Commit Graph

16 Commits (31b55b2a75cd439a00c5eeb3f246e4c2805137ed)

Author SHA1 Message Date
Paul Mackerras 4db1676ef8 dcache: Don't assert on dcbz cache hit
We can hit the assert for req_op = OP_STORE_HIT and reloading in the
case of dcbz, since it looks like a store.  Therefore we need to
exclude that case from the assert.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras 041d6bef60 dcache: Implement the dcbz instruction
This adds logic to dcache and loadstore1 to implement dcbz.  For now
it zeroes a single cache line (by default 64 bytes), not 128 bytes
like IBM Power processors do.

The dcbz operation is performed much like a load miss, except that
we are writing zeroes to memory instead of reading.  As each ack
comes back, we write zeroes to the BRAM instead of data from memory.
In this way we zero the line in memory and also zero the line of
cache memory, establishing the line in the cache if it wasn't already
resident.  If it was already resident then we overwrite the existing
line in the cache.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras b349cc891a loadstore1: Move logic from dcache to loadstore1
So that the dcache could in future be used by an MMU, this moves
logic to do with data formatting, rA updates for update-form
instructions, and handling of unaligned loads and stores out of
dcache and into loadstore1.  For now, dcache connects only to
loadstore1, and loadstore1 now has the connection to writeback.

Dcache generates a stall signal to loadstore1 which indicates that
the request presented in the current cycle was not accepted and
should be presented again.  However, loadstore1 doesn't currently
use it because we know that we can never hit the circumstances
where it might be set.

For unaligned transfers, loadstore1 generates two requests to
dcache back-to-back, and then waits to see two acks back from
dcache (cycles where d_in.valid is true).

Loadstore1 now has a FSM for tracking how many acks we are
expecting from dcache and for doing the rA update cycles when
necessary.  Handling for reservations and conditional stores is
still in dcache.

Loadstore1 now generates its own stall signal back to decode2,
so we no longer need the logic in execute1 that generated the stall
for the first two cycles.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras ef9c1efd72 dcache: Remove LOAD_UPDATE2 state
Since we removed one cycle from the load hit case, we actually no
longer need the extra cycle provided by having the LOAD_UPDATE
state.  Therefore this makes the load hit case in the IDLE and
NEXT_DWORD states go to LOAD_UPDATE2 rather than LOAD_UPDATE.
Then we remove LOAD_UPDATE and then rename LOAD_UPDATE2 to
LOAD_UPDATE.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras 81d777be02 dcache: Trim one cycle from the load hit path
Currently we don't get the result from a load that hits in the dcache
until the fourth cycle after the instruction was presented to
loadstore1.  This trims this back to 3 cycles by taking the low order
bits of the address generated in loadstore1 into dcache directly (not
via the output register of loadstore1) and using them to address the
read port of the dcache data RAM.  We use the lower 12 address bits
here in the expectation that any reasonable data cache design will
have a set size of 4kB or less in order to avoid the aliasing problems
that can arise with a virtually-indexed physically-tagged cache if
the set size is greater than the smallest page size provided by the
MMU.

With this we can get rid of r2 and drive the signals going to
writeback from r1, since the load hit data is now available one
cycle earlier.  We need a multiplexer on the read address of the
data cache RAM in order to handle the second doubleword of an
unaligned access.

One small complication is that we now need an extra cycle in the case
of an unaligned load which misses in the data cache and which reads
the 2nd-last and last doublewords of a cache line.  This is the reason
for the PRE_NEXT_DWORD state; if we just go straight to NEXT_DWORD
then we end up having the write of the last doubleword of the cache
line and the read of that same doubleword occurring in the same
cycle, which means we read stale data rather than the just-fetched
data.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras 5d85ede97d dcache: Implement load-reserve and store-conditional instructions
This involves plumbing the (existing) 'reserve' and 'rc' bits in
the decode tables down to dcache, and 'rc' and 'store_done' bits
from dcache to writeback.

It turns out that we had 'RC' set in the 'rc' column for several
ordinary stores and for the attn instruction.  This corrects them
to 'NONE', and sets the 'rc' column to 'ONE' for the conditional
stores.

In writeback we now have logic to set CR0 when the input from dcache
has rc = 1.

In dcache we have the reservation itself, which has a valid bit
and the address down to cache line granularity.  We don't currently
store the reservation length.  For a store conditional which fails,
we set a 'cancel_store' signal which inhibits the write to the
cache and prevents the state machine from starting a bus cycle or
going to the STORE_WAIT_ACK state.  Instead we set r1.stcx_fail
which causes the instruction to complete in the next cycle with
rc=1 and store_done=0.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras 94dd8bc480 dcache: Add support for unaligned loads and stores
For an unaligned load or store, we do the first doubleword (dword) of
the transfer as normal, but then go to a new NEXT_DWORD state of the
state machine to do the cache tag lookup for the second dword of the
transfer.  From the NEXT_DWORD state we have much the same transitions
to other states as from the IDLE state (the transitions for OP_LOAD_HIT
are a bit different but almost identical for the other op values).

