divider: Add an output register

This puts the output of the divider through a register.  With the
addition of the logic to detect overflow, the combinatorial output
logic of the divider was becoming a critical path.  Adding the
output register adds a cycle to the latency of the divider but
helps make timing at 100MHz on the A7-100.

This also makes the valid, write_reg_enable and write_cr_enable
fields of the output be registered, which eliminates warnings
about register/latch pins with no clock.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
jtag-port
Paul Mackerras 5 years ago
parent f181bf31e2
commit c7025f9f28

@ -22,6 +22,7 @@ architecture behaviour of divider is
signal quot : std_ulogic_vector(63 downto 0); signal quot : std_ulogic_vector(63 downto 0);
signal result : std_ulogic_vector(63 downto 0); signal result : std_ulogic_vector(63 downto 0);
signal sresult : std_ulogic_vector(63 downto 0); signal sresult : std_ulogic_vector(63 downto 0);
signal oresult : std_ulogic_vector(63 downto 0);
signal qbit : std_ulogic; signal qbit : std_ulogic;
signal running : std_ulogic; signal running : std_ulogic;
signal signcheck : std_ulogic; signal signcheck : std_ulogic;
@ -35,6 +36,7 @@ architecture behaviour of divider is
signal write_reg : std_ulogic_vector(4 downto 0); signal write_reg : std_ulogic_vector(4 downto 0);
signal overflow : std_ulogic; signal overflow : std_ulogic;
signal did_ovf : std_ulogic; signal did_ovf : std_ulogic;
signal cr_data : std_ulogic_vector(2 downto 0);


begin begin
divider_0: process(clk) divider_0: process(clk)
@ -106,8 +108,8 @@ begin


divider_1: process(all) divider_1: process(all)
begin begin
d_out <= DividerToWritebackInit;
d_out.write_reg_nr <= write_reg; d_out.write_reg_nr <= write_reg;
d_out.write_cr_mask <= num_to_fxm(0);


if is_modulus = '1' then if is_modulus = '1' then
result <= dend(128 downto 65); result <= dend(128 downto 65);
@ -132,27 +134,36 @@ begin
did_ovf <= overflow or (or (sresult(63 downto 32))); did_ovf <= overflow or (or (sresult(63 downto 32)));
end if; end if;
if did_ovf = '1' then if did_ovf = '1' then
d_out.write_reg_data <= (others => '0'); oresult <= (others => '0');
elsif (is_32bit = '1') and (is_modulus = '0') then elsif (is_32bit = '1') and (is_modulus = '0') then
-- 32-bit divisions set the top 32 bits of the result to 0 -- 32-bit divisions set the top 32 bits of the result to 0
d_out.write_reg_data <= x"00000000" & sresult(31 downto 0); oresult <= x"00000000" & sresult(31 downto 0);
else else
d_out.write_reg_data <= sresult; oresult <= sresult;
end if; end if;


if count = "1000000" then
d_out.valid <= '1';
d_out.write_reg_enable <= '1';
if rc = '1' then
d_out.write_cr_enable <= '1';
d_out.write_cr_mask <= num_to_fxm(0);
if (did_ovf = '1') or (or (sresult) = '0') then if (did_ovf = '1') or (or (sresult) = '0') then
d_out.write_cr_data <= x"20000000"; cr_data <= "001";
elsif (sresult(63) = '1') and not ((is_32bit = '1') and (is_modulus = '0')) then elsif (sresult(63) = '1') and not ((is_32bit = '1') and (is_modulus = '0')) then
d_out.write_cr_data <= x"80000000"; cr_data <= "100";
else else
d_out.write_cr_data <= x"40000000"; cr_data <= "010";
end if; end if;
end process;

divider_out: process(clk)
begin
if rising_edge(clk) then
d_out.write_reg_data <= oresult;
d_out.write_cr_data <= cr_data & '0' & x"0000000";
if count = "1000000" then
d_out.valid <= '1';
d_out.write_reg_enable <= '1';
d_out.write_cr_enable <= rc;
else
d_out.valid <= '0';
d_out.write_reg_enable <= '0';
d_out.write_cr_enable <= '0';
end if; end if;
end if; end if;
end process; end process;

Loading…
Cancel
Save