These are needed for synthesis that doesn't use fusesoc natively.
These were pulled in via 'fusesoc fetch ::uart16550:1.5.5-r1'
Signed-off-by: Michael Neuling <mikey@neuling.org>
nextpnr will leave an output file around even when it errors out, so
build to a tmp file and move it when we succeed so we don't confuse
make.
Signed-off-by: Michael Neuling <mikey@neuling.org>
This adds a path to allow the CR result of one instruction to be
forwarded to the next instruction, so that sequences such as
cmp; bc can avoid having a 1-cycle bubble.
Forwarding is not available for dot-form (Rc=1) instructions,
since the CR result for them is calculated in writeback. The
decode.output_cr field is used to identify those instructions
that compute the CR result in execute1.
For some reason, the multiply instructions incorrectly had
output_cr = 1 in the decode tables. This fixes that.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This latches the redirect signal inside execute1, so that it is sent
a cycle later to fetch1 (and to decode/icache as flush). This breaks
a long combinatorial chain from the branch and interrupt detection
in execute1 through the redirect/flush signals all the way back to
fetch1, icache and decode.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
It's not needed for the other ops (popcnt, parity, etc.) and the
logical unit shows up as a critical path from time to time.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This implements the CFAR SPR as a slow SPR stored in 'ctrl'. Taken
branches and rfid update it to the address of the branch or rfid
instruction.
To simplify the logic, this makes rfid use the branch logic to
generate its redirect (requiring SRR0 to come in to execute1 on
the B input and SRR1 on the A input), and the masking of the bottom
2 bits of NIA is moved to fetch1.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The sdram_init ELF fails to link:
powerpc64le-linux-gnu-ld -static -nostdlib -T sdram_init.lds \
--gc-sections -o sdram_init.elf head.o main.o sdram.o console.o \
libc.o sdram_init.lds
powerpc64le-linux-gnu-ld: error: linker script file 'sdram_init.lds'
appears multiple times
make: *** [Makefile:70: sdram_init.elf] Error 1
This is because sdram_init.lds is one of the prerequisites, and thus is
contained in $^. However, it is also explicitly specified as part of
LDFLAGS, as the argument to -T.
Signed-off-by: Boris Shingarov <shingarov@labware.com>
Under some circumstances we get POLLHUP which we incorrectly
treat as having a character in the buffer.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds a flag (currently not set) to indicate that the core is using
the architected timebase frequency of 512Mhz. When not set, the core is
using the proc frequency for the timebase.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Use a more generic console_init() instead of potato_uart_init(),
and do the same for interrupt control. There should be no
change in behaviour.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This imports via fusesoc a 16550 compatible (ie "standard") UART,
and wires it up optionally in the SoC instead of the potato one.
This also adds support for a second UART (which is always a
16550) to Arty, wired to JC "bottom" port.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
No cells matched 'get_cells -hierarchical -filter {NAME =~*/spi_rxtx/dat_i_l*}'. [build/microwatt_0/src/microwatt_0/fpga/arty_a7.xdc:42]
The signal is in it's own process so the net name ends up being
spi_rxtx/input_delay_1.dat_i_l_reg.
After this change the log shows:
Applied set_property IOB = TRUE for soc0/\spiflash_gen.spiflash /spi_rxtx/\input_delay_1.dat_i_l_reg . (constraint file fpga/arty_a7.xdc, line 42).
Applied set_property IOB = TRUE for soc0/\spiflash_gen.spiflash /spi_rxtx/\input_delay_1.dat_i_l_reg . (constraint file fpga/arty_a7.xdc, line 42).
Applied set_property IOB = TRUE for soc0/\spiflash_gen.spiflash /spi_rxtx/\input_delay_1.dat_i_l_reg . (constraint file fpga/arty_a7.xdc, line 42).
Applied set_property IOB = TRUE for soc0/\spiflash_gen.spiflash /spi_rxtx/\input_delay_1.dat_i_l_reg . (constraint file fpga/arty_a7.xdc, line 42).
Signed-off-by: Joel Stanley <joel@jms.id.au>
This makes the ICS support less than the 8 architected bits
and sets the soc to use 3 bits by default.
All the supported bits set translates to "masked" (and will read
back at 0xff), any small value is used as-is.
