A tiny Open POWER ISA softcore written in VHDL 2008
You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
Go to file
Paul Mackerras 2f45e545ed decode2: Rework to make the stall_out signal come from a register
At present the busy/stall signal going to decode1 depends on whether
control thinks it can issue the current instruction, and that depends
on completion and bypass signals coming from execute1 and writeback.

To improve the timing of stall_out, this rearranges decode2 so that
stall_out is asserted when we have a valid instruction that couldn't
be issued in the previous cycle.  This means that decode1 could give
us a new instruction when we haven't issued the previous instruction.

This in turn means that we can only use d_in in the first cycle of
processing an instruction.  After the first cycle, we get register
addresses etc. from dc2 rather than d_in.

Then, to avoid the need to read register operands from register_file
in each cycle until the instruction issues, we bring the bypass path
for data being written to the register file into decode2 explicitly
rather than having it in register_file.

A new process called decode2_addrs does the process of calling
decode_input_reg_* and decode_output_reg and sets up the register file
addresses.  This was split out (and decode_input_reg_* reworked) to
try to reduce the number of passes through the decode2_1 process that
need to be done in simulation.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2 years ago
.github/workflows ci: Add new Orange Crab build 3 years ago
constraints orangecrab: add Orange Crab r0.2 target 3 years ago
fpga Extend LiteDRAM VHDL wrapper to allow more than one clock line 3 years ago
hello_world Zero BSS in hello world test 3 years ago
include
lib
litedram Extend LiteDRAM VHDL wrapper to allow more than one clock line 3 years ago
liteeth Regenerate litedram and liteeth 3 years ago
litesdcard litesdcard: add lattice, regenerate 3 years ago
media
micropython
openocd flash-arty: Add cable argument 3 years ago
rust_lib_demo
scripts Move XER low bits out of register file 2 years ago
sim-unisim
tests Remove support for lq, stq, lqarx and stqcx. 2 years ago
uart16550
verilator
.gitignore Add liteeth/build to gitignore 3 years ago
LICENSE
Makefile dmi_dtm_ecp5: Use ECP5 JTAGG for DMI 3 years ago
README.md README: Add Linux on Microwatt instructions 3 years ago
cache_ram.vhdl
common.vhdl decode2: Rework to make the stall_out signal come from a register 2 years ago
control.vhdl decode2: Rework to make the stall_out signal come from a register 2 years ago
core.vhdl decode2: Rework to make the stall_out signal come from a register 2 years ago
core_debug.vhdl core_debug: Initialise gspr_index 3 years ago
core_dram_tb.vhdl Extend LiteDRAM VHDL wrapper to allow more than one clock line 3 years ago
core_flash_tb.vhdl
core_tb.vhdl
countbits.vhdl Allow integer instructions and load/store instructions to execute together 2 years ago
