Merge pull request #82 from antonblanchard/icache-set-assoc

A new set associative icache from Ben
jtag-port
Anton Blanchard 5 years ago committed by GitHub
commit 5dff75219c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -30,7 +30,10 @@ fetch2.o: common.o wishbone_types.o
glibc_random_helpers.o:
glibc_random.o: glibc_random_helpers.o
helpers.o:
icache.o: common.o wishbone_types.o
cache_ram.o:
plru.o:
plru_tb.o: plru.o
icache.o: common.o wishbone_types.o plru.o cache_ram.o
icache_tb.o: common.o wishbone_types.o icache.o simple_ram_behavioural.o
insn_helpers.o:
loadstore1.o: common.o helpers.o
@ -75,6 +78,9 @@ fetch_tb: fetch_tb.o
icache_tb: icache_tb.o
$(GHDL) -e $(GHDLFLAGS) -Wl,simple_ram_behavioural_helpers_c.o $@

plru_tb: plru_tb.o
$(GHDL) -e $(GHDLFLAGS) $@

loadstore_tb: loadstore_tb.o
$(GHDL) -e $(GHDLFLAGS) $@


@ -0,0 +1,46 @@
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.math_real.all;

entity cache_ram is
generic(
ROW_BITS : integer := 16;
WIDTH : integer := 64
);

port(
clk : in std_logic;
rd_en : in std_logic;
rd_addr : in std_logic_vector(ROW_BITS - 1 downto 0);
rd_data : out std_logic_vector(WIDTH - 1 downto 0);
wr_en : in std_logic;
wr_addr : in std_logic_vector(ROW_BITS - 1 downto 0);
wr_data : in std_logic_vector(WIDTH - 1 downto 0)
);

end cache_ram;

architecture rtl of cache_ram is
constant SIZE : integer := 2**ROW_BITS;

type ram_type is array (0 to SIZE - 1) of std_logic_vector(WIDTH - 1 downto 0);
signal ram : ram_type;
attribute ram_style : string;
attribute ram_style of ram : signal is "block";
attribute ram_decomp : string;
attribute ram_decomp of ram : signal is "power";

begin
process(clk)
begin
if rising_edge(clk) then
if wr_en = '1' then
ram(to_integer(unsigned(wr_addr))) <= wr_data;
end if;
if rd_en = '1' then
rd_data <= ram(to_integer(unsigned(rd_addr)));
end if;
end if;
end process;
end;

@ -12,17 +12,16 @@ package common is
carry: std_ulogic;
end record;

type Fetch1ToFetch2Type is record
nia: std_ulogic_vector(63 downto 0);
end record;

type Fetch2ToIcacheType is record
type Fetch1ToIcacheType is record
req: std_ulogic;
addr: std_ulogic_vector(63 downto 0);
stop_mark: std_ulogic;
nia: std_ulogic_vector(63 downto 0);
end record;

type IcacheToFetch2Type is record
ack: std_ulogic;
valid: std_ulogic;
stop_mark: std_ulogic;
nia: std_ulogic_vector(63 downto 0);
insn: std_ulogic_vector(31 downto 0);
end record;


@ -33,11 +33,10 @@ end core;

architecture behave of core is
-- fetch signals
signal fetch1_to_fetch2: Fetch1ToFetch2Type;
signal fetch2_to_decode1: Fetch2ToDecode1Type;

-- icache signals
signal fetch2_to_icache : Fetch2ToIcacheType;
signal fetch1_to_icache : Fetch1ToIcacheType;
signal icache_to_fetch2 : IcacheToFetch2Type;

-- decode signals
@ -74,8 +73,8 @@ architecture behave of core is

-- local signals
signal fetch1_stall_in : std_ulogic;
signal icache_stall_out : std_ulogic;
signal fetch2_stall_in : std_ulogic;
signal fetch2_stall_out : std_ulogic;
signal decode1_stall_in : std_ulogic;
signal decode2_stall_out : std_ulogic;

@ -107,44 +106,44 @@ begin
rst => core_rst,
stall_in => fetch1_stall_in,
flush_in => flush,
e_in => execute1_to_fetch1,
f_out => fetch1_to_fetch2
);

fetch1_stall_in <= fetch2_stall_out or decode2_stall_out;

fetch2_0: entity work.fetch2
port map (
clk => clk,
rst => core_rst,
stall_in => fetch2_stall_in,
stall_out => fetch2_stall_out,
flush_in => flush,
i_in => icache_to_fetch2,
i_out => fetch2_to_icache,
stop_in => dbg_core_stop,
f_in => fetch1_to_fetch2,
f_out => fetch2_to_decode1
e_in => execute1_to_fetch1,
i_out => fetch1_to_icache
);

fetch2_stall_in <= decode2_stall_out;
fetch1_stall_in <= icache_stall_out or decode2_stall_out;

icache_0: entity work.icache
generic map(
LINE_SIZE_DW => 8,
NUM_LINES => 16
LINE_SIZE => 64,
NUM_LINES => 16,
NUM_WAYS => 2
)
port map(
clk => clk,
rst => icache_rst,
i_in => fetch2_to_icache,
i_in => fetch1_to_icache,
i_out => icache_to_fetch2,
flush_in => flush,
stall_out => icache_stall_out,
wishbone_out => wishbone_insn_out,
wishbone_in => wishbone_insn_in
);

icache_rst <= rst or dbg_icache_rst;

fetch2_0: entity work.fetch2
port map (
clk => clk,
rst => core_rst,
stall_in => fetch2_stall_in,
flush_in => flush,
i_in => icache_to_fetch2,
f_out => fetch2_to_decode1
);

fetch2_stall_in <= decode2_stall_out;

decode1_0: entity work.decode1
port map (
clk => clk,
@ -274,7 +273,7 @@ begin
icache_rst => dbg_icache_rst,
terminate => terminate,
core_stopped => dbg_core_is_stopped,
nia => fetch1_to_fetch2.nia,
nia => fetch1_to_icache.nia,
terminated_out => terminated_out
);


