core: Implement big-endian mode

Big-endian mode affects both instruction fetches and data accesses.
For instruction fetches, we byte-swap each word read from memory when
writing it into the icache data RAM, and use a tag bit to indicate
whether each cache line contains instructions in BE or LE form.

For data accesses, we simply need to invert the existing byte_reverse
signal in BE mode.  The only thing to be careful of is to get the sign
bit from the correct place when doing a sign-extending load that
crosses two doublewords of memory.

For now, interrupts unconditionally set MSR[LE].  We will need some
sort of interrupt-little-endian bit somewhere, perhaps in LPCR.

This also fixes a debug report statement in fetch1.vhdl.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
pull/239/head
Paul Mackerras 4 years ago
parent 3edc95eea5
commit 2e7b371305

@ -108,6 +108,7 @@ package common is
req: std_ulogic; req: std_ulogic;
virt_mode : std_ulogic; virt_mode : std_ulogic;
priv_mode : std_ulogic; priv_mode : std_ulogic;
big_endian : std_ulogic;
stop_mark: std_ulogic; stop_mark: std_ulogic;
sequential: std_ulogic; sequential: std_ulogic;
nia: std_ulogic_vector(63 downto 0); nia: std_ulogic_vector(63 downto 0);
@ -245,10 +246,12 @@ package common is
redirect: std_ulogic; redirect: std_ulogic;
virt_mode: std_ulogic; virt_mode: std_ulogic;
priv_mode: std_ulogic; priv_mode: std_ulogic;
big_endian: std_ulogic;
redirect_nia: std_ulogic_vector(63 downto 0); redirect_nia: std_ulogic_vector(63 downto 0);
end record; end record;
constant Execute1ToFetch1Init : Execute1ToFetch1Type := (redirect => '0', virt_mode => '0', constant Execute1ToFetch1Init : Execute1ToFetch1Type := (redirect => '0', virt_mode => '0',
priv_mode => '0', others => (others => '0')); priv_mode => '0', big_endian => '0',
others => (others => '0'));


type Execute1ToLoadstore1Type is record type Execute1ToLoadstore1Type is record
valid : std_ulogic; valid : std_ulogic;

@ -496,9 +496,10 @@ begin
v.terminate := '0'; v.terminate := '0';
icache_inval <= '0'; icache_inval <= '0';
v.busy := '0'; v.busy := '0';
-- send MSR[IR] and ~MSR[PR] up to fetch1 -- send MSR[IR], ~MSR[PR] and ~MSR[LE] up to fetch1
v.f.virt_mode := ctrl.msr(MSR_IR); v.f.virt_mode := ctrl.msr(MSR_IR);
v.f.priv_mode := not ctrl.msr(MSR_PR); v.f.priv_mode := not ctrl.msr(MSR_PR);
v.f.big_endian := not ctrl.msr(MSR_LE);


-- Next insn adder used in a couple of places -- Next insn adder used in a couple of places
next_nia := std_ulogic_vector(unsigned(e_in.nia) + 4); next_nia := std_ulogic_vector(unsigned(e_in.nia) + 4);
@ -740,6 +741,7 @@ begin
when OP_RFID => when OP_RFID =>
v.f.virt_mode := a_in(MSR_IR) or a_in(MSR_PR); v.f.virt_mode := a_in(MSR_IR) or a_in(MSR_PR);
v.f.priv_mode := not a_in(MSR_PR); v.f.priv_mode := not a_in(MSR_PR);
v.f.big_endian := not a_in(MSR_LE);
-- Can't use msr_copy here because the partial function MSR -- Can't use msr_copy here because the partial function MSR
-- bits should be left unchanged, not zeroed. -- bits should be left unchanged, not zeroed.
ctrl_tmp.msr(63 downto 31) <= a_in(63 downto 31); ctrl_tmp.msr(63 downto 31) <= a_in(63 downto 31);
@ -1161,6 +1163,8 @@ begin
v.f.redirect := '1'; v.f.redirect := '1';
v.f.virt_mode := '0'; v.f.virt_mode := '0';
v.f.priv_mode := '1'; v.f.priv_mode := '1';
-- XXX need an interrupt LE bit here, e.g. from LPCR
v.f.big_endian := '0';
end if; end if;


if v.f.redirect = '1' then if v.f.redirect = '1' then
@ -1176,7 +1180,7 @@ begin
lv.data := c_in; lv.data := c_in;
lv.write_reg := gspr_to_gpr(e_in.write_reg); lv.write_reg := gspr_to_gpr(e_in.write_reg);
lv.length := e_in.data_len; lv.length := e_in.data_len;
lv.byte_reverse := e_in.byte_reverse; lv.byte_reverse := e_in.byte_reverse xnor ctrl.msr(MSR_LE);
lv.sign_extend := e_in.sign_extend; lv.sign_extend := e_in.sign_extend;
lv.update := e_in.update; lv.update := e_in.update;
lv.update_reg := gspr_to_gpr(e_in.read_reg1); lv.update_reg := gspr_to_gpr(e_in.read_reg1);