countbits_tb.vhdl Add a second execute stage to the pipeline 2 years ago
cr_file.vhdl execute1: Restructure to separate out execution of side effects 2 years ago
crhelpers.vhdl
dcache.vhdl Simplify flow control in the dcache and loadstore units 2 years ago
dcache_tb.vhdl
decode1.vhdl Remove support for lq, stq, lqarx and stqcx. 2 years ago
decode2.vhdl decode2: Rework to make the stall_out signal come from a register 2 years ago
decode_types.vhdl Remove support for lq, stq, lqarx and stqcx. 2 years ago
divider.vhdl Add a second execute stage to the pipeline 2 years ago
divider_tb.vhdl
dmi_dtm_dummy.vhdl
dmi_dtm_ecp5.vhdl dmi_dtm_ecp5: Use ECP5 JTAGG for DMI 3 years ago
dmi_dtm_tb.vhdl
dmi_dtm_xilinx.vhdl
dram_tb.vhdl Extend LiteDRAM VHDL wrapper to allow more than one clock line 3 years ago
execute1.vhdl FPU: Add stage-2 stall ability to FPU 2 years ago
fetch1.vhdl fetch1/icache1: Remove the use_previous logic 3 years ago
foreign_random.vhdl
fpu.vhdl FPU: Add stage-2 stall ability to FPU 2 years ago
glibc_random.vhdl
glibc_random_helpers.vhdl
gpio.vhdl Remove some FPGA style signal inits 3 years ago
helpers.vhdl xics: Rework the irq_gen process 3 years ago
icache.vhdl Merge pull request #373 from antonblanchard/icache-insn-u-state 2 years ago
icache_tb.vhdl fix: fix icache_tb not finishing correctly 3 years ago
icache_test.bin
insn_helpers.vhdl
loadstore1.vhdl Remove support for lq, stq, lqarx and stqcx. 2 years ago
logical.vhdl core: Make popcnt* take two cycles 3 years ago
microwatt.core core: Make popcnt* take two cycles 3 years ago
mmu.vhdl
multiply.vhdl core: Add a short multiplier 3 years ago
multiply_tb.vhdl
nonrandom.vhdl
plru.vhdl
plru_tb.vhdl
pmu.vhdl
ppc_fx_insns.vhdl
random.vhdl
register_file.vhdl decode2: Rework to make the stall_out signal come from a register 2 years ago
rotator.vhdl
rotator_tb.vhdl
run.py
sim_16550_uart.vhdl
sim_bram.vhdl
sim_bram_helpers.vhdl
sim_bram_helpers_c.c
sim_console.vhdl
sim_console_c.c
sim_jtag.vhdl
sim_jtag_socket.vhdl
sim_jtag_socket_c.c
sim_no_flash.vhdl
sim_pp_uart.vhdl
sim_vhpi_c.c
sim_vhpi_c.h
soc.vhdl Remove some FPGA style signal inits 3 years ago
spi_flash_ctrl.vhdl Remove some FPGA style signal inits 3 years ago
spi_rxtx.vhdl Remove some FPGA style signal inits 3 years ago
sync_fifo.vhdl
syscon.vhdl Make wishbone addresses be in units of doublewords or words 3 years ago
utils.vhdl
wishbone_arbiter.vhdl
wishbone_bram_tb.bin
wishbone_bram_tb.vhdl Make wishbone addresses be in units of doublewords or words 3 years ago
wishbone_bram_wrapper.vhdl wishbone_bram_wrapper ram_addr_bits is 1 bit off 3 years ago
wishbone_debug_master.vhdl Make wishbone addresses be in units of doublewords or words 3 years ago
wishbone_types.vhdl Introduce addr_to_wb() and wb_to_addr() helpers 3 years ago
writeback.vhdl decode2: Rework to make the stall_out signal come from a register 2 years ago
xics.vhdl xics: Fix warning when comparing two std_ulogic_vectors 3 years ago
xilinx-mult.vhdl core: Add a short multiplier 3 years ago