@ -91,15 +91,15 @@ begin
reg_write: process(clk)
begin
if rising_edge(clk) then
if (rst) then
stopping <= '0';
terminated <= '0';
else
-- Reset the 1-cycle "do" signals
do_step <= '0';
do_reset <= '0';
do_icreset <= '0';

if (rst) then
stopping <= '0';
terminated <= '0';
else
-- Edge detect on dmi_req for 1-shot pulses
dmi_req_1 <= dmi_req;
if dmi_req = '1' and dmi_req_1 = '0' then

@ -16,59 +16,111 @@ entity fetch1 is
-- Control inputs:
stall_in : in std_ulogic;
flush_in : in std_ulogic;
stop_in : in std_ulogic;

-- redirect from execution unit
e_in : in Execute1ToFetch1Type;

-- fetch data out
f_out : out Fetch1ToFetch2Type
-- Request to icache
i_out : out Fetch1ToIcacheType
);
end entity fetch1;

architecture behaviour of fetch1 is
type reg_internal_type is record
nia_next : std_ulogic_vector(63 downto 0);
type stop_state_t is (RUNNING, STOPPED, RESTARTING);
type reg_internal_t is record
stop_state: stop_state_t;
end record;
signal r_int, rin_int : reg_internal_type;
signal r, rin : Fetch1ToFetch2Type;
signal r, r_next : Fetch1ToIcacheType;
signal r_int, r_next_int : reg_internal_t;
begin

regs : process(clk)
begin
if rising_edge(clk) then
r <= rin;
r_int <= rin_int;
if r /= r_next then
report "fetch1 rst:" & std_ulogic'image(rst) &
" R:" & std_ulogic'image(e_in.redirect) &
" S:" & std_ulogic'image(stall_in) &
" T:" & std_ulogic'image(stop_in) &
" nia:" & to_hstring(r_next.nia) &
" SM:" & std_ulogic'image(r_next.stop_mark);
end if;
r <= r_next;
r_int <= r_next_int;
end if;
end process;

comb : process(all)
variable v : Fetch1ToFetch2Type;
variable v_int : reg_internal_type;
variable v : Fetch1ToIcacheType;
variable v_int : reg_internal_t;
variable increment : boolean;
begin
v := r;
v_int := r_int;

if stall_in = '0' then
v.nia := r_int.nia_next;
end if;

if e_in.redirect = '1' then
v.nia := e_in.redirect_nia;
end if;

if rst = '1' then
v.nia := RESET_ADDRESS;
v_int.stop_state := RUNNING;
elsif e_in.redirect = '1' then
v.nia := e_in.redirect_nia;
elsif stall_in = '0' then

-- For debug stop/step to work properly we need a little bit of
-- trickery here. If we just stop incrementing and send stop marks
-- when stop_in is set, then we'll increment on the cycle it clears
-- and end up never executing the instruction we were stopped on.
--
-- Avoid this along with the opposite issue when stepping (stop is
-- cleared for only one cycle) is handled by the state machine below
--
-- By default, increment addresses
increment := true;
case v_int.stop_state is
when RUNNING =>
-- If we are running and stop_in is set, then stop incrementing,
-- we are now stopped.
if stop_in = '1' then
increment := false;
v_int.stop_state := STOPPED;
end if;
when STOPPED =>
-- When stopped, never increment. If stop is cleared, go to state
-- "restarting" but still don't increment that cycle. stop_in is
-- now 0 so we'll send the NIA down without a stop mark.
increment := false;
if stop_in = '0' then
v_int.stop_state := RESTARTING;
end if;
when RESTARTING =>
-- We have just sent the NIA down, we can start incrementing again.
-- If stop_in is still not set, go back to running normally.
-- If stop_in is set again (that was a one-cycle "step"), go
-- back to "stopped" state which means we'll stop incrementing
-- on the next cycle. This ensures we increment the PC once after
-- sending one instruction without a stop mark. Since stop_in is
-- now set, the new PC will be sent with a stop mark and thus not
-- executed.
if stop_in = '0' then
v_int.stop_state := RUNNING;
else
v_int.stop_state := STOPPED;
end if;
end case;

v_int.nia_next := std_logic_vector(unsigned(v.nia) + 4);
if increment then
v.nia := std_logic_vector(unsigned(v.nia) + 4);
end if;
end if;

-- Update registers
rin <= v;
rin_int <= v_int;
v.req := not rst;
v.stop_mark := stop_in;