We now do the preparation of the data to be written in loadstore1,
that is, byte reversal if necessary and rotation by a number of
bytes based on the low 3 bits of the address.  We do rotation not
shifting so we have the bytes that need to go into the second
doubleword in the right place in the low bytes of the data sent to
dcache.  The rotation and byte reversal are done in a single step
with one multiplexer per byte by setting the select inputs for each
byte appropriately.

This also fixes writeback to not write the register value until it
has received both pieces of an unaligned load value.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Paul Mackerras 1587d9e6eb dcache: Fix obscure bug and minor cleanups
The obscure bug is that a non-cacheable load with update would never
do the update and would never complete the instruction.  This is fixed
by making state NC_LOAD_WAIT_ACK go to LOAD_UPDATE2 if r1.req.update
is set.

The slow load forms with update can go to LOAD_UPDATE2 at the end
rather than LOAD_UPDATE, thus saving a cycle.  Loads with a cache
hit need the LOAD_UPDATE state in the third cycle since they are
not writing back until the 4th cycle, when the state is LOAD_UPDATE2.
Slow loads (cacheable loads that miss and non-cacheable loads)
currently go to LOAD_UPDATE in the cycle after they see
r1.wb.ack = 1 for the last time, but that cycle is the cycle where
they write back, and the following cycle does nothing.  Going to
LOAD_UPDATE2 in those cases saves a cycle and makes them consistent
with the load hit case.

The logic in the RELOAD_WAIT_ACK case doesn't need to check
r1.req.load = '1' since we only ever use RELOAD_WAIT_ACK for loads.

There are also some whitespace fixes and a typo fix.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Benjamin Herrenschmidt 501b6daf9b Add basic XER support
The carry is currently internal to execute1. We don't handle any of
the other XER fields.

This creates type called "xer_common_t" that contains the commonly
used XER bits (CA, CA32, SO, OV, OV32).

The value is stored in the CR file (though it could be a separate
module). The rest of the bits will be implemented as a separate
SPR and the two parts reconciled in mfspr/mtspr in latter commits.

We always read XER in decode2 (there is little point not to)
and send it down all pipeline branches as it will be needed in
writeback for all type of instructions when CR0:SO needs to be
updated (such forms exist for all pipeline branches even if we don't
yet implement them).

To avoid having to track XER hazards, we forward it back in EX1. This
assumes that other pipeline branches that can modify it (mult and div)
are running single issue for now.

One additional hazard to beware of is an XER:SO modifying instruction
in EX1 followed immediately by a store conditional. Due to our writeback
latency, the store will go down the LSU with the previous XER value,
thus the stcx. will set CR0:SO using an obsolete SO value.

I doubt there exist any code relying on this behaviour being correct
but we should account for it regardless, possibly by ensuring that
stcx. remain single issue initially, or later by adding some minimal
tracking or moving the LSU into the same pipeline as execute.

Missing some obscure XER affecting instructions like addex or mcrxrx.

[paulus@ozlabs.org - fix CA32 and OV32 for OP_ADD, fix order of
 arguments to set_ov]

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
5 years ago
Benjamin Herrenschmidt 9a63c098a5 Move log2/ispow2 to a utils package
(Out of icache and dcache)


Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
5 years ago
Benjamin Herrenschmidt d363daa692 dcache: Add wishbone pipelining support
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
5 years ago
Benjamin Herrenschmidt 1a63c39704 Make it possible to change wishbone address size
All that needs to be changed now is the size in wishbone_types.vhdl
and the address decoder in soc.vhdl

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
5 years ago
Benjamin Herrenschmidt 6e0ee0b0db icache & dcache: Fix store way variable
We used the variable "way" in the wrong state in the cache when
updating a line valid bit after the end of the wishbone transactions,
we need to use the latched "store_way".

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
5 years ago
Benjamin Herrenschmidt 587a5e3c45 dcache: Cleanup (mostly cosmetic)
Clearly separate the 2 stages of load hits, improve naming and
comments, clarify the writeback controls etc...

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
5 years ago
Benjamin Herrenschmidt 174378b190 dcache: Introduce an extra cycle latency to make timing
This makes the BRAMs use an output buffer, introducing an extra
cycle latency. Without this, Vivado won't make timing at 100Mhz.

We stash all the necessary response data in delayed latches, the
extra cycle is NOT a state in the state machine, thus it's fully
pipelined and doesn't involve stalling.

This introduces an extra non-pipelined cycle for loads with update
to avoid collision on the writeback output between the now delayed
load data and the register update. We could avoid it by moving
the register update in the pipeline bubble created by the extra
update state, but it's a bit trickier, so I leave that for a latter
optimization.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
5 years ago
Benjamin Herrenschmidt b513f0fb48 dcache: Add a dcache
This replaces loadstore2 with a dcache

The dcache unit is losely based on the icache one (same basic cache
layout), but has some significant logic additions to deal with stores,
loads with update, non-cachable accesses and other differences due to
operating in the execution part of the pipeline rather than the fetch
part.

The cache is store-through, though a hit with an existing line will
update the line rather than invalidate it.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
5 years ago