complete_in, complete_in => complete_in,
valid_in => control_valid_in, valid_in => control_valid_in,
stall_in => stall_in, stall_in => stall_in,
flush_in => flush_in, flush_in => flush_in,
sgl_pipe_in => control_sgl_pipe, sgl_pipe_in => control_sgl_pipe,
stop_mark_in => d_in.stop_mark, stop_mark_in => d_in.stop_mark,


gpr_write_valid_in => gpr_write_valid, gpr_write_valid_in => gpr_write_valid,
gpr_write_in => gpr_write, gpr_write_in => gpr_write,
gpr_bypassable => gpr_bypassable, gpr_bypassable => gpr_bypassable,


gpr_a_read_valid_in => gpr_a_read_valid, gpr_a_read_valid_in => gpr_a_read_valid,
gpr_a_read_in => gpr_a_read, gpr_a_read_in => gpr_a_read,


gpr_b_read_valid_in => gpr_b_read_valid, gpr_b_read_valid_in => gpr_b_read_valid,
gpr_b_read_in => gpr_b_read, gpr_b_read_in => gpr_b_read,


gpr_c_read_valid_in => gpr_c_read_valid, gpr_c_read_valid_in => gpr_c_read_valid,
gpr_c_read_in => gpr_c_read, gpr_c_read_in => gpr_c_read,


cr_read_in => d_in.decode.input_cr, cr_read_in => d_in.decode.input_cr,
cr_write_in => cr_write_valid, cr_write_in => cr_write_valid,


valid_out => control_valid_out, valid_out => control_valid_out,
stall_out => stall_out, stall_out => stall_out,
stopped_out => stopped_out, stopped_out => stopped_out,


gpr_bypass_a => gpr_a_bypass, gpr_bypass_a => gpr_a_bypass,
gpr_bypass_b => gpr_b_bypass, gpr_bypass_b => gpr_b_bypass,
gpr_bypass_c => gpr_c_bypass gpr_bypass_c => gpr_c_bypass
); );


decode2_0: process(clk) decode2_0: process(clk)
begin begin
if rising_edge(clk) then if rising_edge(clk) then
if rin.e.valid = '1' then if rin.e.valid = '1' then
report "execute " & to_hstring(rin.e.nia); report "execute " & to_hstring(rin.e.nia);
end if; end if;
r <= rin; r <= rin;
end if; end if;
end process; end process;


r_out.read1_reg <= gpr_or_spr_to_gspr(insn_ra(d_in.insn), d_in.ispr1); r_out.read1_reg <= gpr_or_spr_to_gspr(insn_ra(d_in.insn), d_in.ispr1);
r_out.read2_reg <= gpr_or_spr_to_gspr(insn_rb(d_in.insn), d_in.ispr2); r_out.read2_reg <= gpr_or_spr_to_gspr(insn_rb(d_in.insn), d_in.ispr2);
r_out.read3_reg <= insn_rs(d_in.insn); r_out.read3_reg <= insn_rs(d_in.insn);


c_out.read <= d_in.decode.input_cr; c_out.read <= d_in.decode.input_cr;


decode2_1: process(all) decode2_1: process(all)
variable v : reg_type; variable v : reg_type;
variable mul_a : std_ulogic_vector(63 downto 0); variable mul_a : std_ulogic_vector(63 downto 0);
variable mul_b : std_ulogic_vector(63 downto 0); variable mul_b : std_ulogic_vector(63 downto 0);
variable decoded_reg_a : decode_input_reg_t; variable decoded_reg_a : decode_input_reg_t;
variable decoded_reg_b : decode_input_reg_t; variable decoded_reg_b : decode_input_reg_t;
variable decoded_reg_c : decode_input_reg_t; variable decoded_reg_c : decode_input_reg_t;
variable decoded_reg_o : decode_output_reg_t; variable decoded_reg_o : decode_output_reg_t;
variable length : std_ulogic_vector(3 downto 0); variable length : std_ulogic_vector(3 downto 0);
begin begin
v := r; v := r;


v.e := Decode2ToExecute1Init; v.e := Decode2ToExecute1Init;


mul_a := (others => '0'); mul_a := (others => '0');
mul_b := (others => '0'); mul_b := (others => '0');