-- Update outputs
f_out <= r;
r_next <= v;
r_next_int <= v_int;

report "fetch1 R:" & std_ulogic'image(e_in.redirect) & " v.nia:" & to_hstring(v.nia) & " f_out.nia:" & to_hstring(f_out.nia);
-- Update outputs to the icache
i_out <= r;

end process;


@ -12,55 +12,107 @@ entity fetch2 is
rst : in std_ulogic;

stall_in : in std_ulogic;
stall_out : out std_ulogic;

flush_in : in std_ulogic;
stop_in : in std_ulogic;

-- Results from icache
i_in : in IcacheToFetch2Type;
i_out : out Fetch2ToIcacheType;

f_in : in Fetch1ToFetch2Type;

-- Output to decode
f_out : out Fetch2ToDecode1Type
);
end entity fetch2;

architecture behaviour of fetch2 is

-- The icache cannot stall, so we need to stash a cycle
-- of output from it when we stall.
type reg_internal_type is record
stash : IcacheToFetch2Type;
stash_valid : std_ulogic;
stopped : std_ulogic;
end record;

signal r_int, rin_int : reg_internal_type;
signal r, rin : Fetch2ToDecode1Type;

begin
regs : process(clk)
begin
if rising_edge(clk) then

if (r /= rin) then
report "fetch2 rst:" & std_ulogic'image(rst) &
" S:" & std_ulogic'image(stall_in) &
" F:" & std_ulogic'image(flush_in) &
" T:" & std_ulogic'image(rin.stop_mark) &
" V:" & std_ulogic'image(rin.valid) &
" nia:" & to_hstring(rin.nia);
end if;

-- Output state remains unchanged on stall, unless we are flushing
if rst = '1' or flush_in = '1' or stall_in = '0' then
r <= rin;
end if;

-- Internal state is updated on every clock
r_int <= rin_int;
end if;
end process;

comb : process(all)
variable v : Fetch2ToDecode1Type;
variable v_int : reg_internal_type;
variable v_i_in : IcacheToFetch2Type;
begin
v := r;
v_int := r_int;

-- asynchronous icache lookup
i_out.req <= '1';
i_out.addr <= f_in.nia;
v.valid := i_in.ack;
v.nia := f_in.nia;
v.insn := i_in.insn;
stall_out <= stop_in or not i_in.ack;
-- If stalling, stash away the current input from the icache
if stall_in = '1' and v_int.stash_valid = '0' then
v_int.stash := i_in;
v_int.stash_valid := '1';
end if;

-- If unstalling, source input from the stash and invalidate it,
-- otherwise source normally from the icache.
--
v_i_in := i_in;
if v_int.stash_valid = '1' and stall_in = '0' then
v_i_in := v_int.stash;
v_int.stash_valid := '0';
end if;

if flush_in = '1' or stop_in = '1' then
v.valid := v_i_in.valid;
v.stop_mark := v_i_in.stop_mark;
v.nia := v_i_in.nia;
v.insn := v_i_in.insn;

-- Clear stash internal valid bit on flush. We still mark
-- the stash itself as valid since we still want to override
-- whatever comes form icache when unstalling, but we'll
-- override it with something invalid.
--
if flush_in = '1' then
v_int.stash.valid := '0';
end if;

-- If we are flushing or the instruction comes with a stop mark
-- we tag it as invalid so it doesn't get decoded and executed
if flush_in = '1' or v.stop_mark = '1' then
v.valid := '0';
end if;
v.stop_mark := stop_in;

-- Clear stash on reset
if rst = '1' then
v_int.stash_valid := '0';
end if;

-- Update registers
rin <= v;
rin_int <= v_int;

-- Update outputs
f_out <= r;
end process;

end architecture behaviour;

@ -1,3 +1,21 @@
--
-- Set associative icache
--
-- TODO (in no specific order):
--
-- * Add debug interface to inspect cache content
-- * Add snoop/invalidate path
-- * Add multi-hit error detection
-- * Pipelined bus interface (wb or axi)
-- * Maybe add parity ? There's a few bits free in each BRAM row on Xilinx
-- * Add optimization: service hits on partially loaded lines
-- * Add optimization: (maybe) interrupt reload on fluch/redirect
-- * Check if playing with the geometry of the cache tags allow for more
-- efficient use of distributed RAM and less logic/muxes. Currently we
-- write TAG_BITS width which may not match full ram blocks and might
-- cause muxes to be inferred for "partial writes".
-- * Check if making the read size of PLRU a ROM helps utilization
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
@ -10,18 +28,23 @@ use work.wishbone_types.all;

entity icache is
generic (
-- Line size in 64bit doublewords
LINE_SIZE_DW : natural := 8;
-- Number of lines
NUM_LINES : natural := 32
-- Line size in bytes
LINE_SIZE : positive := 64;
-- Number of lines in a set
NUM_LINES : positive := 32;
-- Number of ways
NUM_WAYS : positive := 4
);
port (
clk : in std_ulogic;
rst : in std_ulogic;

i_in : in Fetch2ToIcacheType;
i_in : in Fetch1ToIcacheType;
i_out : out IcacheToFetch2Type;

stall_out : out std_ulogic;
flush_in : in std_ulogic;

wishbone_out : out wishbone_master_out;
wishbone_in : in wishbone_slave_out
);
@ -48,126 +71,423 @@ architecture rtl of icache is
end if;
end function;