@ -50,8 +50,9 @@ begin
log_nia <= r.nia(63) & r.nia(43 downto 2); log_nia <= r.nia(63) & r.nia(43 downto 2);
if r /= r_next then if r /= r_next then
report "fetch1 rst:" & std_ulogic'image(rst) & report "fetch1 rst:" & std_ulogic'image(rst) &
" IR:" & std_ulogic'image(e_in.virt_mode) & " IR:" & std_ulogic'image(r_next.virt_mode) &
" P:" & std_ulogic'image(e_in.priv_mode) & " P:" & std_ulogic'image(r_next.priv_mode) &
" E:" & std_ulogic'image(r_next.big_endian) &
" R:" & std_ulogic'image(e_in.redirect) & std_ulogic'image(d_in.redirect) & " R:" & std_ulogic'image(e_in.redirect) & std_ulogic'image(d_in.redirect) &
" S:" & std_ulogic'image(stall_in) & " S:" & std_ulogic'image(stall_in) &
" T:" & std_ulogic'image(stop_in) & " T:" & std_ulogic'image(stop_in) &
@ -81,11 +82,13 @@ begin
end if; end if;
v.virt_mode := '0'; v.virt_mode := '0';
v.priv_mode := '1'; v.priv_mode := '1';
v.big_endian := '0';
v_int.stop_state := RUNNING; v_int.stop_state := RUNNING;
elsif e_in.redirect = '1' then elsif e_in.redirect = '1' then
v.nia := e_in.redirect_nia(63 downto 2) & "00"; v.nia := e_in.redirect_nia(63 downto 2) & "00";
v.virt_mode := e_in.virt_mode; v.virt_mode := e_in.virt_mode;
v.priv_mode := e_in.priv_mode; v.priv_mode := e_in.priv_mode;
v.big_endian := e_in.big_endian;
elsif d_in.redirect = '1' then elsif d_in.redirect = '1' then
v.nia := d_in.redirect_nia(63 downto 2) & "00"; v.nia := d_in.redirect_nia(63 downto 2) & "00";
elsif stall_in = '0' then elsif stall_in = '0' then

@ -98,7 +98,8 @@ architecture rtl of icache is
-- SET_SIZE_BITS is the log base 2 of the set size -- SET_SIZE_BITS is the log base 2 of the set size
constant SET_SIZE_BITS : natural := LINE_OFF_BITS + INDEX_BITS; constant SET_SIZE_BITS : natural := LINE_OFF_BITS + INDEX_BITS;
-- TAG_BITS is the number of bits of the tag part of the address -- TAG_BITS is the number of bits of the tag part of the address
constant TAG_BITS : natural := REAL_ADDR_BITS - SET_SIZE_BITS; -- the +1 is to allow the endianness to be stored in the tag
constant TAG_BITS : natural := REAL_ADDR_BITS - SET_SIZE_BITS + 1;
-- WAY_BITS is the number of bits to select a way -- WAY_BITS is the number of bits to select a way
constant WAY_BITS : natural := log2(NUM_WAYS); constant WAY_BITS : natural := log2(NUM_WAYS);


@ -289,9 +290,10 @@ architecture rtl of icache is
end; end;


-- Get the tag value from the address -- Get the tag value from the address
function get_tag(addr: std_ulogic_vector(REAL_ADDR_BITS - 1 downto 0)) return cache_tag_t is function get_tag(addr: std_ulogic_vector(REAL_ADDR_BITS - 1 downto 0);
endian: std_ulogic) return cache_tag_t is
begin begin
return addr(REAL_ADDR_BITS - 1 downto SET_SIZE_BITS); return endian & addr(REAL_ADDR_BITS - 1 downto SET_SIZE_BITS);
end; end;


