Finish off taking SPRs out of register file

With this, the register file now contains 64 entries, for 32 GPRs and
32 FPRs, rather than the 128 it had previously.  Several things get
simplified - decode1 no longer has to work out the ispr{1,2,o} values,
decode_input_reg_{a,b,c} no longer have the t = SPR case, etc.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
pull/379/head
Paul Mackerras 3 years ago
parent 337b104250
commit fdb3ef6874

@ -86,30 +86,19 @@ package common is
-- GPR indices in the register file (GPR only) -- GPR indices in the register file (GPR only)
subtype gpr_index_t is std_ulogic_vector(4 downto 0); subtype gpr_index_t is std_ulogic_vector(4 downto 0);


-- Extended GPR index (can hold an SPR or a FPR) -- Extended GPR index (can hold a GPR or a FPR)
subtype gspr_index_t is std_ulogic_vector(6 downto 0); subtype gspr_index_t is std_ulogic_vector(5 downto 0);


-- FPR indices -- FPR indices
subtype fpr_index_t is std_ulogic_vector(4 downto 0); subtype fpr_index_t is std_ulogic_vector(4 downto 0);


-- Some SPRs are stored in the register file, they use the magic -- FPRs are stored in the register file, using GSPR
-- GPR numbers above 31. -- numbers from 32 to 63.
-- --
-- The function fast_spr_num() returns the corresponding fast
-- pseudo-GPR number for a given SPR number. The result MSB
-- indicates if this is indeed a fast SPR. If clear, then
-- the SPR is not stored in the GPR file.
--
-- FPRs are also stored in the register file, using GSPR
-- numbers from 64 to 95.
--
function fast_spr_num(spr: spr_num_t) return gspr_index_t;


-- Indices conversion functions -- Indices conversion functions
function gspr_to_gpr(i: gspr_index_t) return gpr_index_t; function gspr_to_gpr(i: gspr_index_t) return gpr_index_t;
function gpr_to_gspr(i: gpr_index_t) return gspr_index_t; function gpr_to_gspr(i: gpr_index_t) return gspr_index_t;
function gpr_or_spr_to_gspr(g: gpr_index_t; s: gspr_index_t) return gspr_index_t;
function is_fast_spr(s: gspr_index_t) return std_ulogic;
function fpr_to_gspr(f: fpr_index_t) return gspr_index_t; function fpr_to_gspr(f: fpr_index_t) return gspr_index_t;


-- The XER is split: the common bits (CA, OV, SO, OV32 and CA32) are -- The XER is split: the common bits (CA, OV, SO, OV32 and CA32) are
@ -271,9 +260,6 @@ package common is
stop_mark : std_ulogic; stop_mark : std_ulogic;
nia: std_ulogic_vector(63 downto 0); nia: std_ulogic_vector(63 downto 0);
insn: std_ulogic_vector(31 downto 0); insn: std_ulogic_vector(31 downto 0);
ispr1: gspr_index_t; -- (G)SPR used for branch condition (CTR) or mfspr
ispr2: gspr_index_t; -- (G)SPR used for branch target (CTR, LR, TAR)
ispro: gspr_index_t; -- (G)SPR written with LR or CTR
decode: decode_rom_t; decode: decode_rom_t;
br_pred: std_ulogic; -- Branch was predicted to be taken br_pred: std_ulogic; -- Branch was predicted to be taken
big_endian: std_ulogic; big_endian: std_ulogic;
@ -282,7 +268,6 @@ package common is
end record; end record;
constant Decode1ToDecode2Init : Decode1ToDecode2Type := constant Decode1ToDecode2Init : Decode1ToDecode2Type :=
(valid => '0', stop_mark => '0', nia => (others => '0'), insn => (others => '0'), (valid => '0', stop_mark => '0', nia => (others => '0'), insn => (others => '0'),
ispr1 => (others => '0'), ispr2 => (others => '0'), ispro => (others => '0'),
decode => decode_rom_init, br_pred => '0', big_endian => '0', decode => decode_rom_init, br_pred => '0', big_endian => '0',
spr_info => spr_id_init, ram_spr => ram_spr_info_init); spr_info => spr_id_init, ram_spr => ram_spr_info_init);