Linux doesn't use priorities above 5, so this is a way to save
silicon. The number of supported priority bits is exposed to the
OS via the config register.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Move the external interrupt generation to a separate module
"ICS" (source controller) which a register per source containing
currently only the priority control.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
That's how Linux expects it. This also simplifies the
register access implementation since the bit fields now
align properly regardless of the access size.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Make the core go faster
Several major improvements in here:
- Simple branch predictor
- Reduced latency for mispredicted branches and interrupts by removing fetch2 stage
- Cache improvements
o Request critical dword first on refill
o Handle hits while refilling, including on line being refilled
o Sizes doubled for both D and I
- Loadstore improvements: can now do one load or store every two cycles in most cases
- Optimized 2-cycle multiplier for Xilinx 7-series parts using DSP slices
- Timing improvements, including:
o Stash buffer in decode1
o Reduced width of execute1 result mux
o Improved SPR decode in decode1
o Some non-critical operation take a cycle longer so we can break some long combinatorial chains
- Core logging: logs 256 bits of info every cycle into a ring buffer, to help with debugging and performance analysis
This increases the LUT usage for the "synth" + A35 target from 9182 to 10297 = 12%.
At present this just has the Xilinx-specific multiplier code, but
might in future have other things.
This also adds the xilinx_specific fileset to the synth target.
Without that it was failing because there was no multiplier.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This plumbs the LOG_LENGTH parameter (which controls how many entries
the core log RAM has) up to the top level so that it can be set on
the fusesoc command line and have different default values on
different FPGAs.
It now defaults to 512 entries generally and on the Artix-7 35 parts,
and 2048 on the larger Artix-7 FPGAs. It can be set to 0 if desired.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This reduces the number of different things that are assigned to
the result variable.
- The computations for the popcnt, prty, cmpb and exts instruction
families are moved into the logical unit.
- The result of mfspr from the slow SPRs is computed in 'spr_val'
before being assigned to 'result'.
- Writes to LR as a result of a blr or bclr instruction are done
through the exc_write path to writeback.
This eases timing considerably.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This implements a simple branch predictor in the decode1 stage. If it
sees that the instruction is b or bc and the branch is predicted to be
taken, it sends a flush and redirect upstream (to icache and fetch1)
to redirect fetching to the branch target. The prediction is sent
downstream with the branch instruction, and execute1 now only sends
a flush/redirect upstream if the prediction was wrong. Unconditional
branches are always predicted to be taken, and conditional branches
are predicted to be taken if and only if the offset is negative.
Branches that take the branch address from a register (bclr, bcctr)
are predicted not taken, as we don't have any way to predict the
branch address.
Since we can now have a mflr being executed immediately after a bl
or bcl, we now track the update to LR in the hazard tracker, using
the second write register field that is used to track RA updates for
update-form loads and stores.
For those branches that update LR but don't write any other result
(i.e. that don't decrementer CTR), we now write back LR in the same
cycle as the instruction rather than taking a second cycle for the
LR writeback.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This makes the logic that works out decode.unit and decode.sgl_pipe
for mtspr/mfspr to/from slow SPRs detect the fact that the
instruction is mtspr/mfspr based on a match with the instruction
word rather than looking at v.decode.insn_type. This improves timing
substantially, as the ROM lookup to get v.decode is relatively slow.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This means that the busy signal from execute1 (which can be driven
combinatorially from mmu or dcache) now stops at decode1 and doesn't
go on to icache or fetch1. This helps with timing.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Use a separate process to assign selected interrupts to the
interrupt array, and document them.
There's only one interrupt *for now* but that will change
and this way is clearer.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This makes the control bus currently going out of "soc" towards
litedram more generic for external IO devices added by the
top-level rather than inside the SoC proper.
This is mostly renaming of signals and a small change on how the
address decoder operates, using a separate "cascaded" decode for
the external IOs.
We make the region 0xc8nn_nnnn be the "external IO" region for
now.
This will make it easier / cleaner to add more external devices.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This uses the machinery we already had for comparing the real address
of a new request with the tag of a previous request (r1.reload_tag)
to get better timing on comparing the address of a second store with
the one in progress. The comparison is now on the set size rather
than the page size, but since set size can't be larger than the page
size (and usually will equal the page size), that is OK.
The same comparison can also be used to tell when we can satisfy
a load miss during a cache line refill.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently, when not using litedram, the top level still has to hook
up "dummy" wishbones to the main dram and control dram busses coming
out of the SoC and provide ack signals.
Instead, make the SoC generate the acks internally when not using
litedram and use defaults to make the wiring entirely optional.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>