constant LINE_SIZE : natural := LINE_SIZE_DW*8;
constant OFFSET_BITS : natural := log2(LINE_SIZE);
-- BRAM organisation: We never access more than wishbone_data_bits at
-- a time so to save resources we make the array only that wide, and
-- use consecutive indices for to make a cache "line"
--
-- ROW_SIZE is the width in bytes of the BRAM (based on WB, so 64-bits)
constant ROW_SIZE : natural := wishbone_data_bits / 8;
-- ROW_PER_LINE is the number of row (wishbone transactions) in a line
constant ROW_PER_LINE : natural := LINE_SIZE / ROW_SIZE;
-- BRAM_ROWS is the number of rows in BRAM needed to represent the full
-- icache
constant BRAM_ROWS : natural := NUM_LINES * ROW_PER_LINE;
-- INSN_PER_ROW is the number of 32bit instructions per BRAM row
constant INSN_PER_ROW : natural := wishbone_data_bits / 32;
-- Bit fields counts in the address

-- INSN_BITS is the number of bits to select an instruction in a row
constant INSN_BITS : natural := log2(INSN_PER_ROW);
-- ROW_BITS is the number of bits to select a row
constant ROW_BITS : natural := log2(BRAM_ROWS);
-- ROW_LINEBITS is the number of bits to select a row within a line
constant ROW_LINEBITS : natural := log2(ROW_PER_LINE);
-- LINE_OFF_BITS is the number of bits for the offset in a cache line
constant LINE_OFF_BITS : natural := log2(LINE_SIZE);
-- ROW_OFF_BITS is the number of bits for the offset in a row
constant ROW_OFF_BITS : natural := log2(ROW_SIZE);
-- INDEX_BITS is the number if bits to select a cache line
constant INDEX_BITS : natural := log2(NUM_LINES);
constant TAG_BITS : natural := 64 - OFFSET_BITS - INDEX_BITS;
-- TAG_BITS is the number of bits of the tag part of the address
constant TAG_BITS : natural := 64 - LINE_OFF_BITS - INDEX_BITS;
-- WAY_BITS is the number of bits to select a way
constant WAY_BITS : natural := log2(NUM_WAYS);

-- Example of layout for 32 lines of 64 bytes:
--
-- .. tag |index| line |
-- .. | row | |
-- .. | | | |00| zero (2)
-- .. | | |-| | INSN_BITS (1)
-- .. | |---| | ROW_LINEBITS (3)
-- .. | |--- - --| LINE_OFF_BITS (6)
-- .. | |- --| ROW_OFF_BITS (3)
-- .. |----- ---| | ROW_BITS (8)
-- .. |-----| | INDEX_BITS (5)
-- .. --------| | TAG_BITS (53)

subtype row_t is integer range 0 to BRAM_ROWS-1;
subtype index_t is integer range 0 to NUM_LINES-1;
subtype way_t is integer range 0 to NUM_WAYS-1;

-- The cache data BRAM organized as described above for each way
subtype cache_row_t is std_ulogic_vector(wishbone_data_bits-1 downto 0);

subtype cacheline_type is std_logic_vector((LINE_SIZE*8)-1 downto 0);
type cacheline_array is array(0 to NUM_LINES-1) of cacheline_type;
-- The cache tags LUTRAM has a row per set. Vivado is a pain and will
-- not handle a clean (commented) definition of the cache tags as a 3d
-- memory. For now, work around it by putting all the tags
subtype cache_tag_t is std_logic_vector(TAG_BITS-1 downto 0);
-- type cache_tags_set_t is array(way_t) of cache_tag_t;
-- type cache_tags_array_t is array(index_t) of cache_tags_set_t;
constant TAG_RAM_WIDTH : natural := TAG_BITS * NUM_WAYS;
subtype cache_tags_set_t is std_logic_vector(TAG_RAM_WIDTH-1 downto 0);
type cache_tags_array_t is array(index_t) of cache_tags_set_t;

subtype cacheline_tag_type is std_logic_vector(TAG_BITS-1 downto 0);
type cacheline_tag_array is array(0 to NUM_LINES-1) of cacheline_tag_type;
-- The cache valid bits
subtype cache_way_valids_t is std_ulogic_vector(NUM_WAYS-1 downto 0);
type cache_valids_t is array(index_t) of cache_way_valids_t;

signal cachelines : cacheline_array := (others => (others => '0'));
signal tags : cacheline_tag_array := (others => (others => '0'));
signal tags_valid : std_ulogic_vector(NUM_LINES-1 downto 0) := (others => '0');
-- Storage. Hopefully "cache_rows" is a BRAM, the rest is LUTs
signal cache_tags : cache_tags_array_t;
signal cache_valids : cache_valids_t;

attribute ram_style : string;
attribute ram_style of cachelines : signal is "block";
attribute ram_style of cache_tags : signal is "distributed";

attribute ram_decomp : string;
attribute ram_decomp of cachelines : signal is "power";
-- Cache reload state machine
type state_t is (IDLE, WAIT_ACK);

type state_type is (IDLE, WAIT_ACK);
type reg_internal_t is record
-- Cache hit state (Latches for 1 cycle BRAM access)
hit_way : way_t;
hit_nia : std_ulogic_vector(63 downto 0);
hit_smark : std_ulogic;
hit_valid : std_ulogic;

type reg_internal_type is record
state : state_type;
w : wishbone_master_out;
store_index : integer range 0 to (NUM_LINES-1);
store_word : integer range 0 to (LINE_SIZE-1);
-- Cache miss state (reload state machine)
state : state_t;
wb : wishbone_master_out;
store_way : way_t;
store_index : index_t;
end record;

signal r : reg_internal_type;
signal r : reg_internal_t;