@ -783,10 +768,6 @@ package body common is
begin begin
return to_integer(unsigned(insn(15 downto 11) & insn(20 downto 16))); return to_integer(unsigned(insn(15 downto 11) & insn(20 downto 16)));
end; end;
function fast_spr_num(spr: spr_num_t) return gspr_index_t is
begin
return "0000000";
end;


function gspr_to_gpr(i: gspr_index_t) return gpr_index_t is function gspr_to_gpr(i: gspr_index_t) return gpr_index_t is
begin begin
@ -795,26 +776,12 @@ package body common is


function gpr_to_gspr(i: gpr_index_t) return gspr_index_t is function gpr_to_gspr(i: gpr_index_t) return gspr_index_t is
begin begin
return "00" & i; return "0" & i;
end;

function gpr_or_spr_to_gspr(g: gpr_index_t; s: gspr_index_t) return gspr_index_t is
begin
if s(5) = '1' then
return s;
else
return gpr_to_gspr(g);
end if;
end;

function is_fast_spr(s: gspr_index_t) return std_ulogic is
begin
return s(5);
end; end;


function fpr_to_gspr(f: fpr_index_t) return gspr_index_t is function fpr_to_gspr(f: fpr_index_t) return gspr_index_t is
begin begin
return "10" & f; return "1" & f;
end; end;


function tag_match(tag1 : instr_tag_t; tag2 : instr_tag_t) return boolean is function tag_match(tag1 : instr_tag_t; tag2 : instr_tag_t) return boolean is

@ -177,7 +177,7 @@ architecture behaviour of decode1 is
-- addpcis -- addpcis
2#001# => (ALU, NONE, OP_ADD, CIA, CONST_DXHI4, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0', NONE), 2#001# => (ALU, NONE, OP_ADD, CIA, CONST_DXHI4, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0', NONE),
-- bclr, bcctr, bctar -- bclr, bcctr, bctar
2#100# => (ALU, NONE, OP_BCREG, NONE, NONE, NONE, SPR, '1', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '1', '0', NONE), 2#100# => (ALU, NONE, OP_BCREG, NONE, NONE, NONE, NONE, '1', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '1', '0', NONE),
-- isync -- isync
2#111# => (ALU, NONE, OP_ISYNC, NONE, NONE, NONE, NONE, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0', NONE), 2#111# => (ALU, NONE, OP_ISYNC, NONE, NONE, NONE, NONE, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0', NONE),
-- rfid -- rfid
@ -329,7 +329,7 @@ architecture behaviour of decode1 is
2#1001000000# => (ALU, NONE, OP_MCRXRX, NONE, NONE, NONE, NONE, '0', '1', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0', NONE), -- mcrxrx 2#1001000000# => (ALU, NONE, OP_MCRXRX, NONE, NONE, NONE, NONE, '0', '1', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0', NONE), -- mcrxrx
2#0000010011# => (ALU, NONE, OP_MFCR, NONE, NONE, NONE, RT, '1', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0', NONE), -- mfcr/mfocrf 2#0000010011# => (ALU, NONE, OP_MFCR, NONE, NONE, NONE, RT, '1', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0', NONE), -- mfcr/mfocrf
2#0001010011# => (ALU, NONE, OP_MFMSR, NONE, NONE, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '1', NONE), -- mfmsr 2#0001010011# => (ALU, NONE, OP_MFMSR, NONE, NONE, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '1', NONE), -- mfmsr
2#0101010011# => (ALU, NONE, OP_MFSPR, SPR, NONE, RS, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0', NONE), -- mfspr 2#0101010011# => (ALU, NONE, OP_MFSPR, NONE, NONE, RS, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0', NONE), -- mfspr
2#0100001001# => (DVU, NONE, OP_MOD, RA, RB, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0', NONE), -- modud 2#0100001001# => (DVU, NONE, OP_MOD, RA, RB, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0', NONE), -- modud
2#0100001011# => (DVU, NONE, OP_MOD, RA, RB, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '1', '0', NONE, '0', '0', NONE), -- moduw 2#0100001011# => (DVU, NONE, OP_MOD, RA, RB, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '1', '0', NONE, '0', '0', NONE), -- moduw
2#1100001001# => (DVU, NONE, OP_MOD, RA, RB, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '1', NONE, '0', '0', NONE), -- modsd 2#1100001001# => (DVU, NONE, OP_MOD, RA, RB, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '1', NONE, '0', '0', NONE), -- modsd
@ -337,7 +337,7 @@ architecture behaviour of decode1 is
2#0010010000# => (ALU, NONE, OP_MTCRF, NONE, NONE, RS, NONE, '0', '1', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0', NONE), -- mtcrf/mtocrf 2#0010010000# => (ALU, NONE, OP_MTCRF, NONE, NONE, RS, NONE, '0', '1', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0', NONE), -- mtcrf/mtocrf
2#0010010010# => (ALU, NONE, OP_MTMSRD, NONE, NONE, RS, NONE, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '1', '0', NONE, '0', '0', NONE), -- mtmsr 2#0010010010# => (ALU, NONE, OP_MTMSRD, NONE, NONE, RS, NONE, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '1', '0', NONE, '0', '0', NONE), -- mtmsr
2#0010110010# => (ALU, NONE, OP_MTMSRD, NONE, NONE, RS, NONE, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0', NONE), -- mtmsrd # ignore top bits and d 2#0010110010# => (ALU, NONE, OP_MTMSRD, NONE, NONE, RS, NONE, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0', NONE), -- mtmsrd # ignore top bits and d
2#0111010011# => (ALU, NONE, OP_MTSPR, NONE, NONE, RS, SPR, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0', NONE), -- mtspr 2#0111010011# => (ALU, NONE, OP_MTSPR, NONE, NONE, RS, NONE, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', NONE, '0', '0', NONE), -- mtspr
2#0001001001# => (ALU, NONE, OP_MUL_H64, RA, RB, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '1', RC, '0', '0', NONE), -- mulhd 2#0001001001# => (ALU, NONE, OP_MUL_H64, RA, RB, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '1', RC, '0', '0', NONE), -- mulhd
2#0000001001# => (ALU, NONE, OP_MUL_H64, RA, RB, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '0', NONE), -- mulhdu 2#0000001001# => (ALU, NONE, OP_MUL_H64, RA, RB, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '0', '0', RC, '0', '0', NONE), -- mulhdu
2#0001001011# => (ALU, NONE, OP_MUL_H32, RA, RB, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '1', '1', RC, '0', '0', NONE), -- mulhw 2#0001001011# => (ALU, NONE, OP_MUL_H32, RA, RB, NONE, RT, '0', '0', '0', '0', ZERO, '0', NONE, '0', '0', '0', '0', '1', '1', RC, '0', '0', NONE), -- mulhw
@ -670,10 +670,6 @@ begin
-- major opcode 31, lots of things -- major opcode 31, lots of things
v.decode := decode_op_31_array(to_integer(unsigned(f_in.insn(10 downto 1)))); v.decode := decode_op_31_array(to_integer(unsigned(f_in.insn(10 downto 1))));


