|
|
|
library ieee;
|
|
|
|
use ieee.std_logic_1164.all;
|
|
|
|
use ieee.numeric_std.all;
|
|
|
|
|
|
|
|
library work;
|
|
|
|
use work.common.all;
|
|
|
|
|
|
|
|
-- Radix MMU
|
|
|
|
-- Supports 4-level trees as in arch 3.0B, but not the two-step translation for
|
|
|
|
-- guests under a hypervisor (i.e. there is no gRA -> hRA translation).
|
|
|
|
|
|
|
|
entity mmu is
|
|
|
|
port (
|
|
|
|
clk : in std_ulogic;
|
|
|
|
rst : in std_ulogic;
|
|
|
|
|
|
|
|
l_in : in Loadstore1ToMmuType;
|
|
|
|
l_out : out MmuToLoadstore1Type;
|
|
|
|
|
|
|
|
d_out : out MmuToDcacheType;
|
Add TLB to icache
This adds a direct-mapped TLB to the icache, with 64 entries by default.
Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along
with redirects to indicate whether instruction addresses should be
translated through the TLB, and fetch1 sends that on to icache.
Similarly a "priv_mode" signal is sent to indicate the privilege
mode for instruction fetches. This means that changes to MSR[IR]
or MSR[PR] don't take effect until the next redirect, meaning an
isync, rfid, branch, etc.
The icache uses a hash of the effective address (i.e. next instruction
address) to index the TLB. The hash is an XOR of three fields of the
address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and
24--29 of the address. TLB invalidations simply invalidate the
indexed TLB entry without checking the contents.
If the icache detects a TLB miss with virt_mode=1, it will send a
fetch_failed indication through fetch2 to decode1, which will turn it
into a special OP_FETCH_FAILED opcode with unit=LDST. That will get
sent down to loadstore1 which will currently just raise a Instruction
Storage Interrupt (0x400) exception.
One bit in the PTE obtained from the TLB is used to check whether an
instruction access is allowed -- the privilege bit (bit 3). If bit 3
is 1 and priv_mode=0, then a fetch_failed indication is sent down to
fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs
with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put
into the iTLB since such PTEs would not allow execution by any
context.
Tlbie operations get sent from mmu to icache over a new connection.
Unfortunately the privileged instruction tests are broken for now.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
d_in : in DcacheToMmuType;
|
|
|
|
|
|
|
|
i_out : out MmuToIcacheType
|
|
|
|
);
|
|
|
|
end mmu;
|
|
|
|
|
|
|
|
architecture behave of mmu is
|
|
|
|
|
|
|
|
type state_t is (IDLE,
|
|
|
|
DO_TLBIE,
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
TLB_WAIT,
|
|
|
|
PROC_TBL_READ,
|
|
|
|
PROC_TBL_WAIT,
|
|
|
|
SEGMENT_CHECK,
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
RADIX_LOOKUP,
|
|
|
|
RADIX_READ_WAIT,
|
|
|
|
RADIX_LOAD_TLB,
|
|
|
|
RADIX_FINISH
|
|
|
|
);
|
|
|
|
|
|
|
|
type reg_stage_t is record
|
|
|
|
-- latched request from loadstore1
|
|
|
|
valid : std_ulogic;
|
|
|
|
iside : std_ulogic;
|
|
|
|
store : std_ulogic;
|
|
|
|
priv : std_ulogic;
|
|
|
|
addr : std_ulogic_vector(63 downto 0);
|
|
|
|
inval_all : std_ulogic;
|
|
|
|
-- config SPRs
|
|
|
|
prtbl : std_ulogic_vector(63 downto 0);
|
|
|
|
pid : std_ulogic_vector(31 downto 0);
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
-- internal state
|
|
|
|
state : state_t;
|
|
|
|
done : std_ulogic;
|
|
|
|
err : std_ulogic;
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
pgtbl0 : std_ulogic_vector(63 downto 0);
|
|
|
|
pt0_valid : std_ulogic;
|
|
|
|
pgtbl3 : std_ulogic_vector(63 downto 0);
|
|
|
|
pt3_valid : std_ulogic;
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
shift : unsigned(5 downto 0);
|
|
|
|
mask_size : unsigned(4 downto 0);
|
|
|
|
pgbase : std_ulogic_vector(55 downto 0);
|
|
|
|
pde : std_ulogic_vector(63 downto 0);
|
|
|
|
invalid : std_ulogic;
|
|
|
|
badtree : std_ulogic;
|
|
|
|
segerror : std_ulogic;
|
|
|
|
perm_err : std_ulogic;
|
|
|
|
rc_error : std_ulogic;
|
|
|
|
end record;
|
|
|
|
|
|
|
|
signal r, rin : reg_stage_t;
|
|
|
|
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
signal addrsh : std_ulogic_vector(15 downto 0);
|
|
|
|
signal mask : std_ulogic_vector(15 downto 0);
|
|
|
|
signal finalmask : std_ulogic_vector(43 downto 0);
|
|
|
|
|
|
|
|
begin
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
-- Multiplex internal SPR values back to loadstore1, selected
|
|
|
|
-- by l_in.sprn.