-- Async signals on incoming request
signal req_index : index_t;
signal req_row : row_t;
signal req_hit_way : way_t;
signal req_tag : cache_tag_t;
signal req_is_hit : std_ulogic;
signal req_is_miss : std_ulogic;

-- Cache RAM interface
type cache_ram_out_t is array(way_t) of cache_row_t;
signal cache_out : cache_ram_out_t;

-- PLRU output interface
type plru_out_t is array(index_t) of std_ulogic_vector(WAY_BITS-1 downto 0);
signal plru_victim : plru_out_t;

-- Return the cache line index (tag index) for an address
function get_index(addr: std_ulogic_vector(63 downto 0)) return index_t is
begin
return to_integer(unsigned(addr(63-TAG_BITS downto LINE_OFF_BITS)));
end;

-- Return the cache row index (data memory) for an address
function get_row(addr: std_ulogic_vector(63 downto 0)) return row_t is
begin
return to_integer(unsigned(addr(63-TAG_BITS downto ROW_OFF_BITS)));
end;

-- Returns whether this is the last row of a line
function is_last_row(addr: std_ulogic_vector(63 downto 0)) return boolean is
constant ones : std_ulogic_vector(ROW_LINEBITS-1 downto 0) := (others => '1');
begin
return addr(LINE_OFF_BITS-1 downto ROW_OFF_BITS) = ones;
end;

-- Return the address of the next row in the current cache line
function next_row_addr(addr: std_ulogic_vector(63 downto 0)) return std_ulogic_vector is
variable row_idx : std_ulogic_vector(ROW_LINEBITS-1 downto 0);
variable result : std_ulogic_vector(63 downto 0);
begin
-- Is there no simpler way in VHDL to generate that 3 bits adder ?
row_idx := addr(LINE_OFF_BITS-1 downto ROW_OFF_BITS);
row_idx := std_ulogic_vector(unsigned(row_idx) + 1);
result := addr;
result(LINE_OFF_BITS-1 downto ROW_OFF_BITS) := row_idx;
return result;
end;

signal read_index : integer range 0 to NUM_LINES-1;
signal read_tag : std_ulogic_vector(63-OFFSET_BITS-INDEX_BITS downto 0);
signal read_miss : boolean;
-- Read the instruction word for the given address in the current cache row
function read_insn_word(addr: std_ulogic_vector(63 downto 0);
data: cache_row_t) return std_ulogic_vector is
variable word: integer range 0 to INSN_PER_ROW-1;
begin
word := to_integer(unsigned(addr(INSN_BITS+2-1 downto 2)));
return data(31+word*32 downto word*32);
end;

function get_index(addr: std_ulogic_vector(63 downto 0)) return integer is
-- Get the tag value from the address
function get_tag(addr: std_ulogic_vector(63 downto 0)) return cache_tag_t is
begin
return to_integer(unsigned(addr((OFFSET_BITS+INDEX_BITS-1) downto OFFSET_BITS)));
return addr(63 downto 64-TAG_BITS);
end;

function get_word(addr: std_ulogic_vector(63 downto 0); data: cacheline_type) return std_ulogic_vector is
variable word : integer;
-- Read a tag from a tag memory row
function read_tag(way: way_t; tagset: cache_tags_set_t) return cache_tag_t is
begin
word := to_integer(unsigned(addr(OFFSET_BITS-1 downto 2)));
return data((word+1)*32-1 downto word*32);
return tagset((way+1) * TAG_BITS - 1 downto way * TAG_BITS);
end;

function get_tag(addr: std_ulogic_vector(63 downto 0)) return std_ulogic_vector is
-- Write a tag to tag memory row
procedure write_tag(way: in way_t; tagset: inout cache_tags_set_t;
tag: cache_tag_t) is
begin
return addr(63 downto OFFSET_BITS+INDEX_BITS);
tagset((way+1) * TAG_BITS - 1 downto way * TAG_BITS) := tag;
end;

begin

assert LINE_SIZE mod ROW_SIZE = 0;
assert ispow2(LINE_SIZE) report "LINE_SIZE not power of 2" severity FAILURE;
assert ispow2(NUM_LINES) report "NUM_LINES not power of 2" severity FAILURE;
assert ispow2(ROW_PER_LINE) report "ROW_PER_LINE not power of 2" severity FAILURE;
assert ispow2(INSN_PER_ROW) report "INSN_PER_ROW not power of 2" severity FAILURE;
assert (ROW_BITS = INDEX_BITS + ROW_LINEBITS)
report "geometry bits don't add up" severity FAILURE;
assert (LINE_OFF_BITS = ROW_OFF_BITS + ROW_LINEBITS)
report "geometry bits don't add up" severity FAILURE;
assert (64 = TAG_BITS + INDEX_BITS + LINE_OFF_BITS)
report "geometry bits don't add up" severity FAILURE;
assert (64 = TAG_BITS + ROW_BITS + ROW_OFF_BITS)
report "geometry bits don't add up" severity FAILURE;