-- Work out ispr1/ispro independent of v.decode since they seem to be critical path
v.ispr1 := fast_spr_num(sprn);
v.ispro := fast_spr_num(sprn);

if std_match(f_in.insn(10 downto 1), "01-1010011") then if std_match(f_in.insn(10 downto 1), "01-1010011") then
-- mfspr or mtspr -- mfspr or mtspr
-- Make mtspr to slow SPRs single issue -- Make mtspr to slow SPRs single issue

@ -82,21 +82,11 @@ architecture behaviour of decode2 is
constant decode_output_reg_init : decode_output_reg_t := ('0', (others => '0')); constant decode_output_reg_init : decode_output_reg_t := ('0', (others => '0'));


function decode_input_reg_a (t : input_reg_a_t; insn_in : std_ulogic_vector(31 downto 0); function decode_input_reg_a (t : input_reg_a_t; insn_in : std_ulogic_vector(31 downto 0);
ispr : gspr_index_t;
instr_addr : std_ulogic_vector(63 downto 0)) instr_addr : std_ulogic_vector(63 downto 0))
return decode_input_reg_t is return decode_input_reg_t is
begin begin
if t = RA or (t = RA_OR_ZERO and insn_ra(insn_in) /= "00000") then if t = RA or (t = RA_OR_ZERO and insn_ra(insn_in) /= "00000") then
return ('1', gpr_to_gspr(insn_ra(insn_in)), (others => '0')); return ('1', gpr_to_gspr(insn_ra(insn_in)), (others => '0'));
elsif t = SPR then
-- ISPR must be either a valid fast SPR number or all 0 for a slow SPR.
-- If it's all 0, we don't treat it as a dependency as slow SPRs
-- operations are single issue.
--
assert is_fast_spr(ispr) = '1' or ispr = "0000000"
report "Decode A says SPR but ISPR is invalid:" &
to_hstring(ispr) severity failure;
return (is_fast_spr(ispr), ispr, (others => '0'));
elsif t = CIA then elsif t = CIA then
return ('0', (others => '0'), instr_addr); return ('0', (others => '0'), instr_addr);
elsif HAS_FPU and t = FRA then elsif HAS_FPU and t = FRA then
@ -106,8 +96,8 @@ architecture behaviour of decode2 is
end if; end if;
end; end;


