countzero: Use alternative algorithm for higher bits

This implements an alternative count-leading-zeroes algorithm which
uses less LUTs to generate the higher-order bits (2..5) of the
result.

By doing (v | -v) rather than (v & -v), we get a value which has ones
from the MSB down to the rightmost 1 bit in v and then zeroes down to
the LSB.  This means that we can generate the MSB of the result (the
index of the rightmost 1 bit in v) just by looking at bits 63 and 31
of (v | -v), assuming that v is 64 bits.  Bit 4 of the result requires
looking at bits 63, 47, 31 and 15.  In contrast, each bit of the
result using (v & -v), which has a single 1, requires ORing together
32 bits.

It turns out that the minimum LUT usage comes from using (v & -v) to
generate bits 0 and 1 of the result, and using (v | -v) to generate
bits 2 to 5.  This saves almost 60 6-input LUTs on the Artix-7.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
fpu-constant
Paul Mackerras 3 years ago
parent 4cf2921b0b
commit 1086988883

@ -20,10 +20,11 @@ end entity bit_counter;
architecture behaviour of bit_counter is
-- signals for count-leading/trailing-zeroes
signal inp : std_ulogic_vector(63 downto 0);
signal inp_r : std_ulogic_vector(63 downto 0);
signal sum : std_ulogic_vector(64 downto 0);
signal msb_r : std_ulogic;
signal sum_r : std_ulogic_vector(64 downto 0);
signal onehot : std_ulogic_vector(63 downto 0);
signal onehot_r : std_ulogic_vector(63 downto 0);
signal edge : std_ulogic_vector(63 downto 0);
signal bitnum : std_ulogic_vector(5 downto 0);
signal cntz : std_ulogic_vector(63 downto 0);

@ -45,16 +46,36 @@ architecture behaviour of bit_counter is
signal pc32 : sixbit2;
signal popcnt : std_ulogic_vector(63 downto 0);

function edgelocation(v: std_ulogic_vector; nbits: natural) return std_ulogic_vector is
variable p: std_ulogic_vector(nbits - 1 downto 0);
variable stride: natural;
variable b: std_ulogic;
variable k: natural;
begin
stride := 2;
for i in 0 to nbits - 1 loop
b := '0';
for j in 0 to (2**nbits / stride) - 1 loop
k := j * stride;
b := b or (v(k + stride - 1) and not v(k + (stride/2) - 1));
end loop;
p(i) := b;
stride := stride * 2;
end loop;
return p;
end function;

begin
countzero_r: process(clk)
begin
if rising_edge(clk) then
msb_r <= sum(64);
onehot_r <= onehot;
inp_r <= inp;
sum_r <= sum;
end if;
end process;

countzero: process(all)
variable bitnum_e, bitnum_o : std_ulogic_vector(5 downto 0);
begin
if is_32bit = '0' then
if count_right = '0' then
@ -72,12 +93,16 @@ begin
end if;

sum <= std_ulogic_vector(unsigned('0' & not inp) + 1);
onehot <= sum(63 downto 0) and inp;

-- The following occurs after a clock edge
bitnum <= bit_number(onehot_r);
edge <= sum_r(63 downto 0) or inp_r;
bitnum_e := edgelocation(edge, 6);
onehot <= sum_r(63 downto 0) and inp_r;
bitnum_o := bit_number(onehot);
bitnum(5 downto 2) <= bitnum_e(5 downto 2);
bitnum(1 downto 0) <= bitnum_o(1 downto 0);

cntz <= 57x"0" & msb_r & bitnum;
cntz <= 57x"0" & sum_r(64) & bitnum;
end process;

popcnt_r: process(clk)

Loading…
Cancel
Save