|
|
|
|
l_out.sprval <= r.prtbl when l_in.sprn(9) = '1' else x"00000000" & r.pid;
|
|
|
|
|
|
|
|
mmu_0: process(clk)
|
|
|
|
begin
|
|
|
|
if rising_edge(clk) then
|
|
|
|
if rst = '1' then
|
|
|
|
r.state <= IDLE;
|
|
|
|
r.valid <= '0';
|
|
|
|
r.pt0_valid <= '0';
|
|
|
|
r.pt3_valid <= '0';
|
|
|
|
r.prtbl <= (others => '0');
|
|
|
|
else
|
|
|
|
if rin.valid = '1' then
|
|
|
|
report "MMU got tlb miss for " & to_hstring(rin.addr);
|
|
|
|
end if;
|
|
|
|
if l_out.done = '1' then
|
|
|
|
report "MMU completing op without error";
|
|
|
|
end if;
|
|
|
|
if l_out.err = '1' then
|
|
|
|
report "MMU completing op with err invalid=" & std_ulogic'image(l_out.invalid) &
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
" badtree=" & std_ulogic'image(l_out.badtree);
|
|
|
|
end if;
|
|
|
|
if rin.state = RADIX_LOOKUP then
|
|
|
|
report "radix lookup shift=" & integer'image(to_integer(rin.shift)) &
|
|
|
|
" msize=" & integer'image(to_integer(rin.mask_size));
|
|
|
|
end if;
|
|
|
|
if r.state = RADIX_LOOKUP then
|
|
|
|
report "send load addr=" & to_hstring(d_out.addr) &
|
|
|
|
" addrsh=" & to_hstring(addrsh) & " mask=" & to_hstring(mask);
|
|
|
|
end if;
|
|
|
|
r <= rin;
|
|
|
|
end if;
|
|
|
|
end if;
|
|
|
|
end process;
|
|
|
|
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
-- Shift address bits 61--12 right by 0--47 bits and
|
|
|
|
-- supply the least significant 16 bits of the result.