function decode_input_reg_b (t : input_reg_b_t; insn_in : std_ulogic_vector(31 downto 0); function decode_input_reg_b (t : input_reg_b_t; insn_in : std_ulogic_vector(31 downto 0))
ispr : gspr_index_t) return decode_input_reg_t is return decode_input_reg_t is
variable ret : decode_input_reg_t; variable ret : decode_input_reg_t;
begin begin
case t is case t is
@ -143,14 +133,6 @@ architecture behaviour of decode2 is
ret := ('0', (others => '0'), x"00000000000000" & "00" & insn_in(1) & insn_in(15 downto 11)); ret := ('0', (others => '0'), x"00000000000000" & "00" & insn_in(1) & insn_in(15 downto 11));
when CONST_SH32 => when CONST_SH32 =>
ret := ('0', (others => '0'), x"00000000000000" & "000" & insn_in(15 downto 11)); ret := ('0', (others => '0'), x"00000000000000" & "000" & insn_in(15 downto 11));
when SPR =>
-- ISPR must be either a valid fast SPR number or all 0 for a slow SPR.
-- If it's all 0, we don't treat it as a dependency as slow SPRs
-- operations are single issue.
assert is_fast_spr(ispr) = '1' or ispr = "0000000"
report "Decode B says SPR but ISPR is invalid:" &
to_hstring(ispr) severity failure;
ret := (is_fast_spr(ispr), ispr, (others => '0'));
when NONE => when NONE =>
ret := ('0', (others => '0'), (others => '0')); ret := ('0', (others => '0'), (others => '0'));
end case; end case;
@ -183,8 +165,8 @@ architecture behaviour of decode2 is
end case; end case;
end; end;


function decode_output_reg (t : output_reg_a_t; insn_in : std_ulogic_vector(31 downto 0); function decode_output_reg (t : output_reg_a_t; insn_in : std_ulogic_vector(31 downto 0))
ispr : gspr_index_t) return decode_output_reg_t is return decode_output_reg_t is
begin begin
case t is case t is
when RT => when RT =>
@ -195,18 +177,10 @@ architecture behaviour of decode2 is
if HAS_FPU then if HAS_FPU then
return ('1', fpr_to_gspr(insn_frt(insn_in))); return ('1', fpr_to_gspr(insn_frt(insn_in)));
else else
return ('0', "0000000"); return ('0', "000000");
end if; end if;
when SPR =>
-- ISPR must be either a valid fast SPR number or all 0 for a slow SPR.
-- If it's all 0, we don't treat it as a dependency as slow SPRs
-- operations are single issue.
assert is_fast_spr(ispr) = '1' or ispr = "0000000"
report "Decode B says SPR but ISPR is invalid:" &
to_hstring(ispr) severity failure;
return (is_fast_spr(ispr), ispr);
when NONE => when NONE =>
return ('0', "0000000"); return ('0', "000000");
end case; end case;
end; end;


@ -386,10 +360,10 @@ begin
decoded_reg_c <= decode_input_reg_init; decoded_reg_c <= decode_input_reg_init;
decoded_reg_o <= decode_output_reg_init; decoded_reg_o <= decode_output_reg_init;
if d_in.valid = '1' then if d_in.valid = '1' then
decoded_reg_a <= decode_input_reg_a (d_in.decode.input_reg_a, d_in.insn, d_in.ispr1, d_in.nia); decoded_reg_a <= decode_input_reg_a (d_in.decode.input_reg_a, d_in.insn, d_in.nia);
decoded_reg_b <= decode_input_reg_b (d_in.decode.input_reg_b, d_in.insn, d_in.ispr2); decoded_reg_b <= decode_input_reg_b (d_in.decode.input_reg_b, d_in.insn);
decoded_reg_c <= decode_input_reg_c (d_in.decode.input_reg_c, d_in.insn); decoded_reg_c <= decode_input_reg_c (d_in.decode.input_reg_c, d_in.insn);
decoded_reg_o <= decode_output_reg (d_in.decode.output_reg_a, d_in.insn, d_in.ispro); decoded_reg_o <= decode_output_reg (d_in.decode.output_reg_a, d_in.insn);
end if; end if;