icache_read : process(all)
debug: process
begin
read_index <= get_index(i_in.addr);
read_tag <= get_tag(i_in.addr);
read_miss <= false;
report "ROW_SIZE = " & natural'image(ROW_SIZE);
report "ROW_PER_LINE = " & natural'image(ROW_PER_LINE);
report "BRAM_ROWS = " & natural'image(BRAM_ROWS);
report "INSN_PER_ROW = " & natural'image(INSN_PER_ROW);
report "INSN_BITS = " & natural'image(INSN_BITS);
report "ROW_BITS = " & natural'image(ROW_BITS);
report "ROW_LINEBITS = " & natural'image(ROW_LINEBITS);
report "LINE_OFF_BITS = " & natural'image(LINE_OFF_BITS);
report "ROW_OFF_BITS = " & natural'image(ROW_OFF_BITS);
report "INDEX_BITS = " & natural'image(INDEX_BITS);
report "TAG_BITS = " & natural'image(TAG_BITS);
report "WAY_BITS = " & natural'image(WAY_BITS);
wait;
end process;

i_out.ack <= '0';
i_out.insn <= get_word(i_in.addr, cachelines(read_index));
-- Generate a cache RAM for each way
rams: for i in 0 to NUM_WAYS-1 generate
signal do_write : std_ulogic;
signal rd_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
signal wr_addr : std_ulogic_vector(ROW_BITS-1 downto 0);
signal dout : cache_row_t;
begin
way: entity work.cache_ram
generic map (
ROW_BITS => ROW_BITS,
WIDTH => wishbone_data_bits
)
port map (
clk => clk,
rd_en => '1', -- fixme
rd_addr => rd_addr,
rd_data => dout,
wr_en => do_write,
wr_addr => wr_addr,
wr_data => wishbone_in.dat
);
process(all)
begin
do_write <= '0';
if wishbone_in.ack = '1' and r.store_way = i then
do_write <= '1';
end if;
cache_out(i) <= dout;
rd_addr <= std_ulogic_vector(to_unsigned(req_row, ROW_BITS));
wr_addr <= std_ulogic_vector(to_unsigned(get_row(r.wb.adr), ROW_BITS));
end process;
end generate;
if i_in.req = '1' then
if (tags_valid(read_index) = '1') and (tags(read_index) = read_tag) then
-- report hit asynchronously
i_out.ack <= '1';
-- Generate PLRUs
maybe_plrus: if NUM_WAYS > 1 generate
begin
plrus: for i in 0 to NUM_LINES-1 generate
-- PLRU interface
signal plru_acc : std_ulogic_vector(WAY_BITS-1 downto 0);
signal plru_acc_en : std_ulogic;
signal plru_out : std_ulogic_vector(WAY_BITS-1 downto 0);
begin
plru : entity work.plru
generic map (
BITS => WAY_BITS
)
port map (
clk => clk,
rst => rst,
acc => plru_acc,
acc_en => plru_acc_en,
lru => plru_out
);

process(req_index, req_is_hit, req_hit_way, req_is_hit, plru_out)
begin
-- PLRU interface
if req_is_hit = '1' and req_index = i then
plru_acc_en <= req_is_hit;
else
read_miss <= true;
plru_acc_en <= '0';
end if;
plru_acc <= std_ulogic_vector(to_unsigned(req_hit_way, WAY_BITS));
plru_victim(i) <= plru_out;
end process;
end generate;
end generate;

-- Cache hit detection, output to fetch2 and other misc logic
icache_comb : process(all)
variable is_hit : std_ulogic;
variable hit_way : way_t;
begin
-- Extract line, row and tag from request
req_index <= get_index(i_in.nia);
req_row <= get_row(i_in.nia);
req_tag <= get_tag(i_in.nia);

-- Test if pending request is a hit on any way
hit_way := 0;
is_hit := '0';
for i in way_t loop
if read_tag(i, cache_tags(req_index)) = req_tag and
cache_valids(req_index)(i) = '1' then
hit_way := i;
is_hit := '1';
end if;
end loop;

-- Generate the "hit" and "miss" signals for the synchronous blocks
req_is_hit <= i_in.req and is_hit and not flush_in;
req_is_miss <= i_in.req and not is_hit and not flush_in;
req_hit_way <= hit_way;

-- Output instruction from current cache row
--
-- Note: This is a mild violation of our design principle of having pipeline
-- stages output from a clean latch. In this case we output the result
-- of a mux. The alternative would be output an entire row which
-- I prefer not to do just yet as it would force fetch2 to know about
-- some of the cache geometry information.
--
i_out.insn <= read_insn_word(r.hit_nia, cache_out(r.hit_way));
i_out.valid <= r.hit_valid;
i_out.nia <= r.hit_nia;
i_out.stop_mark <= r.hit_smark;

-- Stall fetch1 if we have a miss
stall_out <= not is_hit;