|
|
|
|
addrshifter: process(all)
|
|
|
|
variable sh1 : std_ulogic_vector(30 downto 0);
|
|
|
|
variable sh2 : std_ulogic_vector(18 downto 0);
|
|
|
|
variable result : std_ulogic_vector(15 downto 0);
|
|
|
|
begin
|
|
|
|
case r.shift(5 downto 4) is
|
|
|
|
when "00" =>
|
|
|
|
sh1 := r.addr(42 downto 12);
|
|
|
|
when "01" =>
|
|
|
|
sh1 := r.addr(58 downto 28);
|
|
|
|
when others =>
|
|
|
|
sh1 := "0000000000000" & r.addr(61 downto 44);
|
|
|
|
end case;
|
|
|
|
case r.shift(3 downto 2) is
|
|
|
|
when "00" =>
|
|
|
|
sh2 := sh1(18 downto 0);
|
|
|
|
when "01" =>
|
|
|
|
sh2 := sh1(22 downto 4);
|
|
|
|
when "10" =>
|
|
|
|
sh2 := sh1(26 downto 8);
|
|
|
|
when others =>
|
|
|
|
sh2 := sh1(30 downto 12);
|
|
|
|
end case;
|
|
|
|
case r.shift(1 downto 0) is
|
|
|
|
when "00" =>
|
|
|
|
result := sh2(15 downto 0);
|
|
|
|
when "01" =>
|
|
|
|
result := sh2(16 downto 1);
|
|
|
|
when "10" =>
|
|
|
|
result := sh2(17 downto 2);
|
|
|
|
when others =>
|
|
|
|
result := sh2(18 downto 3);
|
|
|
|
end case;
|
|
|
|
addrsh <= result;
|
|
|
|
end process;
|
|
|
|
|
|
|
|
-- generate mask for extracting address fields for PTE address generation
|
|
|
|
addrmaskgen: process(all)
|
|
|
|
variable m : std_ulogic_vector(15 downto 0);
|
|
|
|
begin
|
|
|
|
-- mask_count has to be >= 5
|
|
|
|
m := x"001f";
|
|
|
|
for i in 5 to 15 loop
|
|
|
|
if i < to_integer(r.mask_size) then
|
|
|
|
m(i) := '1';
|
|
|
|
end if;
|
|
|
|
end loop;
|
|
|
|
mask <= m;
|
|
|
|
end process;
|
|
|
|
|
|
|
|
-- generate mask for extracting address bits to go in TLB entry
|
|
|
|
-- in order to support pages > 4kB
|
|
|
|
finalmaskgen: process(all)
|
|
|
|
variable m : std_ulogic_vector(43 downto 0);
|
|
|
|
begin
|
|
|
|
m := (others => '0');
|
|
|
|
for i in 0 to 43 loop
|
|
|
|
if i < to_integer(r.shift) then
|
|
|
|
m(i) := '1';
|
|
|
|
end if;
|
|
|
|
end loop;
|
|
|
|
finalmask <= m;
|
|
|
|
end process;
|
|
|
|
|
|
|
|
mmu_1: process(all)
|
|
|
|
variable v : reg_stage_t;
|
|
|
|
variable dcreq : std_ulogic;
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
variable tlb_load : std_ulogic;
|
|
|
|
variable itlb_load : std_ulogic;
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
variable tlbie_req : std_ulogic;
|
|
|
|
variable prtbl_rd : std_ulogic;
|
|
|
|
variable pt_valid : std_ulogic;
|
|
|
|
variable effpid : std_ulogic_vector(31 downto 0);
|
|
|
|
variable prtable_addr : std_ulogic_vector(63 downto 0);
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
variable rts : unsigned(5 downto 0);
|
|
|
|
variable mbits : unsigned(5 downto 0);
|
|
|
|
variable pgtable_addr : std_ulogic_vector(63 downto 0);
|
|
|
|
variable pte : std_ulogic_vector(63 downto 0);
|
|
|
|
variable tlb_data : std_ulogic_vector(63 downto 0);
|
|
|
|
variable nonzero : std_ulogic;
|
|
|
|
variable pgtbl : std_ulogic_vector(63 downto 0);
|
|
|
|
variable perm_ok : std_ulogic;
|
|
|
|
variable rc_ok : std_ulogic;
|
|
|
|
variable addr : std_ulogic_vector(63 downto 0);
|
|
|
|
variable data : std_ulogic_vector(63 downto 0);
|
|
|
|
begin
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
v := r;
|
|
|
|
v.valid := '0';
|
|
|
|
dcreq := '0';
|
|
|
|
v.done := '0';
|
|
|
|
v.err := '0';
|
|
|
|
