@ -22,6 +22,7 @@ architecture behaviour of divider is
signal quot : std_ulogic_vector(63 downto 0);
signal quot : std_ulogic_vector(63 downto 0);
signal result : std_ulogic_vector(63 downto 0);
signal result : std_ulogic_vector(63 downto 0);
signal sresult : std_ulogic_vector(63 downto 0);
signal sresult : std_ulogic_vector(63 downto 0);
signal oresult : std_ulogic_vector(63 downto 0);
signal qbit : std_ulogic;
signal qbit : std_ulogic;
signal running : std_ulogic;
signal running : std_ulogic;
signal signcheck : std_ulogic;
signal signcheck : std_ulogic;
@ -35,6 +36,7 @@ architecture behaviour of divider is
signal write_reg : std_ulogic_vector(4 downto 0);
signal write_reg : std_ulogic_vector(4 downto 0);
signal overflow : std_ulogic;
signal overflow : std_ulogic;
signal did_ovf : std_ulogic;
signal did_ovf : std_ulogic;
signal cr_data : std_ulogic_vector(2 downto 0);
begin
begin
divider_0: process(clk)
divider_0: process(clk)
@ -106,8 +108,8 @@ begin
divider_1: process(all)
divider_1: process(all)
begin
begin
d_out <= DividerToWritebackInit;
d_out.write_reg_nr <= write_reg;
d_out.write_reg_nr <= write_reg;
d_out.write_cr_mask <= num_to_fxm(0);
if is_modulus = '1' then
if is_modulus = '1' then
result <= dend(128 downto 65);
result <= dend(128 downto 65);
@ -132,27 +134,36 @@ begin
did_ovf <= overflow or (or (sresult(63 downto 32)));
did_ovf <= overflow or (or (sresult(63 downto 32)));
end if;
end if;
if did_ovf = '1' then
if did_ovf = '1' then
d_out.write_reg_data <= (others => '0');
oresult <= (others => '0');
elsif (is_32bit = '1') and (is_modulus = '0') then
elsif (is_32bit = '1') and (is_modulus = '0') then
-- 32-bit divisions set the top 32 bits of the result to 0
-- 32-bit divisions set the top 32 bits of the result to 0
d_out.write_reg_data <= x"00000000" & sresult(31 downto 0);
oresult <= x"00000000" & sresult(31 downto 0);
else
else
d_out.write_reg_data <= sresult;
oresult <= sresult;
end if;
end if;
if count = "1000000" then
d_out.valid <= '1';
d_out.write_reg_enable <= '1';
if rc = '1' then
d_out.write_cr_enable <= '1';
d_out.write_cr_mask <= num_to_fxm(0);
if (did_ovf = '1') or (or (sresult) = '0') then
if (did_ovf = '1') or (or (sresult) = '0') then
d_out.write_cr_data <= x"20000000";
cr_data <= "001";
elsif (sresult(63) = '1') and not ((is_32bit = '1') and (is_modulus = '0')) then
elsif (sresult(63) = '1') and not ((is_32bit = '1') and (is_modulus = '0')) then
d_out.write_cr_data <= x"80000000";
cr_data <= "100";
else
else
d_out.write_cr_data <= x"40000000";
cr_data <= "010";
end if;
end if;
end process;
divider_out: process(clk)
begin
if rising_edge(clk) then
d_out.write_reg_data <= oresult;
d_out.write_cr_data <= cr_data & '0' & x"0000000";
if count = "1000000" then
d_out.valid <= '1';
d_out.write_reg_enable <= '1';
d_out.write_cr_enable <= rc;
else
d_out.valid <= '0';
d_out.write_reg_enable <= '0';
d_out.write_cr_enable <= '0';
end if;
end if;
end if;
end if;
end process;
end process;