-- Wishbone requests output (from the cache miss reload machine)
wishbone_out <= r.wb;
end process;

wishbone_out <= r.w;
-- Cache hit synchronous machine
icache_hit : process(clk)
begin
if rising_edge(clk) then
-- On a hit, latch the request for the next cycle, when the BRAM data
-- will be available on the cache_out output of the corresponding way
--
if req_is_hit = '1' then
r.hit_way <= req_hit_way;
r.hit_nia <= i_in.nia;
r.hit_smark <= i_in.stop_mark;
r.hit_valid <= '1';

report "cache hit nia:" & to_hstring(i_in.nia) &
" SM:" & std_ulogic'image(i_in.stop_mark) &
" idx:" & integer'image(req_index) &
" tag:" & to_hstring(req_tag) &
" way: " & integer'image(req_hit_way);
else
r.hit_valid <= '0';

icache_write : process(clk)
-- Send stop marks down regardless of validity
r.hit_smark <= i_in.stop_mark;
end if;
end if;
end process;

-- Cache miss/reload synchronous machine
icache_miss : process(clk)
variable way : integer range 0 to NUM_WAYS-1;
variable tagset : cache_tags_set_t;
begin
if rising_edge(clk) then
-- On reset, clear all valid bits to force misses
if rst = '1' then
tags_valid <= (others => '0');
for i in index_t loop
cache_valids(i) <= (others => '0');
end loop;
r.state <= IDLE;
r.w.cyc <= '0';
r.w.stb <= '0';
end if;

r.w.dat <= (others => '0');
r.w.sel <= "11111111";
r.w.we <= '0';
r.wb.cyc <= '0';
r.wb.stb <= '0';

-- We only ever do reads on wishbone
r.wb.dat <= (others => '0');
r.wb.sel <= "11111111";
r.wb.we <= '0';
else
-- Main state machine
case r.state is
when IDLE =>
if read_miss = true then
r.state <= WAIT_ACK;
r.store_word <= 0;
r.store_index <= read_index;
-- We need to read a cache line
if req_is_miss = '1' then
way := to_integer(unsigned(plru_victim(req_index)));

report "cache miss nia:" & to_hstring(i_in.nia) &
" SM:" & std_ulogic'image(i_in.stop_mark) &
" idx:" & integer'image(req_index) &
" way:" & integer'image(way) &
" tag:" & to_hstring(req_tag);

tags(read_index) <= read_tag;
tags_valid(read_index) <= '0';
-- Force misses on that way while reloading that line
cache_valids(req_index)(way) <= '0';

r.w.adr <= i_in.addr(63 downto OFFSET_BITS) & (OFFSET_BITS-1 downto 0 => '0');
r.w.cyc <= '1';
r.w.stb <= '1';
-- Store new tag in selected way
for i in 0 to NUM_WAYS-1 loop
if i = way then
tagset := cache_tags(req_index);
write_tag(i, tagset, req_tag);
cache_tags(req_index) <= tagset;
end if;
end loop;

-- Keep track of our index and way for subsequent stores
r.store_index <= req_index;
r.store_way <= way;

-- Prep for first wishbone read. We calculate the address of
-- the start of the cache line
--
r.wb.adr <= i_in.nia(63 downto LINE_OFF_BITS) &
(LINE_OFF_BITS-1 downto 0 => '0');
r.wb.cyc <= '1';
r.wb.stb <= '1';

r.state <= WAIT_ACK;
end if;
when WAIT_ACK =>
if wishbone_in.ack = '1' then
cachelines(r.store_index)((r.store_word+1)*64-1 downto ((r.store_word)*64)) <= wishbone_in.dat;
r.store_word <= r.store_word + 1;

if r.store_word = (LINE_SIZE_DW-1) then
-- That was the last word ? We are done
if is_last_row(r.wb.adr) then
cache_valids(r.store_index)(way) <= '1';
r.wb.cyc <= '0';
r.wb.stb <= '0';
r.state <= IDLE;
tags_valid(r.store_index) <= '1';
r.w.cyc <= '0';
r.w.stb <= '0';
else
r.w.adr(OFFSET_BITS-1 downto 3) <= std_ulogic_vector(to_unsigned(r.store_word+1, OFFSET_BITS-3));
-- Otherwise, calculate the next row address
r.wb.adr <= next_row_addr(r.wb.adr);
end if;
end if;
end case;
end if;
end if;
end process;
end;

@ -12,7 +12,7 @@ architecture behave of icache_tb is
signal clk : std_ulogic;
signal rst : std_ulogic;

signal i_out : Fetch2ToIcacheType;
signal i_out : Fetch1ToIcacheType;
signal i_in : IcacheToFetch2Type;

signal wb_bram_in : wishbone_master_out;
@ -22,7 +22,7 @@ architecture behave of icache_tb is
begin
icache0: entity work.icache
generic map(
LINE_SIZE_DW => 8,
LINE_SIZE => 64,
NUM_LINES => 4
)
port map(
@ -30,6 +30,7 @@ begin
rst => rst,
i_in => i_out,
i_out => i_in,
flush_in => '0',
wishbone_out => wb_bram_in,
wishbone_in => wb_bram_out
);
@ -66,16 +67,16 @@ begin
stim: process
begin
i_out.req <= '0';
i_out.addr <= (others => '0');
i_out.nia <= (others => '0');

wait for 4*clk_period;

i_out.req <= '1';
i_out.addr <= x"0000000000000004";
i_out.nia <= x"0000000000000004";

wait for 30*clk_period;

assert i_in.ack = '1';
assert i_in.valid = '1';
assert i_in.insn = x"00000001";

i_out.req <= '0';
@ -84,31 +85,31 @@ begin

-- hit
i_out.req <= '1';
i_out.addr <= x"0000000000000008";
wait for clk_period/2;
assert i_in.ack = '1';
i_out.nia <= x"0000000000000008";
wait for clk_period;
assert i_in.valid = '1';
assert i_in.insn = x"00000002";
wait for clk_period/2;
wait for clk_period;