v.invalid := '0';
|
|
|
|
v.badtree := '0';
|
|
|
|
v.segerror := '0';
|
|
|
|
v.perm_err := '0';
|
|
|
|
v.rc_error := '0';
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
tlb_load := '0';
|
|
|
|
itlb_load := '0';
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
tlbie_req := '0';
|
|
|
|
v.inval_all := '0';
|
|
|
|
prtbl_rd := '0';
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
|
|
|
|
-- Radix tree data structures in memory are big-endian,
|
|
|
|
-- so we need to byte-swap them
|
|
|
|
for i in 0 to 7 loop
|
|
|
|
data(i * 8 + 7 downto i * 8) := d_in.data((7 - i) * 8 + 7 downto (7 - i) * 8);
|
|
|
|
end loop;
|
|
|
|
|
|
|
|
case r.state is
|
|
|
|
when IDLE =>
|
|
|
|
if l_in.addr(63) = '0' then
|
|
|
|
pgtbl := r.pgtbl0;
|
|
|
|
pt_valid := r.pt0_valid;
|
|
|
|
else
|
|
|
|
pgtbl := r.pgtbl3;
|
|
|
|
pt_valid := r.pt3_valid;
|
|
|
|
end if;
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
-- rts == radix tree size, # address bits being translated
|
|
|
|
rts := unsigned('0' & pgtbl(62 downto 61) & pgtbl(7 downto 5));
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
-- mbits == # address bits to index top level of tree
|
|
|
|
mbits := unsigned('0' & pgtbl(4 downto 0));
|
|
|
|
-- set v.shift to rts so that we can use finalmask for the segment check
|
|
|
|
v.shift := rts;
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
v.mask_size := mbits(4 downto 0);
|
|
|
|
v.pgbase := pgtbl(55 downto 8) & x"00";
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
|
|
|
|
if l_in.valid = '1' then
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
v.addr := l_in.addr;
|
|
|
|
v.iside := l_in.iside;
|
|
|
|
v.store := not (l_in.load or l_in.iside);
|
|
|
|
v.priv := l_in.priv;
|
|
|
|
if l_in.tlbie = '1' then
|
|
|
|
-- Invalidate all iTLB/dTLB entries for tlbie with
|
|
|
|
-- RB[IS] != 0 or RB[AP] != 0, or for slbia
|
|
|
|
v.inval_all := l_in.slbia or l_in.addr(11) or l_in.addr(10) or
|
|
|
|
l_in.addr(7) or l_in.addr(6) or l_in.addr(5);
|
|
|
|
-- The RIC field of the tlbie instruction comes across on the
|
|
|
|
-- sprn bus as bits 2--3. RIC=2 flushes process table caches.
|
|
|
|
if l_in.sprn(3) = '1' then
|
|
|
|
v.pt0_valid := '0';
|
|
|
|
v.pt3_valid := '0';
|
|
|
|
end if;
|
|
|
|
v.state := DO_TLBIE;
|
|
|
|
else
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
v.valid := '1';
|
|
|
|
if pt_valid = '0' then
|
|
|
|
-- need to fetch process table entry
|
|
|
|
-- set v.shift so we can use finalmask for generating
|
|
|
|
-- the process table entry address
|
|
|
|
v.shift := unsigned('0' & r.prtbl(4 downto 0));
|
|
|
|
v.state := PROC_TBL_READ;
|
|
|
|
elsif mbits = 0 then
|
|
|
|
-- Use RPDS = 0 to disable radix tree walks
|
|
|
|
v.state := RADIX_FINISH;
|
|
|
|
v.invalid := '1';
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
else
|
|
|
|
v.state := SEGMENT_CHECK;
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
end if;
|
|
|
|
end if;
|
|
|
|
end if;
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
if l_in.mtspr = '1' then
|
|
|
|
-- Move to PID needs to invalidate L1 TLBs and cached
|
|
|
|
-- pgtbl0 value. Move to PRTBL does that plus
|
|
|
|
-- invalidating the cached pgtbl3 value as well.