--v.e.input_cr := d_in.decode.input_cr; --v.e.input_cr := d_in.decode.input_cr;
--v.e.output_cr := d_in.decode.output_cr; --v.e.output_cr := d_in.decode.output_cr;
decoded_reg_a := decode_input_reg_a (d_in.decode.input_reg_a, d_in.insn, r_in.read1_data, d_in.ispr1, decoded_reg_a := decode_input_reg_a (d_in.decode.input_reg_a, d_in.insn, r_in.read1_data, d_in.ispr1,
d_in.nia); d_in.nia);
decoded_reg_b := decode_input_reg_b (d_in.decode.input_reg_b, d_in.insn, r_in.read2_data, d_in.ispr2); decoded_reg_b := decode_input_reg_b (d_in.decode.input_reg_b, d_in.insn, r_in.read2_data, d_in.ispr2);
decoded_reg_c := decode_input_reg_c (d_in.decode.input_reg_c, d_in.insn, r_in.read3_data); decoded_reg_c := decode_input_reg_c (d_in.decode.input_reg_c, d_in.insn, r_in.read3_data);
decoded_reg_o := decode_output_reg (d_in.decode.output_reg_a, d_in.insn, d_in.ispr1); decoded_reg_o := decode_output_reg (d_in.decode.output_reg_a, d_in.insn, d_in.ispr1);


r_out.read1_enable <= decoded_reg_a.reg_valid and d_in.valid; r_out.read1_enable <= decoded_reg_a.reg_valid and d_in.valid;
r_out.read2_enable <= decoded_reg_b.reg_valid and d_in.valid; r_out.read2_enable <= decoded_reg_b.reg_valid and d_in.valid;
r_out.read3_enable <= decoded_reg_c.reg_valid and d_in.valid; r_out.read3_enable <= decoded_reg_c.reg_valid and d_in.valid;


case d_in.decode.length is case d_in.decode.length is
when is1B => when is1B =>
length := "0001"; length := "0001";
when is2B => when is2B =>
length := "0010"; length := "0010";
when is4B => when is4B =>
length := "0100"; length := "0100";
when is8B => when is8B =>
length := "1000"; length := "1000";
when NONE => when NONE =>
length := "0000"; length := "0000";
end case; end case;


-- execute unit -- execute unit
v.e.nia := d_in.nia; v.e.nia := d_in.nia;
v.e.unit := d_in.decode.unit; v.e.unit := d_in.decode.unit;
v.e.insn_type := d_in.decode.insn_type; v.e.insn_type := d_in.decode.insn_type;
v.e.read_reg1 := decoded_reg_a.reg; v.e.read_reg1 := decoded_reg_a.reg;
v.e.read_data1 := decoded_reg_a.data; v.e.read_data1 := decoded_reg_a.data;
v.e.bypass_data1 := gpr_a_bypass; v.e.bypass_data1 := gpr_a_bypass;
v.e.read_reg2 := decoded_reg_b.reg; v.e.read_reg2 := decoded_reg_b.reg;
v.e.read_data2 := decoded_reg_b.data; v.e.read_data2 := decoded_reg_b.data;
v.e.bypass_data2 := gpr_b_bypass; v.e.bypass_data2 := gpr_b_bypass;
v.e.read_data3 := decoded_reg_c.data; v.e.read_data3 := decoded_reg_c.data;
v.e.bypass_data3 := gpr_c_bypass; v.e.bypass_data3 := gpr_c_bypass;
v.e.write_reg := decoded_reg_o.reg; v.e.write_reg := decoded_reg_o.reg;
v.e.rc := decode_rc(d_in.decode.rc, d_in.insn); v.e.rc := decode_rc(d_in.decode.rc, d_in.insn);
if not (d_in.decode.insn_type = OP_MUL_H32 or d_in.decode.insn_type = OP_MUL_H64) then if not (d_in.decode.insn_type = OP_MUL_H32 or d_in.decode.insn_type = OP_MUL_H64) then
v.e.oe := decode_oe(d_in.decode.rc, d_in.insn); v.e.oe := decode_oe(d_in.decode.rc, d_in.insn);
end if; end if;
v.e.cr := c_in.read_cr_data; v.e.cr := c_in.read_cr_data;
v.e.xerc := c_in.read_xerc_data; v.e.xerc := c_in.read_xerc_data;
v.e.invert_a := d_in.decode.invert_a; v.e.invert_a := d_in.decode.invert_a;
v.e.invert_out := d_in.decode.invert_out; v.e.invert_out := d_in.decode.invert_out;
v.e.input_carry := d_in.decode.input_carry; v.e.input_carry := d_in.decode.input_carry;
v.e.output_carry := d_in.decode.output_carry; v.e.output_carry := d_in.decode.output_carry;
v.e.is_32bit := d_in.decode.is_32bit; v.e.is_32bit := d_in.decode.is_32bit;
v.e.is_signed := d_in.decode.is_signed; v.e.is_signed := d_in.decode.is_signed;
if d_in.decode.lr = '1' then if d_in.decode.lr = '1' then
v.e.lr := insn_lk(d_in.insn); v.e.lr := insn_lk(d_in.insn);
end if; end if;
v.e.insn := d_in.insn; v.e.insn := d_in.insn;
v.e.data_len := length; v.e.data_len := length;
v.e.byte_reverse := d_in.decode.byte_reverse; v.e.byte_reverse := d_in.decode.byte_reverse;
v.e.sign_extend := d_in.decode.sign_extend; v.e.sign_extend := d_in.decode.sign_extend;
v.e.update := d_in.decode.update; v.e.update := d_in.decode.update;
v.e.reserve := d_in.decode.reserve; v.e.reserve := d_in.decode.reserve;


