A tiny Open POWER ISA softcore written in VHDL 2008
You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
Go to file
Benjamin Herrenschmidt d415e5544a fetch/icache: Fit icache in BRAM
The goal is to have the icache fit in BRAM by latching the output
into a register. In order to avoid timing issues , we need to give
the BRAM a full cycle on reads, and thus we souce the BRAM address
directly from fetch1 latched NIA.

(Note: This will be problematic if/when we want to hash the address,
we'll probably be better off having fetch1 latch a fully hashed address
along with the normal one, so the icache can use the former to address
the BRAM and pass the latter along)

One difficulty is that we cannot really stall the icache without adding
more combo logic that would break the "one full cycle" BRAM model. This
means that on stalls from decode, by the time we stall fetch1, it has
already gone to the next address, which the icache is already latching.

We work around this by having a "stash" buffer in fetch2 that will stash
away the icache output on a stall, and override the output of the icache
with the content of the stash buffer when unstalling.

This requires a rewrite of the stop/step debug logic as well. We now
do most of the hard work in fetch1 which makes more sense.

Note: Vivado is still not inferring an built-in output register for the
BRAMs. I don't want to add another cycle... I don't fully understand why
it wouldn't be able to treat current_row as such but clearly it won't. At
least the timing seems good enough now for 100Mhz, possibly more.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
5 years ago
fpga
hello_world
scripts
sim-unisim
tests
.gitignore
.travis.yml
LICENSE
Makefile Add a rotate/mask/shift unit and use it in execute1 5 years ago
README.md
common.vhdl fetch/icache: Fit icache in BRAM 5 years ago
core.vhdl fetch/icache: Fit icache in BRAM 5 years ago
core_debug.vhdl fetch/icache: Fit icache in BRAM 5 years ago
core_tb.vhdl
cr_file.vhdl
crhelpers.vhdl
decode1.vhdl Add a rotate/mask/shift unit and use it in execute1 5 years ago
decode2.vhdl Add a rotate/mask/shift unit and use it in execute1 5 years ago
decode_types.vhdl Add a rotate/mask/shift unit and use it in execute1 5 years ago
divider.vhdl
divider_tb.vhdl
dmi_dtm_dummy.vhdl
dmi_dtm_tb.vhdl
dmi_dtm_xilinx.vhdl
execute1.vhdl Add a rotate/mask/shift unit and use it in execute1 5 years ago
execute2.vhdl
fetch1.vhdl fetch/icache: Fit icache in BRAM 5 years ago
fetch2.vhdl fetch/icache: Fit icache in BRAM 5 years ago
glibc_random.vhdl
glibc_random_helpers.vhdl
helpers.vhdl
icache.vhdl fetch/icache: Fit icache in BRAM 5 years ago
icache_tb.vhdl fetch/icache: Fit icache in BRAM 5 years ago
insn_helpers.vhdl
loadstore1.vhdl
loadstore2.vhdl
microwatt.core Add a rotate/mask/shift unit and use it in execute1 5 years ago
multiply.vhdl
multiply_tb.vhdl
ppc_fx_insns.vhdl
register_file.vhdl
rotator.vhdl Add a rotate/mask/shift unit and use it in execute1 5 years ago
rotator_tb.vhdl Add a rotate/mask/shift unit and use it in execute1 5 years ago
sim_console.vhdl
sim_console_c.c
sim_jtag.vhdl
sim_jtag_socket.vhdl
sim_jtag_socket_c.c
sim_uart.vhdl
simple_ram_behavioural.vhdl
simple_ram_behavioural_helpers.vhdl
simple_ram_behavioural_helpers_c.c
simple_ram_behavioural_tb.bin
simple_ram_behavioural_tb.vhdl
soc.vhdl
wishbone_arbiter.vhdl
wishbone_debug_master.vhdl
wishbone_types.vhdl
writeback.vhdl

README.md

Microwatt

A tiny Open POWER ISA softcore written in VHDL 2008. It aims to be simple and easy to understand.

Simulation using ghdl

MicroPython running on Microwatt

  • Build micropython. If you aren't building on a ppc64le box you will need a cross compiler. If it isn't available on your distro grab the powerpc64le-power8 toolchain from https://toolchains.bootlin.com
git clone https://github.com/mikey/micropython
cd micropython
git checkout powerpc
cd ports/powerpc
make -j$(nproc)
cd ../../../
  • Microwatt uses ghdl for simulation. Either install this from your distro or build it. Next build microwatt:
git clone https://github.com/antonblanchard/microwatt
cd microwatt
make
  • Link in the micropython image:
ln -s ../micropython/ports/powerpc/build/firmware.bin simple_ram_behavioural.bin
  • Now run microwatt, sending debug output to /dev/null:
./core_tb > /dev/null

Synthesis on Xilinx FPGAs using Vivado

  • Install Vivado (I'm using the free 2019.1 webpack edition).

  • Setup Vivado paths:

source /opt/Xilinx/Vivado/2019.1/settings64.sh
  • Install FuseSoC:
pip3 install --user -U fusesoc
  • Create a working directory and point FuseSoC at microwatt:
mkdir microwatt-fusesoc
cd microwatt-fusesoc
fusesoc library add microwatt /path/to/microwatt/
  • Build using FuseSoC. For hello world (Replace nexys_video with your FPGA board):
fusesoc run --target=nexys_video microwatt --memory_size=8192 --ram_init_file=/path/to/microwatt/fpga/hello_world.hex
  • To build micropython (currently requires 1MB of BRAM eg an Artix-7 A200):
fusesoc run --target=nexys_video microwatt

Testing

  • A simple test suite containing random execution test cases and a couple of micropython test cases can be run with:
make -j$(nproc) check

Issues

This is functional, but very simple. We still have quite a lot to do:

  • There are a few instructions still to be implemented
  • Need to add caches and bypassing (in progress)
  • Need to add supervisor state (in progress)