-- Read a tag from a tag memory row -- Read a tag from a tag memory row
@ -327,9 +329,9 @@ begin
report "geometry bits don't add up" severity FAILURE; report "geometry bits don't add up" severity FAILURE;
assert (LINE_OFF_BITS = ROW_OFF_BITS + ROW_LINEBITS) assert (LINE_OFF_BITS = ROW_OFF_BITS + ROW_LINEBITS)
report "geometry bits don't add up" severity FAILURE; report "geometry bits don't add up" severity FAILURE;
assert (REAL_ADDR_BITS = TAG_BITS + INDEX_BITS + LINE_OFF_BITS) assert (REAL_ADDR_BITS + 1 = TAG_BITS + INDEX_BITS + LINE_OFF_BITS)
report "geometry bits don't add up" severity FAILURE; report "geometry bits don't add up" severity FAILURE;
assert (REAL_ADDR_BITS = TAG_BITS + ROW_BITS + ROW_OFF_BITS) assert (REAL_ADDR_BITS + 1 = TAG_BITS + ROW_BITS + ROW_OFF_BITS)
report "geometry bits don't add up" severity FAILURE; report "geometry bits don't add up" severity FAILURE;


sim_debug: if SIM generate sim_debug: if SIM generate
@ -359,6 +361,7 @@ begin
signal wr_addr : std_ulogic_vector(ROW_BITS-1 downto 0); signal wr_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
signal dout : cache_row_t; signal dout : cache_row_t;
signal wr_sel : std_ulogic_vector(ROW_SIZE-1 downto 0); signal wr_sel : std_ulogic_vector(ROW_SIZE-1 downto 0);
signal wr_dat : std_ulogic_vector(wishbone_in.dat'left downto 0);
begin begin
way: entity work.cache_ram way: entity work.cache_ram
generic map ( generic map (
@ -372,10 +375,20 @@ begin
rd_data => dout, rd_data => dout,
wr_sel => wr_sel, wr_sel => wr_sel,
wr_addr => wr_addr, wr_addr => wr_addr,
wr_data => wishbone_in.dat wr_data => wr_dat
); );
process(all) process(all)
variable j: integer;
begin begin
-- byte-swap read data if big endian
if r.store_tag(TAG_BITS - 1) = '0' then
wr_dat <= wishbone_in.dat;
else
for i in 0 to (wishbone_in.dat'length / 8) - 1 loop
j := ((i / 4) * 4) + (3 - (i mod 4));
wr_dat(i * 8 + 7 downto i * 8) <= wishbone_in.dat(j * 8 + 7 downto j * 8);
end loop;
end if;
do_read <= not (stall_in or use_previous); do_read <= not (stall_in or use_previous);
do_write <= '0'; do_write <= '0';
if wishbone_in.ack = '1' and replace_way = i then if wishbone_in.ack = '1' and replace_way = i then
@ -494,7 +507,7 @@ begin
-- Extract line, row and tag from request -- Extract line, row and tag from request
req_index <= get_index(i_in.nia); req_index <= get_index(i_in.nia);
req_row <= get_row(i_in.nia); req_row <= get_row(i_in.nia);
req_tag <= get_tag(real_addr); req_tag <= get_tag(real_addr, i_in.big_endian);


-- Calculate address of beginning of cache row, will be -- Calculate address of beginning of cache row, will be
-- used for cache miss processing if needed -- used for cache miss processing if needed

@ -201,14 +201,20 @@ begin
end loop; end loop;


-- Work out the sign bit for sign extension. -- Work out the sign bit for sign extension.
-- Assumes we are not doing both sign extension and byte reversal, -- For unaligned loads crossing two dwords, the sign bit is in the
-- in that for unaligned loads crossing two dwords we end up -- first dword for big-endian (byte_reverse = 1), or the second dword
-- using a bit from the second dword, whereas for a byte-reversed -- for little-endian.
-- (i.e. big-endian) load the sign bit would be in the first dword. if r.dwords_done = '1' and r.byte_reverse = '1' then
negative := (r.length(3) and data_permuted(63)) or negative := (r.length(3) and r.load_data(63)) or
(r.length(2) and data_permuted(31)) or (r.length(2) and r.load_data(31)) or
(r.length(1) and data_permuted(15)) or (r.length(1) and r.load_data(15)) or
(r.length(0) and data_permuted(7)); (r.length(0) and r.load_data(7));
else
negative := (r.length(3) and data_permuted(63)) or
(r.length(2) and data_permuted(31)) or
(r.length(1) and data_permuted(15)) or
(r.length(0) and data_permuted(7));
end if;


-- trim and sign-extend -- trim and sign-extend
for i in 0 to 7 loop for i in 0 to 7 loop

Loading…
Cancel
Save