-- issue control -- issue control
control_valid_in <= d_in.valid; control_valid_in <= d_in.valid;
control_sgl_pipe <= d_in.decode.sgl_pipe; control_sgl_pipe <= d_in.decode.sgl_pipe;


gpr_write_valid <= decoded_reg_o.reg_valid; gpr_write_valid <= decoded_reg_o.reg_valid;
gpr_write <= decoded_reg_o.reg; gpr_write <= decoded_reg_o.reg;
gpr_bypassable <= '0'; gpr_bypassable <= '0';
if EX1_BYPASS and d_in.decode.unit = ALU then if EX1_BYPASS and d_in.decode.unit = ALU then
gpr_bypassable <= '1'; gpr_bypassable <= '1';
end if; end if;


gpr_a_read_valid <= decoded_reg_a.reg_valid; gpr_a_read_valid <= decoded_reg_a.reg_valid;
gpr_a_read <= decoded_reg_a.reg; gpr_a_read <= decoded_reg_a.reg;


gpr_b_read_valid <= decoded_reg_b.reg_valid; gpr_b_read_valid <= decoded_reg_b.reg_valid;
gpr_b_read <= decoded_reg_b.reg; gpr_b_read <= decoded_reg_b.reg;


gpr_c_read_valid <= decoded_reg_c.reg_valid; gpr_c_read_valid <= decoded_reg_c.reg_valid;
gpr_c_read <= gspr_to_gpr(decoded_reg_c.reg); gpr_c_read <= gspr_to_gpr(decoded_reg_c.reg);


cr_write_valid <= d_in.decode.output_cr or decode_rc(d_in.decode.rc, d_in.insn); cr_write_valid <= d_in.decode.output_cr or decode_rc(d_in.decode.rc, d_in.insn);


v.e.valid := control_valid_out; v.e.valid := control_valid_out;
if d_in.decode.unit = NONE then if d_in.decode.unit = NONE then
v.e.insn_type := OP_ILLEGAL; v.e.insn_type := OP_ILLEGAL;
end if; end if;


if rst = '1' then if rst = '1' then
v.e := Decode2ToExecute1Init; v.e := Decode2ToExecute1Init;
end if; end if;


-- Update registers -- Update registers
rin <= v; rin <= v;


-- Update outputs -- Update outputs
e_out <= r.e; e_out <= r.e;
end process; end process;
end architecture behaviour; end architecture behaviour;

Loading…
Cancel
Save