|
|
|
|
if l_in.sprn(9) = '0' then
|
|
|
|
v.pid := l_in.rs(31 downto 0);
|
|
|
|
else
|
|
|
|
v.prtbl := l_in.rs;
|
|
|
|
v.pt3_valid := '0';
|
|
|
|
end if;
|
|
|
|
v.pt0_valid := '0';
|
|
|
|
v.inval_all := '1';
|
|
|
|
v.state := DO_TLBIE;
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
end if;
|
|
|
|
|
|
|
|
when DO_TLBIE =>
|
|
|
|
dcreq := '1';
|
|
|
|
tlbie_req := '1';
|
|
|
|
v.state := TLB_WAIT;
|
|
|
|
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
when TLB_WAIT =>
|
|
|
|
if d_in.done = '1' then
|
|
|
|
v.state := RADIX_FINISH;
|
|
|
|
end if;
|
|
|
|
|
|
|
|
when PROC_TBL_READ =>
|
|
|
|
dcreq := '1';
|
|
|
|
prtbl_rd := '1';
|
|
|
|
v.state := PROC_TBL_WAIT;
|
|
|
|
|
|
|
|
when PROC_TBL_WAIT =>
|
|
|
|
if d_in.done = '1' then
|
|
|
|
if r.addr(63) = '1' then
|
|
|
|
v.pgtbl3 := data;
|
|
|
|
v.pt3_valid := '1';
|
|
|
|
else
|
|
|
|
v.pgtbl0 := data;
|
|
|
|
v.pt0_valid := '1';
|
|
|
|
end if;
|
|
|
|
-- rts == radix tree size, # address bits being translated
|
|
|
|
rts := unsigned('0' & data(62 downto 61) & data(7 downto 5));
|
|
|
|
-- mbits == # address bits to index top level of tree
|
|
|
|
mbits := unsigned('0' & data(4 downto 0));
|
|
|
|
-- set v.shift to rts so that we can use finalmask for the segment check
|
|
|
|
v.shift := rts;
|
|
|
|
v.mask_size := mbits(4 downto 0);
|
|
|
|
v.pgbase := data(55 downto 8) & x"00";
|
|
|
|
if mbits = 0 then
|
|
|
|
v.state := RADIX_FINISH;
|
|
|
|
v.invalid := '1';
|
|
|
|
else
|
|
|
|
v.state := SEGMENT_CHECK;
|
|
|
|
end if;
|
|
|
|
end if;
|
|
|
|
if d_in.err = '1' then
|
|
|
|
v.state := RADIX_FINISH;
|
|
|
|
v.badtree := '1';
|
|
|
|
end if;
|
|
|
|
|
|
|
|
when SEGMENT_CHECK =>
|
|
|
|
mbits := '0' & r.mask_size;
|
|
|
|
v.shift := r.shift + (31 - 12) - mbits;
|
|
|
|
nonzero := or(r.addr(61 downto 31) and not finalmask(30 downto 0));
|
|
|
|
if r.addr(63) /= r.addr(62) or nonzero = '1' then
|
|
|
|
v.state := RADIX_FINISH;
|
|
|
|
v.segerror := '1';
|
|
|
|
elsif mbits < 5 or mbits > 16 or mbits > (r.shift + (31 - 12)) then
|
|
|
|
v.state := RADIX_FINISH;
|
|
|
|
v.badtree := '1';
|
|
|
|
else
|
|
|
|
v.state := RADIX_LOOKUP;
|
|
|
|
end if;
|
|
|
|
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
when RADIX_LOOKUP =>
|
|
|
|
dcreq := '1';
|
|
|
|
v.state := RADIX_READ_WAIT;
|
|
|
|
|
|
|
|
when RADIX_READ_WAIT =>
|
|
|
|
if d_in.done = '1' then
|
|
|
|
v.pde := data;
|
|
|
|
-- test valid bit
|
|
|
|
if data(63) = '1' then
|
|
|
|
-- test leaf bit
|
|
|
|
if data(62) = '1' then
|
|
|
|
-- check permissions and RC bits
|
|
|
|
perm_ok := '0';
|
|
|
|
if r.priv = '1' or data(3) = '0' then
|
|
|
|
if r.iside = '0' then
|
|
|
|
perm_ok := data(1) or (data(2) and not r.store);
|
|
|
|
else
|
|
|
|
-- no IAMR, so no KUEP support for now
|
|
|
|
-- deny execute permission if cache inhibited
|
|
|
|
perm_ok := data(0) and not data(5);
|
|
|
|
end if;
|
|
|
|
end if;
|
|
|
|
rc_ok := data(8) and (data(7) or not r.store);
|
|
|
|
if perm_ok = '1' and rc_ok = '1' then
|
|
|
|
v.state := RADIX_LOAD_TLB;
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