r_out.read1_enable <= decoded_reg_a.reg_valid; r_out.read1_enable <= decoded_reg_a.reg_valid;
@ -565,9 +539,7 @@ begin
v.e.result_sel := result_select(op); v.e.result_sel := result_select(op);
v.e.sub_select := subresult_select(op); v.e.sub_select := subresult_select(op);
if op = OP_MFSPR then if op = OP_MFSPR then
if is_fast_spr(d_in.ispr1) = '1' then if d_in.ram_spr.valid = '1' then
v.e.result_sel := "000"; -- adder_result, effectively a_in
elsif d_in.ram_spr.valid = '1' then
v.e.result_sel := "101"; -- ramspr_result v.e.result_sel := "101"; -- ramspr_result
elsif d_in.spr_info.valid = '0' then elsif d_in.spr_info.valid = '0' then
-- Privileged mfspr to invalid/unimplemented SPR numbers -- Privileged mfspr to invalid/unimplemented SPR numbers

@ -22,11 +22,11 @@ package decode_types is
OP_BCD, OP_ADDG6S, OP_BCD, OP_ADDG6S,
OP_FETCH_FAILED OP_FETCH_FAILED
); );
type input_reg_a_t is (NONE, RA, RA_OR_ZERO, SPR, CIA, FRA); type input_reg_a_t is (NONE, RA, RA_OR_ZERO, CIA, FRA);
type input_reg_b_t is (NONE, RB, CONST_UI, CONST_SI, CONST_SI_HI, CONST_UI_HI, CONST_LI, CONST_BD, type input_reg_b_t is (NONE, RB, CONST_UI, CONST_SI, CONST_SI_HI, CONST_UI_HI, CONST_LI, CONST_BD,
CONST_DXHI4, CONST_DS, CONST_DQ, CONST_M1, CONST_SH, CONST_SH32, SPR, FRB); CONST_DXHI4, CONST_DS, CONST_DQ, CONST_M1, CONST_SH, CONST_SH32, FRB);
type input_reg_c_t is (NONE, RS, RCR, FRC, FRS); type input_reg_c_t is (NONE, RS, RCR, FRC, FRS);
type output_reg_a_t is (NONE, RT, RA, SPR, FRT); type output_reg_a_t is (NONE, RT, RA, FRT);
type rc_t is (NONE, ONE, RC); type rc_t is (NONE, ONE, RC);
type carry_in_t is (ZERO, CA, OV, ONE); type carry_in_t is (ZERO, CA, OV, ONE);



@ -1135,7 +1135,7 @@ begin
when OP_DARN => when OP_DARN =>
when OP_MFMSR => when OP_MFMSR =>
when OP_MFSPR => when OP_MFSPR =>
if is_fast_spr(e_in.read_reg1) = '1' or e_in.spr_is_ram = '1' then if e_in.spr_is_ram = '1' then
if e_in.valid = '1' then if e_in.valid = '1' then
report "MFSPR to SPR " & integer'image(decode_spr_num(e_in.insn)) & report "MFSPR to SPR " & integer'image(decode_spr_num(e_in.insn)) &
"=" & to_hstring(alu_result); "=" & to_hstring(alu_result);
@ -1216,8 +1216,7 @@ begin
when others => when others =>
end case; end case;
end if; end if;
if e_in.spr_select.valid = '0' and is_fast_spr(e_in.write_reg) = '0' and if e_in.spr_select.valid = '0' and e_in.spr_is_ram = '0' then
e_in.spr_is_ram = '0' then
-- mtspr to unimplemented SPRs should be a nop in -- mtspr to unimplemented SPRs should be a nop in
-- supervisor mode and a program interrupt for user mode -- supervisor mode and a program interrupt for user mode
if ex1.msr(MSR_PR) = '1' then if ex1.msr(MSR_PR) = '1' then

@ -97,7 +97,7 @@ architecture behave of loadstore1 is
mode_32bit => '0', addr => (others => '0'), mode_32bit => '0', addr => (others => '0'),
byte_sel => x"00", second_bytes => x"00", byte_sel => x"00", second_bytes => x"00",
store_data => (others => '0'), instr_tag => instr_tag_init, store_data => (others => '0'), instr_tag => instr_tag_init,
write_reg => 7x"00", length => x"0", write_reg => 6x"00", length => x"0",
elt_length => x"0", byte_reverse => '0', brev_mask => "000", elt_length => x"0", byte_reverse => '0', brev_mask => "000",
sign_extend => '0', update => '0', sign_extend => '0', update => '0',
xerc => xerc_init, reserve => '0', xerc => xerc_init, reserve => '0',