README.md

Microwatt

Microwatt

A tiny Open POWER ISA softcore written in VHDL 2008. It aims to be simple and easy to understand.

Simulation using ghdl

MicroPython running on Microwatt

You can try out Microwatt/Micropython without hardware by using the ghdl simulator. If you want to build directly for a hardware target board, see below.

  • Build micropython. If you aren't building on a ppc64le box you will need a cross compiler. If it isn't available on your distro grab the powerpc64le-power8 toolchain from https://toolchains.bootlin.com. You may need to set the CROSS_COMPILE environment variable to the prefix used for your cross compilers. The default is powerpc64le-linux-gnu-.
git clone https://github.com/micropython/micropython.git
cd micropython
cd ports/powerpc
make -j$(nproc)
cd ../../../

A prebuilt micropython image is also available in the micropython/ directory.

  • Microwatt uses ghdl for simulation. Either install this from your distro or build it. Microwatt requires ghdl to be built with the LLVM or gcc backend, which not all distros do (Fedora does, Debian/Ubuntu appears not to). ghdl with the LLVM backend is likely easier to build.

    If building ghdl from scratch is too much for you, the microwatt Makefile supports using Docker or Podman.

  • Next build microwatt:

git clone https://github.com/antonblanchard/microwatt
cd microwatt
make

To build using Docker:

make DOCKER=1

and to build using Podman:

make PODMAN=1
  • Link in the micropython image:
ln -s ../micropython/ports/powerpc/build/firmware.bin main_ram.bin

Or if you were using the pre-built image:

ln -s micropython/firmware.bin main_ram.bin
  • Now run microwatt, sending debug output to /dev/null:
./core_tb > /dev/null

Synthesis on Xilinx FPGAs using Vivado

  • Install Vivado (I'm using the free 2019.1 webpack edition).

  • Setup Vivado paths:

source /opt/Xilinx/Vivado/2019.1/settings64.sh
  • Install FuseSoC:
pip3 install --user -U fusesoc

Fedora users can get FuseSoC package via

sudo dnf copr enable sharkcz/danny
sudo dnf install fusesoc
  • If this is your first time using fusesoc, initialize fusesoc. This is needed to be able to pull down fussoc library components referenced by microwatt. Run
fusesoc init
fusesoc fetch uart16550
fusesoc library add microwatt /path/to/microwatt
  • Build using FuseSoC. For hello world (Replace nexys_video with your FPGA board such as --target=arty_a7-100): You may wish to ensure you have installed Digilent Board files or appropriate files for your board first.
fusesoc run --target=nexys_video microwatt --memory_size=16384 --ram_init_file=/path/to/microwatt/fpga/hello_world.hex

You should then be able to see output via the serial port of the board (/dev/ttyUSB1, 115200 for example assuming standard clock speeds). There is a know bug where initial output may not be sent - try the reset (not programming button) on your board if you don't see anything.

  • To build micropython (currently requires 1MB of BRAM eg an Artix-7 A200):
fusesoc run --target=nexys_video microwatt

Linux on Microwatt

Mainline Linux supports Microwatt as of v5.14. The Arty A7 is the best tested platform, but it's also been tested on the OrangeCrab and ButterStick.

  1. Use buildroot to create a userspace

    A small change is required to glibc in order to support the VMX/AltiVec-less Microwatt, as float128 support is mandiatory and for this in GCC requires VSX/AltiVec. This change is included in Joel's buildroot fork, along with a defconfig:

    git clone -b microwatt https://github.com/shenki/buildroot
    cd buildroot
    make ppc64le_microwatt_defconfig
    make
    

    The output is output/images/rootfs.cpio.

  2. Build the Linux kernel

    git clone https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
    cd linux
    make ARCH=powerpc microwatt_defconfig
    make ARCH=powerpc CROSS_COMPILE=powerpc64le-linux-gnu- \
      CONFIG_INITRAMFS_SOURCE=/buildroot/output/images/rootfs.cpio -j`nproc`
    

    The output is arch/powerpc/boot/dtbImage.microwatt.elf.

  3. Build gateware using FuseSoC

    First configure FuseSoC as above.

    fusesoc run --build --target=arty_a7-100 microwatt --no_bram --memory_size=0
    

    The output is build/microwatt_0/arty_a7-100-vivado/microwatt_0.bit.

  4. Program the flash

    This operation will overwrite the contents of your flash.

    For the Arty A7 A100, set FLASH_ADDRESS to 0x400000 and pass -f a100.

    For the Arty A7 A35, set FLASH_ADDRESS to 0x300000 and pass -f a35.

    microwatt/openocd/flash-arty -f a100 build/microwatt_0/arty_a7-100-vivado/microwatt_0.bit
    microwatt/openocd/flash-arty -f a100 dtbImage.microwatt.elf -t bin -a $FLASH_ADDRESS
    
  5. Connect to the second USB TTY device exposed by the FPGA

    minicom -D /dev/ttyUSB1
    

    The gateware has firmware that will look at FLASH_ADDRESS and attempt to parse an ELF there, loading it to the address specified in the ELF header and jumping to it.

Testing

  • A simple test suite containing random execution test cases and a couple of micropython test cases can be run with:
make -j$(nproc) check

Issues

  • There are a few instructions still to be implemented:
    • Vector/VMX/VSX