else
|
|
|
|
v.state := RADIX_FINISH;
|
|
|
|
v.perm_err := not perm_ok;
|
|
|
|
-- permission error takes precedence over RC error
|
|
|
|
v.rc_error := perm_ok;
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
end if;
|
|
|
|
else
|
|
|
|
mbits := unsigned('0' & data(4 downto 0));
|
|
|
|
if mbits < 5 or mbits > 16 or mbits > r.shift then
|
|
|
|
v.state := RADIX_FINISH;
|
|
|
|
v.badtree := '1';
|
|
|
|
else
|
|
|
|
v.shift := v.shift - mbits;
|
|
|
|
v.mask_size := mbits(4 downto 0);
|
|
|
|
v.pgbase := data(55 downto 8) & x"00";
|
|
|
|
v.state := RADIX_LOOKUP;
|
|
|
|
end if;
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
end if;
|
|
|
|
else
|
|
|
|
-- non-present PTE, generate a DSI
|
|
|
|
v.state := RADIX_FINISH;
|
|
|
|
v.invalid := '1';
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
end if;
|
|
|
|
end if;
|
|
|
|
if d_in.err = '1' then
|
|
|
|
v.state := RADIX_FINISH;
|
|
|
|
v.badtree := '1';
|
|
|
|
end if;
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
|
|
|
|
when RADIX_LOAD_TLB =>
|
|
|
|
tlb_load := '1';
|
|
|
|
if r.iside = '0' then
|
|
|
|
dcreq := '1';
|
|
|
|
v.state := TLB_WAIT;
|
|
|
|
else
|
|
|
|
itlb_load := '1';
|
|
|
|
v.state := IDLE;
|
|
|
|
end if;
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
|
|
|
|
when RADIX_FINISH =>
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
v.state := IDLE;
|
|
|
|
|
|
|
|
end case;
|
|
|
|
|
|
|
|
if v.state = RADIX_FINISH or (v.state = RADIX_LOAD_TLB and r.iside = '1') then
|
|
|
|
v.err := v.invalid or v.badtree or v.segerror or v.perm_err or v.rc_error;
|
|
|
|
v.done := not v.err;
|
|
|
|
end if;
|
|
|
|
|
|
|
|
if r.addr(63) = '1' then
|
|
|
|
effpid := x"00000000";
|
|
|
|
else
|
|
|
|
effpid := r.pid;
|
|
|
|
end if;
|
|
|
|
prtable_addr := x"00" & r.prtbl(55 downto 36) &
|
|
|
|
((r.prtbl(35 downto 12) and not finalmask(23 downto 0)) or
|
|
|
|
(effpid(31 downto 8) and finalmask(23 downto 0))) &
|
|
|
|
effpid(7 downto 0) & "0000";
|
|
|
|
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
pgtable_addr := x"00" & r.pgbase(55 downto 19) &
|
|
|
|
((r.pgbase(18 downto 3) and not mask) or (addrsh and mask)) &
|
|
|
|
"000";
|
|
|
|
pte := x"00" &
|
|
|
|
((r.pde(55 downto 12) and not finalmask) or (r.addr(55 downto 12) and finalmask))
|
|
|
|
& r.pde(11 downto 0);
|
|
|
|
|
|
|
|
-- update registers
|
|
|
|
rin <= v;
|
|
|
|
|
|
|
|
-- drive outputs
|
|
|
|
if tlbie_req = '1' then
|
|
|
|
addr := r.addr;
|
|
|
|
tlb_data := (others => '0');
|
|
|
|
elsif tlb_load = '1' then
|
|
|
|
addr := r.addr(63 downto 12) & x"000";
|
|
|
|
tlb_data := pte;
|
|
|
|
elsif prtbl_rd = '1' then
|
|
|
|
addr := prtable_addr;
|
|
|
|
tlb_data := (others => '0');
|
|
|
|
else
|
|
|
|
addr := pgtable_addr;
|
|
|
|
tlb_data := (others => '0');
|
|
|
|
end if;
|
|
|
|
|
|
|
|
l_out.done <= r.done;
|
|
|
|
l_out.err <= r.err;
|
|
|
|
l_out.invalid <= r.invalid;
|
|
|
|
l_out.badtree <= r.badtree;
|
|
|
|
l_out.segerr <= r.segerror;
|
|
|
|
l_out.perm_error <= r.perm_err;
|
|
|
|
l_out.rc_error <= r.rc_error;
|
|
|
|
|
|
|
|
d_out.valid <= dcreq;