@ -167,7 +167,7 @@ begin
end if; end if;
tmp(7 downto 0) := rs(7 downto 0); tmp(7 downto 0) := rs(7 downto 0);
when others => when others =>
-- e.g. OP_MTSPR -- e.g. OP_MFSPR
tmp := rs; tmp := rs;
end case; end case;



@ -34,7 +34,7 @@ entity register_file is
end entity register_file; end entity register_file;


architecture behaviour of register_file is architecture behaviour of register_file is
type regfile is array(0 to 127) of std_ulogic_vector(63 downto 0); type regfile is array(0 to 63) of std_ulogic_vector(63 downto 0);
signal registers : regfile := (others => (others => '0')); signal registers : regfile := (others => (others => '0'));
signal rd_port_b : std_ulogic_vector(63 downto 0); signal rd_port_b : std_ulogic_vector(63 downto 0);
signal dbg_data : std_ulogic_vector(63 downto 0); signal dbg_data : std_ulogic_vector(63 downto 0);
@ -47,15 +47,11 @@ begin
if rising_edge(clk) then if rising_edge(clk) then
if w_in.write_enable = '1' then if w_in.write_enable = '1' then
w_addr := w_in.write_reg; w_addr := w_in.write_reg;
if HAS_FPU and w_addr(6) = '1' then if HAS_FPU and w_addr(5) = '1' then
report "Writing FPR " & to_hstring(w_addr(4 downto 0)) & " " & to_hstring(w_in.write_data); report "Writing FPR " & to_hstring(w_addr(4 downto 0)) & " " & to_hstring(w_in.write_data);
else else
w_addr(6) := '0'; w_addr(5) := '0';
if w_addr(5) = '0' then
report "Writing GPR " & to_hstring(w_addr) & " " & to_hstring(w_in.write_data); report "Writing GPR " & to_hstring(w_addr) & " " & to_hstring(w_in.write_data);
else
report "Writing GSPR " & to_hstring(w_addr) & " " & to_hstring(w_in.write_data);
end if;
end if; end if;
assert not(is_x(w_in.write_data)) and not(is_x(w_in.write_reg)) severity failure; assert not(is_x(w_in.write_data)) and not(is_x(w_in.write_reg)) severity failure;
registers(to_integer(unsigned(w_addr))) <= w_in.write_data; registers(to_integer(unsigned(w_addr))) <= w_in.write_data;
@ -73,11 +69,11 @@ begin
c_addr := d_in.read3_reg; c_addr := d_in.read3_reg;
w_addr := w_in.write_reg; w_addr := w_in.write_reg;
if not HAS_FPU then if not HAS_FPU then
-- Make it obvious that we only want 64 GSPRs for a no-FPU implementation -- Make it obvious that we only want 32 GSPRs for a no-FPU implementation
a_addr(6) := '0'; a_addr(5) := '0';
b_addr(6) := '0'; b_addr(5) := '0';
c_addr(6) := '0'; c_addr(5) := '0';
w_addr(6) := '0'; w_addr(5) := '0';
end if; end if;
if d_in.read1_enable = '1' then if d_in.read1_enable = '1' then
report "Reading GPR " & to_hstring(a_addr) & " " & to_hstring(registers(to_integer(unsigned(a_addr)))); report "Reading GPR " & to_hstring(a_addr) & " " & to_hstring(registers(to_integer(unsigned(a_addr))));
@ -93,7 +89,7 @@ begin
if d_in.read2_enable = '0' and dbg_gpr_req = '1' and dbg_ack = '0' then if d_in.read2_enable = '0' and dbg_gpr_req = '1' and dbg_ack = '0' then
b_addr := dbg_gpr_addr; b_addr := dbg_gpr_addr;
if not HAS_FPU then if not HAS_FPU then
b_addr(6) := '0'; b_addr(5) := '0';
end if; end if;
end if; end if;
rd_port_b <= registers(to_integer(unsigned(b_addr))); rd_port_b <= registers(to_integer(unsigned(b_addr)));
@ -150,7 +146,7 @@ begin
if rising_edge(clk) then if rising_edge(clk) then
log_data <= w_in.write_data & log_data <= w_in.write_data &
w_in.write_enable & w_in.write_enable &
w_in.write_reg; '0' & w_in.write_reg;
end if; end if;
end process; end process;
log_out <= log_data; log_out <= log_data;

Loading…
Cancel
Save