-- another miss
i_out.req <= '1';
i_out.addr <= x"0000000000000040";
i_out.nia <= x"0000000000000040";

wait for 30*clk_period;

assert i_in.ack = '1';
assert i_in.valid = '1';
assert i_in.insn = x"00000010";

-- test something that aliases
i_out.req <= '1';
i_out.addr <= x"0000000000000100";
wait for clk_period/2;
assert i_in.ack = '0';
wait for clk_period/2;
i_out.nia <= x"0000000000000100";
wait for clk_period;
assert i_in.valid = '0';
wait for clk_period;

wait for 30*clk_period;

assert i_in.ack = '1';
assert i_in.valid = '1';
assert i_in.insn = x"00000040";

i_out.req <= '0';

@ -29,6 +29,8 @@ filesets:
- insn_helpers.vhdl
- core.vhdl
- icache.vhdl
- plru.vhdl
- cache_ram.vhdl
- core_debug.vhdl
file_type : vhdlSource-2008


@ -0,0 +1,77 @@
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.math_real.all;

entity plru is
generic (
BITS : positive := 2
)
;
port (
clk : in std_ulogic;
rst : in std_ulogic;

acc : in std_ulogic_vector(BITS-1 downto 0);
acc_en : in std_ulogic;
lru : out std_ulogic_vector(BITS-1 downto 0)
);
end entity plru;

architecture rtl of plru is
constant count : positive := 2 ** BITS - 1;
subtype node_t is integer range 0 to count;
type tree_t is array(node_t) of std_ulogic;

signal tree: tree_t;
begin

-- XXX Check if we can turn that into a little ROM instead that
-- takes the tree bit vector and returns the LRU. See if it's better
-- in term of FPGA resouces usage...
get_lru: process(all)
variable node : node_t;
begin
node := 0;
for i in 0 to BITS-1 loop
-- report "GET: i:" & integer'image(i) & " node:" & integer'image(node) & " val:" & std_ulogic'image(tree(node));
lru(BITS-1-i) <= tree(node);
if i /= BITS-1 then
node := node * 2;
if tree(node) = '1' then
node := node + 2;
else
node := node + 1;
end if;
end if;
end loop;
end process;

update_lru: process(clk)
variable node : node_t;
variable abit : std_ulogic;
begin
if rising_edge(clk) then
if rst = '1' then
tree <= (others => '0');
elsif acc_en = '1' then
node := 0;
for i in 0 to BITS-1 loop
abit := acc(BITS-1-i);
tree(node) <= not abit;
-- report "UPD: i:" & integer'image(i) & " node:" & integer'image(node) & " val" & std_ulogic'image(not abit);
if i /= BITS-1 then
node := node * 2;
if abit = '1' then
node := node + 2;
else
node := node + 1;
end if;
end if;
end loop;
end if;
end if;
end process;
end;


@ -0,0 +1,109 @@
library ieee;
use ieee.std_logic_1164.all;

library work;
use work.common.all;
use work.wishbone_types.all;

entity plru_tb is
end plru_tb;

architecture behave of plru_tb is
signal clk : std_ulogic;
signal rst : std_ulogic;

constant clk_period : time := 10 ns;

signal acc_en : std_ulogic;
signal acc : std_ulogic_vector(2 downto 0);
signal lru : std_ulogic_vector(2 downto 0);

begin
plru0: entity work.plru
generic map(
BITS => 3
)
port map(
clk => clk,
rst => rst,

acc => acc,
acc_en => acc_en,
lru => lru
);

clk_process: process
begin
clk <= '0';
wait for clk_period/2;
clk <= '1';
wait for clk_period/2;
end process;

rst_process: process
begin
rst <= '1';
wait for 2*clk_period;
rst <= '0';
wait;
end process;

stim: process
begin
wait for 4*clk_period;

report "accessing 1:";
acc <= "001";
acc_en <= '1';
wait for clk_period;
report "lru:" & to_hstring(lru);

report "accessing 2:";
acc <= "010";
wait for clk_period;
report "lru:" & to_hstring(lru);

report "accessing 7:";
acc <= "111";
wait for clk_period;
report "lru:" & to_hstring(lru);

report "accessing 4:";
acc <= "100";
wait for clk_period;
report "lru:" & to_hstring(lru);

report "accessing 3:";
acc <= "011";
wait for clk_period;
report "lru:" & to_hstring(lru);

report "accessing 5:";
acc <= "101";
wait for clk_period;
report "lru:" & to_hstring(lru);

report "accessing 3:";
acc <= "011";
wait for clk_period;
report "lru:" & to_hstring(lru);

report "accessing 5:";
acc <= "101";
wait for clk_period;
report "lru:" & to_hstring(lru);

report "accessing 6:";
acc <= "110";
wait for clk_period;
report "lru:" & to_hstring(lru);

report "accessing 0:";
acc <= "000";
wait for clk_period;
report "lru:" & to_hstring(lru);

assert false report "end of test" severity failure;
wait;
end process;
end;
Loading…
Cancel
Save