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
d_out.tlbie <= tlbie_req;
|
|
|
|
d_out.doall <= r.inval_all;
|
MMU: Implement radix page table machinery
This adds the necessary machinery to the MMU for it to do radix page
table walks. The core elements are a shifter that can shift the
address right by between 0 and 47 bits, a mask generator that can
generate a mask of between 5 and 16 bits, a final mask generator,
and new states in the state machine.
(The final mask generator is used for transferring bits of the
original address into the resulting TLB entry when the leaf PTE
corresponds to a page size larger than 4kB.)
The hardware does not implement a partition table or a process table.
Software is expected to load the appropriate process table entry
into a new SPR called PGTBL0, SPR 720. The contents should be
formatted as described in Book III section 5.7.6.2 of the Power ISA
v3.0B. PGTBL0 is set to 0 on hard reset. At present, the top two bits
of the address (the quadrant) are ignored.
There is currently no caching of any step in the translation process
or of the final result, other than the entry created in the dTLB.
That entry is a 4k page entry even if the leaf PTE found in the walk
corresponds to a larger page size.
This implementation can handle almost any page table layout and any
page size. The RTS field (in PGTBL0) can have any value between 0
and 31, corresponding to a total address space size between 2^31
and 2^62 bytes. The RPDS field of PGTBL0 can be any value between
5 and 16, except that a value of 0 is taken to disable radix page
table walking (for use when one is using software loading of TLB
entries). The NLS field of the page directory entries can have any
value between 5 and 16. The minimum page size is 4kB, meaning that
the sum of RPDS and the NLS values of the PDEs found on the path to
a leaf PTE must be less than or equal to RTS + 31 - 12.
The PGTBL0 SPR is in the mmu module; thus this adds a path for
loadstore1 to read and write SPRs in mmu. This adds code in dcache
to service doubleword read requests from the MMU, as well as requests
to write dTLB entries.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
d_out.tlbld <= tlb_load;
|
|
|
|
d_out.addr <= addr;
|
|
|
|
d_out.pte <= tlb_data;
|
Add TLB to icache
This adds a direct-mapped TLB to the icache, with 64 entries by default.
Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along
with redirects to indicate whether instruction addresses should be
translated through the TLB, and fetch1 sends that on to icache.
Similarly a "priv_mode" signal is sent to indicate the privilege
mode for instruction fetches. This means that changes to MSR[IR]
or MSR[PR] don't take effect until the next redirect, meaning an
isync, rfid, branch, etc.
The icache uses a hash of the effective address (i.e. next instruction
address) to index the TLB. The hash is an XOR of three fields of the
address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and
24--29 of the address. TLB invalidations simply invalidate the
indexed TLB entry without checking the contents.
If the icache detects a TLB miss with virt_mode=1, it will send a
fetch_failed indication through fetch2 to decode1, which will turn it
into a special OP_FETCH_FAILED opcode with unit=LDST. That will get
sent down to loadstore1 which will currently just raise a Instruction
Storage Interrupt (0x400) exception.
One bit in the PTE obtained from the TLB is used to check whether an
instruction access is allowed -- the privilege bit (bit 3). If bit 3
is 1 and priv_mode=0, then a fetch_failed indication is sent down to
fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs
with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put
into the iTLB since such PTEs would not allow execution by any
context.
Tlbie operations get sent from mmu to icache over a new connection.
Unfortunately the privileged instruction tests are broken for now.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
|
|
|
|
i_out.tlbld <= itlb_load;
|
Add TLB to icache
This adds a direct-mapped TLB to the icache, with 64 entries by default.
Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along
with redirects to indicate whether instruction addresses should be
translated through the TLB, and fetch1 sends that on to icache.
Similarly a "priv_mode" signal is sent to indicate the privilege
mode for instruction fetches. This means that changes to MSR[IR]
or MSR[PR] don't take effect until the next redirect, meaning an
isync, rfid, branch, etc.
The icache uses a hash of the effective address (i.e. next instruction
address) to index the TLB. The hash is an XOR of three fields of the
address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and
24--29 of the address. TLB invalidations simply invalidate the
indexed TLB entry without checking the contents.
If the icache detects a TLB miss with virt_mode=1, it will send a
fetch_failed indication through fetch2 to decode1, which will turn it
into a special OP_FETCH_FAILED opcode with unit=LDST. That will get
sent down to loadstore1 which will currently just raise a Instruction
Storage Interrupt (0x400) exception.
One bit in the PTE obtained from the TLB is used to check whether an
instruction access is allowed -- the privilege bit (bit 3). If bit 3
is 1 and priv_mode=0, then a fetch_failed indication is sent down to
fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs
with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put
into the iTLB since such PTEs would not allow execution by any
context.
Tlbie operations get sent from mmu to icache over a new connection.
Unfortunately the privileged instruction tests are broken for now.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
i_out.tlbie <= tlbie_req;
|
|
|
|
i_out.doall <= r.inval_all;
|
|
|
|
i_out.addr <= addr;
|
|
|
|
i_out.pte <= tlb_data;
|
Add TLB to icache
This adds a direct-mapped TLB to the icache, with 64 entries by default.
Execute1 now sends a "virt_mode" signal from MSR[IR] to fetch1 along
with redirects to indicate whether instruction addresses should be
translated through the TLB, and fetch1 sends that on to icache.
Similarly a "priv_mode" signal is sent to indicate the privilege
mode for instruction fetches. This means that changes to MSR[IR]
or MSR[PR] don't take effect until the next redirect, meaning an
isync, rfid, branch, etc.
The icache uses a hash of the effective address (i.e. next instruction
address) to index the TLB. The hash is an XOR of three fields of the
address; with a 64-entry TLB, the fields are bits 12--17, 18--23 and
24--29 of the address. TLB invalidations simply invalidate the
indexed TLB entry without checking the contents.
If the icache detects a TLB miss with virt_mode=1, it will send a
fetch_failed indication through fetch2 to decode1, which will turn it
into a special OP_FETCH_FAILED opcode with unit=LDST. That will get
sent down to loadstore1 which will currently just raise a Instruction
Storage Interrupt (0x400) exception.
One bit in the PTE obtained from the TLB is used to check whether an
instruction access is allowed -- the privilege bit (bit 3). If bit 3
is 1 and priv_mode=0, then a fetch_failed indication is sent down to
fetch2 and to decode1, which generates an OP_FETCH_FAILED. Any PTEs
with PTE bit 0 (EAA[3]) clear or bit 8 (R) clear should not be put
into the iTLB since such PTEs would not allow execution by any
context.
Tlbie operations get sent from mmu to icache over a new connection.
Unfortunately the privileged instruction tests are broken for now.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
|
|
|
|
|
|
|
end process;
|
|
|
|
end;
|